Group 2 compounds: C, H hydrocarbons = alkanyl (=R), alkenyl, alkynyl and aromatic. Answer similarly.

Size: px
Start display at page:

Download "Group 2 compounds: C, H hydrocarbons = alkanyl (=R), alkenyl, alkynyl and aromatic. Answer similarly."

Transcription

1 Simulated I spectra Group 1 compounds: Functional group patterns are listed below. Match each structure with one of the 4 simulated I spectra that follow. The wave numbers listed in each spectrum are intended to provide clues as to what the functional group might be. Note your interpretation of what those numbers indicate right on the spectra and write a structure (not a number) in the space provided at the right of each I. Sulfides, tertiary (3o) amines and symmetrical alkynes all lack key diagnostic peaks and can appear similar to one another and similar to simple alkynes. Limited mass spec data is provided to help distinguish these possibilities (M+, M+1, M+2 peaks). Also, watch out for overtone bands (32-34 cm -1 ) in carbonyl compounds (C=). They can be easily mistaken for an amine (N-H) or an alcohol (-H) H H Cl Cl NH 2 N H N N N H H H H H H H H SH SH SH SH SH S NH 2 H N NH 2 N N N 4 H Group 2 compounds: C, H hydrocarbons = alkanyl (=), alkenyl, alkynyl and aromatic. Answer similarly H H CH 3 H CH y:\files\classes\spectroscopy\i\is simulated from database probs.doc

2 Group 1 compounds: Functional group patterns are listed above (1-4). To the right of each I draw the structure most consistent with the given I. Provide a minimal interpretation of the I bands (e.g. 1 o NH 2 stretch, C= stretch, para substituted aromatic, monosubstituted alkene, etc.) Watch out for carbonyl (C=) overtone bands. 1 Exact Mass: M+ = (.%), M+1 = (6.9%) Exact Mass: 1.7 M+ = 1.7 (.%), M+1 = (9.9%) maybe 328 wet C= overtone? Exact Mass: M+ = (.%), M+1 = (9.%) Exact Mass: M+ = (.%), M+1 = (6.5%), M+2 = (32.2%), M+3 = (2.1%) Exact Mass: M+ = (.%), M+1 = (7.8%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

3 6 Exact Mass: M+ = (.%), M+1 = (8.8%), M+2 = (32.2%), M+3 = (2.8%) Exact Mass: M+ = (.%), M+1 = (8.9%) Exact Mass: M+ = (.%), M+1 = (8.9%) Exact Mass: M+ = (.%), M+1 = (8.8%) overtone Exact Mass: M+ = (.%), M+1 = (7.8%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

4 11 Exact Mass: M+ = 97.9 (.%), M+1 = 98.9 (6.9%) Exact Mass: M+ = (.%), M+1 = (9.8%) Exact Mass: M+ = (.%), M+1 = (9.9%) Exact Mass: M+ = (.%), M+1 = (6.9%) Exact Mass: 16.4 M+ = 16.4 (.%), M+1 = 17.5 (7.7%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

5 Exact Mass: M+ = (.%), M+1 = (7.8%) Exact Mass: M+ = (.%), M+1 = (9.8%) (wet) Exact Mass: 96.6 M+ = 96.6 (.%), M+1 = 97.6 (6.6%) Exact Mass:.9 M+ =.9 (.%), M+1 = 11.9 (6.5%) Exact Mass:.9 M+ =.9 (.%), M+1 = 11.9 (6.5%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

6 21 Exact Mass: M+ = (.%), M+1 = (1.7%), M+2 = (4.5%) Exact Mass:.9 M+ =.9 (.%), M+1 = 11.9 (6.5%) Exact Mass: M+ = (.%), M+1 = (9.9%) Exact Mass: M+ = (.%), M+1 = (1.7%), M+2 = (4.5%) Exact Mass: M+ = (.%), M+1 = (9.8%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

7 26 Exact Mass: M+ = 11.2 (.%), M+1 = (7.3%), M+2 = (4.5%) Exact Mass: M+ = (.%), M+1 = (8.9%) Exact Mass: M+ = (.%), M+1 = (9.5%), M+2 = 14.5 (4.6%) Exact Mass: M+ = (.%), M+1 = (8.8%) Exact Mass: M+ = (.%), M+1 = (1.7%), M+2 = (4.5%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

8 Exact Mass: M+ = (.%), M+1 = (12.%) Exact Mass: M+ = (.%), M+1 = (1.7%), M+2 = (4.5%) Exact Mass: M+ = (.%), M+1 = (8.9%) Exact Mass: M+ =.13 (.%), M+1 = (7.8%) Exact Mass:.9 M+ =.9 (.%), M+1 = 11.9 (6.5%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

9 Exact Mass: M+ = (.%), M+1 = (8.9%) Exact Mass: M+ = (.%), M+1 = (5.9%) Exact Mass: M+ = (.%), M+1 = (6.6%) Exact Mass: M+ = (.%), M+1 = (6.7%) Exact Mass: 93.6 M+ = 93.6 (.%), M+1 = 94.6 (6.6%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

10 Group 2 compounds: C, H hydrocarbons = alkanyl (=), alkenyl, alkynyl and aromatic patterns are listed above (1-2). To the right of each I draw the structure most consistent with the given I. Provide a minimal interpretation of the I bands (e.g. para substituted aromatic, monosubstituted alkene, etc.) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

11 para 161 substituted aromatic 1455 overtones y:\files\classes\spectroscopy\i\is simulated from database probs.doc

12 monosubstituted aromatic overtones monosubstituted aromatic overtones meta substituted aromatic overtones y:\files\classes\spectroscopy\i\is simulated from database probs.doc

13 ortho substituted 165 aromatic overtones Exact Mass: 96.9 M+ = 96.9 (.%), M+1 = 97.1 (7.7%) y:\files\classes\spectroscopy\i\is simulated from database probs.doc

14 Formula problem 1 Exact Mass: M+ = (.%), M+1 = (14.5%), M+2 = (97.5%), M+3 = 28.1 (14.2%), M+4 = (1.1%) Hints: 1. What does the odd mass tell you? 2. What does the M+1 tell you? 3. What does the M+2 tell you? 4. There are 12 H in the proton NM. 5. There are 13 C in the C-13 NM. 6. There are 5 pi bonds in the C-13 NM. Questions: What is the molecular formula? How many degrees of unsaturation are there? How many rings and pi bonds are there? Formula problem 2 Exact Mass: 33.8 M+ = 33.8 (.%), M+1 = (2.8%), M+2 = (38.9%), M+3 = (7.8%), M+4 = (1.5%) Hints: 1. What does the even mass tell you? 2. What does the M+1 tell you? 3. What does the M+2 tell you? 4. There are 19 H in the proton NM. 5. There are 19 C in the C-13 NM. 6. There are 6 pi bonds in the C-13 NM. Questions: What is the molecular formula? How many degrees of unsaturation are there? How many rings and pi bonds are there? Formula problem 3 Exact Mass: M+ = (.%), M+1 = (12.3%), M+2 = (6.%), M+3 = (1.5%), Hints: 1. What does the even mass tell you? 2. What does the M+1 tell you? 3. What does the M+2 tell you? 4. There are 22 H in the proton NM. 5. There are 11 C in the C-13 NM. 6. There is 1 pi bonds in the C-13 NM. Questions: What is the molecular formula? How many degrees of unsaturation are there? How many rings and pi bonds are there? y:\files\classes\spectroscopy\i\is simulated from database probs.doc

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY. !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

Look for absorption bands in decreasing order of importance:

Look for absorption bands in decreasing order of importance: 1. Match the following to their IR spectra (30 points) Look for absorption bands in decreasing order of importance: a e a 2941 1716 d f b 3333 c b 1466 1.the - absorption(s) between 3100 and 2850 cm-1.

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies The hydrogen stretch region (3600 2500 cm 1 ). Absorption in this region is associated with the stretching vibration of hydrogen

More information

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set 1. Draw an NMR spectrum for each of the following compounds. Indicate each peak by a single vertical line (for example, a quartet would be

More information

Answers to Assignment #5

Answers to Assignment #5 Answers to Assignment #5 A. 9 8 l 2 5 DBE (benzene + 1 DBE) ( 9 2(9)+2-9 8+1+1 = 10 ˆ 5 DBE) nmr pattern of two doublets of equal integration at δ7.4 and 7.9 ppm means the group (the δ7.9 shift) IR band

More information

Infrared Spectroscopy

Infrared Spectroscopy x-rays ultraviolet (UV) visible Infrared (I) microwaves radiowaves near I middle I far I λ (cm) 8 x 10-5 2.5 x 10-4 2.5 x 10-3 2.5 x 10-2 µ 0.8 2.5 25 250 ν (cm -1 ) 13,000 4,000 400 40 ν (cm -1 1 ) =

More information

Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules How IR spectroscopy works:

Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules How IR spectroscopy works: Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules It is the study of the interaction of infrared energy with organic molecules; the process analyzes

More information

8. Spectrum continued

8. Spectrum continued I. The ν(x-h) region alcohols H-bonding in alcohols Figs. 2.30,2.32,2.59,2.61,2.45 w 3400-3200 ν(o-h) amines s neat carboxylic acids increasing dilution 3600 free ν(o-h) w HN(C 4 H 9 ) 2 -NHbroad m-s 3500-3100

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

Chapter 25 Organic and Biological Chemistry

Chapter 25 Organic and Biological Chemistry Chapter 25 Organic and Biological Chemistry Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without this property, large biomolecules such as proteins,

More information

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Skills: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H s, relate peak splitting to

More information

STRUCTURE ELUCIDATION BY INTEGRATED SPECTROSCOPIC METHODS

STRUCTURE ELUCIDATION BY INTEGRATED SPECTROSCOPIC METHODS Miscellaneous Methods UNIT 14 STRUCTURE ELUCIDATION BY INTEGRATED SPECTROSCOPIC METHODS Structure 14.1 Introduction Objectives 14.2 Molecular Formula and Index of Hydrogen Deficiency 14.3 Structural Information

More information

Alkanes, Alkenes and Alkynes

Alkanes, Alkenes and Alkynes Alkanes, Alkenes and Alkynes Hydrocarbons Hydrocarbons generally fall into 2 general groupings, aliphatic hydrocarbons and aromatic hydrocarbons. Aliphatic hydrocarbons contain chains and rings of hydrocarbons,

More information

Alkenes, Alkynes, and Aromatic Compounds

Alkenes, Alkynes, and Aromatic Compounds Alkenes, Alkynes, and Aromatic Compounds Alkenes and Alkynes Unsaturated Contain carbon-carbon DOUBLE and TRIPLE bond to which more hydrogen atoms can be added Alkenes: carbon-carbon double bonds Alkynes:

More information

Infra-red Spectroscopy

Infra-red Spectroscopy Molecular vibrations are associated with the absorption of energy (infrared activity) by the molecule as sets of atoms (molecular moieties) vibrate about the mean center of their chemical bonds. Infra-red

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Vibrations. Matti Hotokka

Vibrations. Matti Hotokka Vibrations Matti Hotokka Identify the stuff I ve seen this spectrum before. I know what the stuff is Identify the stuff Let s check the bands Film: Polymer Aromatic C-H Aliphatic C-H Group for monosubstituted

More information

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 2

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 2 Name: Student Number: University of Manitoba - Department of Chemistry CHEM 2220 - Introductory Organic Chemistry II - Term Test 2 Thursday, March 12, 2015; 7-9 PM This is a 2-hour test, marked out of

More information

General Infrared Absorption Ranges of Various Functional Groups

General Infrared Absorption Ranges of Various Functional Groups General Infrared Absorption Ranges of Various Functional Groups Frequency Range Bond Type of Compound cm -1 Intensity C Alkanes 2850-2970 Strong 1340-1470 Strong C Alkenes 3010-3095 Medium 675-995 Strong

More information

NMR Spectroscopy: Determination of Molecular Structures

NMR Spectroscopy: Determination of Molecular Structures Experiment 2 NMR Spectroscopy: Determination of Molecular Structures Reading: Handbook for Organic Chemistry Lab, chapters on NMR Spectroscopy (Chapter 18) and Identification of Compounds (Chapter 20).

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD The following guidelines should be helpful in assigning a structure from NMR (both PMR and CMR) and IR data. At the end of this

More information

Chem 213 Final 2012 Detailed Solution Key for Structures A H

Chem 213 Final 2012 Detailed Solution Key for Structures A H Chem 213 Final 2012 Detailed Solution Key for Structures A H COMPOUND A on Exam Version A (B on Exam Version B) C 8 H 6 Cl 2 O 2 DBE = 5 (aromatic + 1) IR: 1808 cm 1 suggests an acid chloride since we

More information

Downloaded from

Downloaded from 1 Class XI Chemistry Ch 13: Hydrocarbons TOP Concepts: 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject hemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 34: ombined problem on UV, IR, 1 H NMR, 13 NMR and Mass- Part 6 HE_P12_M34 TABLE OF ONTENTS 1. Learning

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Important Note: We will NOT accept papers written in pencil back for re-marking after they have been returned to you. Please do not ask!

Important Note: We will NOT accept papers written in pencil back for re-marking after they have been returned to you. Please do not ask! Name: Student Number: University of Manitoba - Department of Chemistry CHEM 2220 - Introductory Organic Chemistry II - Term Test 2 Thursday, March 15, 2012; 7-9 PM This is a 2-hour test, marked out of

More information

C h a p t e r F o u r t e e n: Structure Determination: Mass Spectrometry and Infrared Spectroscopy

C h a p t e r F o u r t e e n: Structure Determination: Mass Spectrometry and Infrared Spectroscopy C h a p t e r F o u r t e e n: Structure Determination: Mass Spectrometry and Infrared Spectroscopy Cl OH Cl An electron ionization mass spectrum of 2,5-dichlorophenol CHM 323: Summary of Important Concepts

More information

Chapter 1 Introduction, Formulas and Spectroscopy Overview

Chapter 1 Introduction, Formulas and Spectroscopy Overview hapter 1 Introduction, Formulas and Spectroscopy verview Problem 1 (p 1) - elpful equations: c = ( )( ) and = (1 / ) so c = ( ) / ( ) c =. x 1 8 m/sec =. x 1 1 cm/sec a. Which photon of electromagnetic

More information

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Slide 2 Introduction Organic chemistry is the study of and its compounds. The major sources of carbon are the fossil fuels: petroleum, natural gas,

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

1 TOP Concepts: Class XI Chemistry Ch 13: Hydrocarbons 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Can First Year Organic Students Solve Complicated Organic Structures?

Can First Year Organic Students Solve Complicated Organic Structures? an First Year rganic Students Solve omplicated rganic Structures? Tools of the trade (for problems in this discussion): 1. Mass Spec information limited data (M+, M+1, M+2, M+3, etc.) 2. I information

More information

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! CHEM 345 Problem Set 4 Key Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. To use them effectively, it will require some knowledge from

More information

2. Match the following NMR spectra with one of the following substances. Write you answer in the box along side the spectrum. (16 points) A B C D E F

2. Match the following NMR spectra with one of the following substances. Write you answer in the box along side the spectrum. (16 points) A B C D E F 2. Match the following NM spectra with one of the following substances. Write you answer in the box along side the spectrum H H (16 points) A B C H D E F 1. Match the following compounds with their 13

More information

Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups

Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups Definition: Infrared Spectroscopy is the study of the Infrared Spectrum. An Infrared Spectrum is the plot of photon energy

More information

2Dstructuredrawing Chem314 Beauchamp

2Dstructuredrawing Chem314 Beauchamp 2Dstructuredrawing hem314 Beauchamp 3 2 3 3 2 2 3 2 2 3 2 2 (neutral) (cation) (anion) (free radical) use zig-zag drawing for sp 3 chains 1 o carbocation 1 o carbanion 1 o free radical 3 3 3 3 3 3 (cation)

More information

Chemistry 3720 Old Exams. Practice Exams & Keys

Chemistry 3720 Old Exams. Practice Exams & Keys Chemistry 3720 ld Exams Practice Exams & Keys 2015-17 Spring 2017 Page File 3 Spring 2017 Exam 1 10 Spring 2017 Exam 1 Key 16 Spring 2017 Exam 2 23 Spring 2017 Exam 2 Key 29 Spring 2017 Exam 3 36 Spring

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY !! www.clutchprep.com CONCEPT: IR SPECTROSCOPY- FREQUENCIES There are specific absorption frequencies in the functional group region that we should be familiar with EXAMPLE: What are the major IR absorptions

More information

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014 NANYANG TECHNOLOGICAL UNIVERSITY DIVISION OF CHEMISTRY AND BIOLOGICAL CHEMISTRY SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES CM 3011 - Chemical Spectroscopy and Applications Final Examination Solution Manual

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual. CHEM 3780 rganic Chemistry II Infrared Spectroscopy and Mass Spectrometry Review More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages 13-28 in your laboratory manual.

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MOLEULAR REPRESENTATIONS AND INFRARED SPETROSOPY A STUDENT SOULD BE ABLE TO: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116 Additional Problems for practice.. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = IR: weak absorption at 9 cm - medium absorption at cm - NMR 7 3 3 C

More information

2. Examining the infrared spectrum of a compound allows us to:

2. Examining the infrared spectrum of a compound allows us to: CHEM 204 2010 Ass. 1 Problem 1. The amount of energy in infrared light corresponds to: a. the amount of energy needed to promote one electron from a bonding to an antibonding molecular orbital b. the amount

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons.

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons. Organic and Biochemical Molecules 1. Compounds composed of carbon and hydrogen are called hydrocarbons. 2. A compound is said to be saturated if it contains only singly bonded carbons. Such hydrocarbons

More information

Atomic Properties of Carbon

Atomic Properties of Carbon Organic Compounds Atomic Properties of Carbon Organic molecules have structural complexity and chemical diversity. Carbon can lose 4 electrons and have the same electronic configuration as He. OR Carbon

More information

ORGANIC CHEMISTRY. Classification of organic compounds

ORGANIC CHEMISTRY. Classification of organic compounds ORGANIC CHEMISTRY Organic chemistry is very important branch of chemistry and it study the compounds which contain carbon (C) and hydrogen (H), in general, and may contains other atoms such as oxygen (O),

More information

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#:

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#: rganic hemistry II (HE 232-001) Examination I February 11, 2009 Name (Print legibly): Key (last) (first) Student ID#: PLEASE observe the following: You are allowed to have scratch paper (provided by me),

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Chapter 20 (part 2) Organic Chemistry

Chapter 20 (part 2) Organic Chemistry Chapter 20 (part 2) Organic Chemistry Section 20.7 Alkenes and Alkynes Alkenes: hydrocarbons that contain a carbon carbon double bond. [C n H 2n ] CH 3 CH=CH 2 propene Alkynes: hydrocarbons containing

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA Structure 9.1 Introduction Objectives 9.2 Principle 9.3 Requirements 9.4 Strategy for the Structure Elucidation

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Benzene and Aromaticity

Benzene and Aromaticity Benzene and Aromaticity Why this Chapter? Reactivity of substituted aromatic compounds is tied to their structure Aromatic compounds provide a sensitive probe for studying relationship between structure

More information

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Midterm Exam 1 ctober 31, 2008 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This exam contains 8 pages Time: 1h 30 min 1. / 15 2. / 16 3. /

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products: Exam 1 Name CHEM 212 1. (18 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Purpose: This is an exercise to introduce the use of nuclear magnetic resonance spectroscopy, in conjunction with infrared spectroscopy, to determine

More information

ORGANIC CHEMISTRY. Organic molecules are everywhere! The Alkanes (See pages 25-4 and 25-5) Naming Alkanes (See pages 25-7 to 25-10)

ORGANIC CHEMISTRY. Organic molecules are everywhere! The Alkanes (See pages 25-4 and 25-5) Naming Alkanes (See pages 25-7 to 25-10) RGANI EMISTRY hemistry 11 rganic molecules are everywhere! Some common examples: Sucrose (sugar) Methane (natural gas) Butane (lighter fluid) Plastic Acetic Acid (vinegar) Ethanol (fuel additive) What

More information

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6 BRCC CHM 102 ass Notes Chapter 13 Page 1 of 6 Chapter 13 Benzene and Its Derivatives aliphatic hydrocarbons include alkanes, alkenes, and alkynes aromatic hydrocarbons compounds that contain one or more

More information

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY Structure 7.1 Introduction Objectives 7.2 Principle 7.3 Requirements 7.4 Strategy for the Interpretation of IR Spectra 7.5 Practice Problems

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted. Massachusetts Institute of Technology Organic Chemistry 5.13 Friday, September 26, 2003 Prof. Timothy F. Jamison Hour Exam #1 Name (please both print and sign your name) Official Recitation Instructor

More information

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data Problem solving session S. SANKARARAMAN DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI 600036 sanka@iitm.ac.in

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

CH318N Spring 2012 Final Exam. Chemistry 318N. Spring 2012 Dr. Willson. Final Exam

CH318N Spring 2012 Final Exam. Chemistry 318N. Spring 2012 Dr. Willson. Final Exam 318N Spring 2012 Final Exam 3 hemistry 318N Spring 2012 Dr. Willson Final Exam This afternoon you will take two tests, one in chemistry and one in integrity. I want you to get A s on both of these tests

More information

Massachusetts Institute of Technology Organic Chemistry Hour Exam #1. Name. Official Recitation Instructor

Massachusetts Institute of Technology Organic Chemistry Hour Exam #1. Name. Official Recitation Instructor Massachusetts Institute of Technology rganic Chemistry. Friday, September 0, 00 Prof. Timothy F. Jamison Hour Exam # Name (please both print and sign your name) fficial Recitation Instructor Directions:

More information

Molecular and Chemical Formulas

Molecular and Chemical Formulas Molecular and Chemical Formulas Atoms combine (bond) to form molecules. Each molecule has a chemical formula. The chemical formula indicates which atoms are found in the molecule, and in what proportion

More information

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSIN A Answer multiple choice questions on the green computer sheet provided with a PENCIL. Be sure to encode both your NAME and Registration Number (V#). You will

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Examination #2 Reactions of Alkenes & Alkynes, Chemistry of Aromatic Compounds, and Stereochemistry Thursday, October 5,

More information

The Final Learning Experience

The Final Learning Experience Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser The Final Learning Experience Monday, December 15, 1997 3:00-5:00 pm Name: Answer Key Maximum Question 1 (Combination I) 20 Question 2 (Combination

More information

Learning Guide for Chapter 3 - Infrared Spectroscopy

Learning Guide for Chapter 3 - Infrared Spectroscopy Learning Guide for hapter 3 - Infrared Spectroscopy I. Introduction to spectroscopy - p 1 II. Molecular vibrations - p 3 III. Identifying functional groups - p 6 IV. Interpreting an IR spectrum - p 12

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important:

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important: Aside on Chapter 22, Organic Chemistry Why is organic chemistry important: 1) Materials 2) Energy (oil & coal) 3) Human health a) diagnosis b) treatment (drugs) 4) A drug development logic progression

More information

2 ethane CH 3 CH 3. 3 propane CH 3 CH 2 CH 3

2 ethane CH 3 CH 3. 3 propane CH 3 CH 2 CH 3 #100 Notes Unit 12: Introduction to Organic and Biochemistry Ch. Organic/ Biochemistry I. Alkanes, C n H 2n+2 (saturated hydrocarbons: no C=C or C C) *always 4 bonds on carbon # Carbons parent chain name

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

Assignment Isomers, Nomenclature, Polymers

Assignment Isomers, Nomenclature, Polymers Assignment Isomers, Nomenclature, Polymers Anne-Marie Guirguis K /20 T /26 A /20 C /11 Total St. Francis Xavier SCH4U1 April 14 2017 Multiple Choice [Knowledge 20] Select the letter of the best answer

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Examination #2 Reactions of Alkenes & Alkynes, Chemistry of Aromatic Compounds, and Stereochemistry Thursday, October 8,

More information

BIOB111 - Tutorial activities for session 8

BIOB111 - Tutorial activities for session 8 BIOB111 - Tutorial activities for session 8 General topics for week 4 Session 8 Physical and chemical properties and examples of these functional groups (methyl, ethyl in the alkyl family, alkenes and

More information

Introduc)on to Func)onal Groups in Organic Molecules

Introduc)on to Func)onal Groups in Organic Molecules Introduc)on to Func)onal Groups in rganic Molecules CH 3 H 3 C N C C N C C N N CH CH 3 Caffeine Func)onal Group Func%onal group - collec)on of atoms at a site that have a characteris)c behavior in all

More information

12.1 The Nature of Organic molecules

12.1 The Nature of Organic molecules 12.1 The Nature of Organic molecules Organic chemistry: : The chemistry of carbon compounds. Carbon is tetravalent; it always form four bonds. Prentice Hall 2003 Chapter One 2 Organic molecules have covalent

More information