Your Name: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points)

Size: px
Start display at page:

Download "Your Name: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points)"

Transcription

1 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points) For (b) (d), draw the complete structure of the substrate (all atoms, lone pairs, etc), draw the complete structure of the EI-generated radical cation, and draw curved arrow mechanisms for the fragmentations. (a) Predict the intensities of the relative intensities of the peaks for M (:= 100%), M+1, M+2, M+3, and M+4 of hypothetical 1,10-dibromodecapentayne 10 Br 2. Assume that the 13 abundance is 1.1% and that the two isotopes of Br have the same abundance. Show your work and try to be organized. For future reference: This source uses (79)Br : (81)Br = 100 : & (12) : (13) = 100 : M M M M M ormed to M := 100%: M M M M M M+1 = [ *10 *100%] = 11% M+2 = [ *10*9 *100%] + [1 1 *2 *100%] = 1.09% + 200% = 201.1% M+3 = [ *10*9*8 *100%] + [1 1 *2 * 0.011*10 *100%] = 0.10% + 22% = 22.1% M+4 = [ *10*9*8*7 *100%] + [1 1 *2 * *10*9 *100%] + [1 2 *1*1 *100%] = 0.01% + 2.2% + 100% = 102.2% (b) etro-diels-alder Fragmentation. Example: 4-methylcyclohexene. Ionize -1-

2 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: (c) McLafferty earrangement. Example: 2-exanone Ionize (d) McLafferty+1 earrangement. Example: Butylacetate. Explain the formation of [ 3 () 2 ] Ionize

3 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 2. Spectra of a MALDI MS Matrix ompound 2,6-Dihydroxyacetophenone. (20 points) (a) Find the MS spectrum of 2,6-dihydroxyacetophenone in the SDBS database ( ), print it, and attach it to this page (staple). What ionization method was used to generate this SDBS spectrum? List the four major peaks and outline a detailed fragmentation mechanism consistent with the MS spectrum. EI: DIET, 75 ev, Source Temp.: 140 Sample Temp.: 120. Four major peaks: m/z rel. Int Ionize 3-3 m/z = 152 m/z = bserved 3 m/z = 43 m/z = m/z =

4 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: (b) Find the MALDI MS spectrum of 2,6-dihydroxyacetophenone in the text by Pretsch et al. What kind of laser was employed for the generation of this spectrum (provide the approximate wave length of the laser) and in what way does the laser excite the matrix material? (see: apid ommun. Mass Spectrom. 1996, 10, ): Entry 5 in reference. Pulsed nitrogen laser used; = 337 nm; UV/Vis excitation with 337 = Assign the numbered peaks (m/z 23, 39, 153, 175, 191 and 365) and suggest a fragmentation mechanism consistent with the MALDI MS data: 23: a + 39: K = M + 153: [M+] + 175: [M+a] + 191: [M+K] + 365: Quite uncertain, no response required. -4-

5 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 3. ESI Spectrum of a Tripeptide. (20 points) ead the article omparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GX*1 (Intl. J. Mass Spectrom. 2004, 234, ) and pay special attention to the discussion of the [GX + 2] 2+ ion, a comparatively simple example of a multiply-charged small peptide. Using complete structural drawings, discuss the major initial fragmentations of this dication. ef., p. 107, left column says: of sequence ions from [GX + 2] 2+ may be understood by a slight modification to Scheme 1. Unlike [GX + ]+ which have only one proton (for which both the y1 and b2 fragments compete), [GX + 2] 2+ have two protons, allowing both y1 and b2 fragments to be protonated and thus, in the fragmentation of [GX + 2] 2+, the y1 and its complementary b2 and/or a2 ions are observed with almost equal abundances. The mobile proton also induces the formation of y2 or [y2 + ] 2+ ions via cleavage of amide bond A. For the singly charged y2 ions, the complementary b1 ion is not observed as it is not stable [49] and readily loses to form the a1 ion, which is not detected due to the low mass cut-off of the ion trap. ne possibility is outlined below. ote the additional proton shown in ED. The cleavage now is ETELYTI. This leaves the small piece positively charged. The additional proton migrates from the carbonyl- to the anionic to make the 2 group. Partial credit for any reasonable and consistent suggestion A 2 B m = 115 ( = ) 2 m = m = 232 ( = ) yclize m =

6 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 4. UV/Vis Spectroscopy of Indicator Dyes. (20 points) (a) Phenolphthalein, 3,3-bis(p-hydroxyphenyl)phthalide, is used an acid-base indicator. The color in acidic media is colorless and absorption occurs in the region(s) UV-region,_< 400_ nm. The color in alkaline media is fuchsia-pink_/ magenta and absorption occurs in the region(s) green, 550 nm. The change of color occurs at the p value of ca. 8. Show the structures involved in the p-dependent equilibrium and state how the structures explain the colors. Quite a lot of information, actually, can be found at Wikipedia: / / deprotonated phenolphthalein Explain the shift in the absorption with p value: eutral compound is sp 3 at central and there is no conjugation between different phenyl rings. UV absorptions of monosubstituted arenes, that is, like benzoate and phenol. Anionic compound is sp 2 at central and conjugation between different phenyl rings is possible (i.e. draw differentb resonance forms). The game has changed in a fundamental way. -6-

7 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: (b) APM is a fluorescent probe designed for studying protein conformational change (PAS 2005, 102, ) and Table 1 shows the spectral properties of the ethanethiol adduct of APM. Draw the structure of the ethanethiol adduct of APM. See next box. The adduct results by addition of EtS across the double bond of maleic anhydride. The data in Table 1 show that the fluorescence probe features a batho-chromic shift. Using resonance forms, discuss the electronic structures of the ground state and of the electronic excited state. SEt SEt Me 2 Me 2 A B Electronic Ground State: Lots of A and some B. Electronic Excited Singlet State: Some A and lots of B. -7-

8 Exam #4, ovember 14-16, MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 5. onjugation Effects on UV/Vis Absorptions. (20 points) ompare & contrast the chromophores of molecules A. A 2 Me What type(s) of excitation(s) would you expect for each of the compounds? At approximately what wave length(s) would you expect these transitions? B Me Me What kind(s) of intensity (just provide information about the expected magnitude) would you expect for each of these excitations? A:, -Unsaturated arbonyl (Pretsch et al. p. 388) [1] Acyclic parent system with X = : 193 nm [2] Two additional conjugated double bonds: 2 x +30 nm [3] Amino group if it were in -position (position 2): +95 nm [4] Amino group in position 6: --no increment known-- Estimate based on [1] [3]: 348 nm Estimate for [4]: Probably less than 95 nm. The conjugation length increases, but there also is more opportunity for gauche conformations. Final estimate for A: nm. B:, -Unsaturated arbonyl (Pretsch et al. p. 388) [1] Acyclic parent system with X = : 193 nm [2] Two additional conjugated double bonds: 2 x +30 nm [3] Amino group if it were in -position (position 2): +95 nm [4] Amino group in position 6: --no increment known-- [5] Two double bonds are exocyclic: 2 x +10 nm [6] Alkyls contribute +10 (a); +18 (g); +18 (pos. 5): +46 nm Estimate based on [1] - [3], [5] & [6]: 414 nm Estimate for [4]: Probably more than 95 nm. The conjugation length increases and conformations are rigid. Final estimate for A: nm. : T an, -Unsaturated arbonyl (o increment system available.) aphthalene: around 300 nm Anthracene vs. aphthalene: ca. +80 nm arboxylate attached to Benzene: ca. +23 nm Isoquinoline vs. aphthalene: ca. +20 nm Estimate: 423 nm Final estimate considering DA-nature: nm. -8-

Chapter 5. Mass spectrometry

Chapter 5. Mass spectrometry ionization and fragmentation Chapter 5. Mass spectrometry which fragmentations? mass and frequency, m/z and count rate Reading: Pavia Chapters 3 and 4 Don t need 3.3 B-D, 3.4 B-D Use the text to clarify

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Kevin Burgess, February 20, 2017 1 Mass Spectrometry (MS) from chapter(s) in the recommended text A. Introduction Kevin Burgess, February 20, 2017 2 B. Components f Mass Spectrometers mass-to-charge. molecular

More information

MASS SPECTROSCOPY (MS)

MASS SPECTROSCOPY (MS) MASS SPECTOSCOPY (MS) Castor seeds icin (toxic protein) INTODUCTION Does not involve absorption of electromagnetic radiation. It is a spectroscopic technique, by virtue of its use in structure elucidation.

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

Lecture notes in EI-Mass spectrometry. By Torben Lund

Lecture notes in EI-Mass spectrometry. By Torben Lund 1 Lecture notes in EI-Mass spectrometry By Torben Lund RUC 2015 1. Basic advise: 1) Identify the mole peak M +. 2) Nitogen rule: Determine number of N 3) A+2 elements: Cl, Br, S, Si 4) N C = 100 [M+1]/([M]

More information

Qualitative Analysis of Unknown Compounds

Qualitative Analysis of Unknown Compounds Qualitative Analysis of Unknown Compounds 1. Infrared Spectroscopy Identification of functional groups in the unknown All functional groups are fair game (but no anhydride or acid halides, no alkenes or

More information

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects Mass Spectrometry Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects 1 Introduction to MS Mass spectrometry is the method of analysis

More information

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] 1 Introduction Outline Mass spectrometry (MS) 2 INTRODUCTION The analysis of the outcome of a reaction

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Chemistry 14C Spring 2016 Final Exam Part B Solutions Page 1

Chemistry 14C Spring 2016 Final Exam Part B Solutions Page 1 hemistry 14 Spring 2016 Final Exam Part B Solutions Page 1 Statistics: igh score, average and low score will be posted on the course web site after exam grading is complete. A note about exam keys: The

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

Chemistry 14C Spring 2016 Final Exam Part B Page 1

Chemistry 14C Spring 2016 Final Exam Part B Page 1 hemistry 14 Spring 2016 Final Exam Part B Page 1 In lecture we discussed the possibility that the first cells may have been formed in boiling mud puddles, which have been shown (in the lab) to produce

More information

MS Interpretation I. Identification of the Molecular Ion

MS Interpretation I. Identification of the Molecular Ion MS Interpretation I Identification of the Molecular Ion Molecular Ion: EI Requirements for the Molecular Ion Must be the highest m/z peak in the spectrum Highest Isotope Cluster Must be an odd-electron

More information

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

Dissociation of Even-Electron Ions

Dissociation of Even-Electron Ions Dissociation of Even-Electron Ions Andrea Raffaelli CNR Istituto di Fisiologia Clinica Via Moruzzi, 1, 56124 Pisa. E-Mail: andrea.raffaelli@cnr.it Web: http://raffaelli.ifc.cnr.it A Simple? ESI Spectrum

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY !! www.clutchprep.com CONCEPT: IR SPECTROSCOPY- FREQUENCIES There are specific absorption frequencies in the functional group region that we should be familiar with EXAMPLE: What are the major IR absorptions

More information

Mechanisms of Ion Fragmentation (McLafferty Chapter 4) Business Items

Mechanisms of Ion Fragmentation (McLafferty Chapter 4) Business Items Mechanisms of Ion Fragmentation (McLafferty Chapter 4) CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Prof. Jose-Luis Jimenez 1 Business Items Last real lecture is today Material from today,

More information

MASS SPECTROMETRY: BASIC EXPERIMENT

MASS SPECTROMETRY: BASIC EXPERIMENT http://science.widener.edu/svb/massspec/ei.html relative abundance Pavia 8.1-8.5 MASS SPECTROMETRY: BASIC EXPERIMENT scienceaid.co.uk -e Molecule Molecule +. + 2e base peak [Fragments] +. fragment peaks

More information

L.7. Mass Spectrum Interpretation

L.7. Mass Spectrum Interpretation L.7. Mass Spectrum Interpretation Fragmentation reactions Spectrum interpretation Confirmation of ion structural assignment Biomolecule dissociation Fragmentation reactions 1. Fragmentation reactions of

More information

Mass Spectrometry: Introduction

Mass Spectrometry: Introduction Mass Spectrometry: Introduction Chem 8361/4361: Interpretation of Organic Spectra 2009 Andrew Harned & Regents of the University of Minnesota Varying More Mass Spectrometry NOT part of electromagnetic

More information

Mass Spectrometry Instrumentation

Mass Spectrometry Instrumentation Mass Spectrometry Instrumentation A mass spectrometer is composed of an inlet system (which introduces the sample to the instrument and vaporizes the sample) A molecular leak (which produces a steady stream

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

Chapter 14: Conjugated Dienes

Chapter 14: Conjugated Dienes Chapter 14: Conjugated Dienes Coverage: 1. Conjugated vs Nonconjugated dienes and Stability 2. MO picture of 1,3-butadiene 3. Electrophilic addition to Dienes 4. Kinetic vs Thermodynamic Control 5. Diels-Alder

More information

Lecture 14 Organic Chemistry 1

Lecture 14 Organic Chemistry 1 CHEM 232 Organic Chemistry I at Chicago Lecture 14 Organic Chemistry 1 Professor Duncan Wardrop February 25, 2010 1 CHEM 232 Organic Chemistry I at Chicago Mass Spectrometry Sections: 13.24-13.25 2 Spectroscopy

More information

Chem 14C Lecture 2 Spring 2017 Final Part B Solutions Page 1

Chem 14C Lecture 2 Spring 2017 Final Part B Solutions Page 1 hem 14 Lecture 2 Spring 2017 Final Part B Solutions Page 1 Statistics: igh score, average, and low score will be posted on the course web site after exam grading is complete. Some questions have more than

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

ORGANIC SPECTROSCOPY NOTES

ORGANIC SPECTROSCOPY NOTES - 1 - ORGANIC SPECTROSCOPY NOTES Basics of Spectroscopy UV/vis, IR and NMR are all types of Absorption Spectroscopy, where EM radiation corresponding to exactly the energy of specific excitations in molecules

More information

5. Carbon-13 NMR Symmetry: number of chemically different Carbons Chemical Shift: chemical environment of Carbons (e- rich or e- poor)

5. Carbon-13 NMR Symmetry: number of chemically different Carbons Chemical Shift: chemical environment of Carbons (e- rich or e- poor) Qualitative Analysis of Unknown Compounds 1. Infrared Spectroscopy Identification of functional groups in the unknown All functional groups are fair game (but no anhydride or acid halides, no alkenes or

More information

CHEMISTRY 216 WINTER TERM 2007 END OF TERM EXAM. Time Allowed 2 hours

CHEMISTRY 216 WINTER TERM 2007 END OF TERM EXAM. Time Allowed 2 hours EMISTRY 216 WITER TERM 2007 ED F TERM EXAM Time Allowed 2 hours ame KEY GSI ame ID umber Lab Section Write legibly. Illegible or messy answers will not be graded. Read these instructions carefully. In

More information

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced I. Mass spectrometry: capable of providing both quantitative and qualitative information about samples as small as 100 pg (!) and with molar masses in the 10 4-10 5 kdalton range A. The mass spectrometer

More information

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014 NANYANG TECHNOLOGICAL UNIVERSITY DIVISION OF CHEMISTRY AND BIOLOGICAL CHEMISTRY SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES CM 3011 - Chemical Spectroscopy and Applications Final Examination Solution Manual

More information

CH318N Spring 2012 Final Exam. Chemistry 318N. Spring 2012 Dr. Willson. Final Exam

CH318N Spring 2012 Final Exam. Chemistry 318N. Spring 2012 Dr. Willson. Final Exam 318N Spring 2012 Final Exam 3 hemistry 318N Spring 2012 Dr. Willson Final Exam This afternoon you will take two tests, one in chemistry and one in integrity. I want you to get A s on both of these tests

More information

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy M 223 Organic hemistry I Prof. had Landrie Lecture 10: September 20, 2018 h. 12: Spectroscopy mass spectrometry infrared spectroscopy i>licker Question onsider a solution that contains 65g R enantiomer

More information

CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts)

CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts) CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts) Name: TA Name: Exam Length = 90 min DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Directions for drawing molecules, reactions, and electron-pushing

More information

Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved

Mass Spectrometry. 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved Mass Spectrometry 2000, Paul R. Young University of Illinois at Chicago, All Rights Reserved Mass Spectrometry When a molecule is bombarded with high-energy electrons, one of the process that can occur

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

CEM 351, Fall 2010 Midterm Exam 1 Friday, October 1, :50 2:40 p.m. Room 138, Chemistry

CEM 351, Fall 2010 Midterm Exam 1 Friday, October 1, :50 2:40 p.m. Room 138, Chemistry Name (print) Signature Student # EM 351, Fall 2010 Midterm Exam 1 Friday, ctober 1, 2010 1:50 2:40 p.m. Room 138, hemistry Wright N. Swers 1.(20 2.(20.. 3.(20 4.(20 5.(20 6.(20 Section Number (2 pts extra

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject hemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 34: ombined problem on UV, IR, 1 H NMR, 13 NMR and Mass- Part 6 HE_P12_M34 TABLE OF ONTENTS 1. Learning

More information

c) Draw accurate tree diagrams for the A and X signals (10 Hz = 1 cm: use a ruler!).

c) Draw accurate tree diagrams for the A and X signals (10 Hz = 1 cm: use a ruler!). Practice Final CEM 393 Dr..M. Muchall Name Make sure that your exam has 10 pages. Show all work. Remember: a point a minute! Textbook (Pavia, Lampman, Kriz, Vyvyan, 4 th edition) and calculator allowed.

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

235 Organic II. Final Exam Review REACTIONS OF CONJUGATED DIENES 1,2 VS 1,4 ADDITION REACTIONS OF CONJUGATED DIENES

235 Organic II. Final Exam Review REACTIONS OF CONJUGATED DIENES 1,2 VS 1,4 ADDITION REACTIONS OF CONJUGATED DIENES b. the ompound 7 i 1 Spectral Data: singlet, 196.5 ppm singlet, 14.1 ppm singlet, 14.4 ppm doublet, 19.1 ppm doublet, 18.5 ppm 1 MR Mass Spectrum Absorbance Intensity Infrared Spectrum 65 91 9. Structure:

More information

Chemistry 14C Fall 2015 Final Exam Part B Page 1

Chemistry 14C Fall 2015 Final Exam Part B Page 1 Chemistry 14C Fall 2015 Final Exam Part B Page 1 Uric acid is a normal metabolic product derived from purine nucleosides. Gout is a painful arthritic condition in which excess uric acid precipitates as

More information

Chemistry 14C Spring 2018 Final Exam Part A Page 1

Chemistry 14C Spring 2018 Final Exam Part A Page 1 hemistry 14 Spring 2018 Final Exam Part A Page 1 The Deepwater orizon was a petroleum-drilling rig that exploded and sank in the Gulf of Mexico on April 22, 2010. This incident caused a massive crude oil

More information

Structural Determination Of Compounds

Structural Determination Of Compounds EXPERIMENT 10 Mass Spectroscopy Structural Determination Of Compounds. Introduction - In mass spectrometry, a substance is bombarded with an electron beam having sufficient energy to fragment the molecule.

More information

Identifying Functional Groups. Why is this necessary? Alkanes. Why is this so important? What is a functional group? 2/1/16

Identifying Functional Groups. Why is this necessary? Alkanes. Why is this so important? What is a functional group? 2/1/16 Identifying Functional Groups The Key to Survival Why is this so important? ver and over again, you will be asked to do reactions, the details to which you will receive in lecture and via your textbook.

More information

Chapter 15 Dienes, Resonance, and Aromaticity

Chapter 15 Dienes, Resonance, and Aromaticity Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 15 Dienes, Resonance, and Aromaticity Solutions to In-Text Problems 15.2 The delocalization energy is the energy

More information

LC-MS Based Metabolomics

LC-MS Based Metabolomics LC-MS Based Metabolomics Analysing the METABOLOME 1. Metabolite Extraction 2. Metabolite detection (with or without separation) 3. Data analysis Metabolite Detection GC-MS: Naturally volatile or made volatile

More information

Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1

Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1 Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1 1. (2) Write the letter of the structure that best fits the following 13 C-NMR spectrum: 51 ppm (doublet), 44 ppm (triplet), 27 ppm (quartet), 26

More information

C H C H 3. aspirin CHEMISTRY Topic #4: Organic Chemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12

C H C H 3. aspirin CHEMISTRY Topic #4: Organic Chemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12 = = 3 EMISTY 2000 aspirin Topic #4: rganic hemistry Fall 2018 Dr. Susan Findlay See Exercises in Topic 12 rganic Acids (arboxylic Acids) When you hear the term organic acid, it s generally referring to

More information

CHE Organic Chemistry 1 Exam 1

CHE Organic Chemistry 1 Exam 1 E 230 001 rganic hemistry 1 Exam 1 September 23, 2013 ame: KEY Student number: Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials.

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing.

a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing. a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing. Br AlBr 3 b) Using resonance and inductive effects, explain why an ethyl group

More information

Introduction to Organic Chemistry

Introduction to Organic Chemistry Introduction to rganic hemistry 59 Introduction to rganic hemistry andout 3 - chanism u u http://burton.chem.ox.ac.uk/teaching.html rganic hemistry J. layden,. Greeves, S. Warren Stereochemistry at a Glance

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 31: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part III CHE_P12_M31 TABLE OF CONTENTS 1.

More information

Chapter 2 Molecular Representations

Chapter 2 Molecular Representations hapter 2 Molecular Representations Structural Formulas and ondensed Structures Because organic compounds are molecular in nature, the additional information conveyed in structural formulas is sometimes

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic Aromatic Compounds Early in the history of organic chemistry (late 18 th, early 19 th century) chemists discovered a class of compounds which were unusually stable A number of these compounds had a distinct

More information

Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133

Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133 Chem 3372: rganic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133 Instructor: Professor Alexander R. Lippert, PhD ffice: 141 FSC Email: alippert@smu.edu (please include CHEM 3372 in

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1 Chemistry 14C Winter 2017 Exam 2 Solutions Page 1 Statistics: High score, average, and low score will be posted on the course web site after exam grading is complete. Some questions have more than one

More information

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY 1. Mass spectrometry: SPECTROSCOPIC TECHNIQUES - A technique capable of identifying the presence of various mass segments of organic molecules.

More information

MS Interpretation II. Fragmentation

MS Interpretation II. Fragmentation MS Interpretation II Fragmentation Ionization E Electron Ionization (EI): Even-electron neutrals yield odd-electron radical cations. M(EE) EI - 1e - M (E) Electron can come from anywhere. EI EI even electron

More information

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR] CHEM 6371/4511 Name: The exam consists of interpretation of spectral data for compounds A-C. The analysis of each structure is worth 33.33 points. Compound A (a) How many carbon atoms are in the molecular

More information

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson Welcome!! - 50120 Organic Chemistry for Chemical Engineers Professor: Grant Willson Teaching Assistants: Paul Meyer, Qingjun Zhu, Josh Saunders http://willson.cm.utexas.edu January 22,2019 Bureaucracy:

More information

Chem 332, Exam 4. Spring Provide reagents for the following transformations (2 pts each) NaOH , KOH. 4) H2/Pd NO 2. 1) AlCl 3 O 2) H 2 NNH 2

Chem 332, Exam 4. Spring Provide reagents for the following transformations (2 pts each) NaOH , KOH. 4) H2/Pd NO 2. 1) AlCl 3 O 2) H 2 NNH 2 AME 1. Provide reagents for the following transformations (2 pts each) 2 a 2 1) Al 3 2) 2 2, K h! 1) 3, 2) LDA 3) + 4) 2/Pd C 2 AME 2a Circle the correct product (no mechanisms or partial credit). 3 pts

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Mass Spectrometry. A truly interdisciplinary and versatile analytical method

Mass Spectrometry. A truly interdisciplinary and versatile analytical method Mass Spectrometry A truly interdisciplinary and versatile analytical method MS is used for the characterization of molecules ranging from small inorganic and organic molecules to polymers and proteins.

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual. CHEM 3780 rganic Chemistry II Infrared Spectroscopy and Mass Spectrometry Review More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages 13-28 in your laboratory manual.

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

Look for absorption bands in decreasing order of importance:

Look for absorption bands in decreasing order of importance: 1. Match the following to their IR spectra (30 points) Look for absorption bands in decreasing order of importance: a e a 2941 1716 d f b 3333 c b 1466 1.the - absorption(s) between 3100 and 2850 cm-1.

More information

Chapter 2. Molecular Representations

Chapter 2. Molecular Representations hapter 2. Molecular Representations 3 () 3 ( 3 ) 2 3 3 3 8 Lewis (Kekule) structure ondensed and par6ally condensed structure Skeletal (bond- line) structure Molecular formula Amoxicillin a widely prescribed

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

CHEM3331: Fundamentals of Organic Chemistry I Prof. Ognjen Š. Miljanić December 11, 2012

CHEM3331: Fundamentals of Organic Chemistry I Prof. Ognjen Š. Miljanić December 11, 2012 HEM3331: Fundamentals of rganic hemistry I Final Exam Prof. gnjen Š. Miljanić December 11, 2012 Name: Last First Student ID Number: ead all directions very carefully, think about your answer, and then

More information

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy Figure 12.1 - The electron-ionization, magneticsector mass spectrometer Representing the Mass Spectrum Base Peak Parent

More information

MASS Spectrometry. CHAPTER. Introduction: 58 MASS Spectroscopy

MASS Spectrometry.   CHAPTER. Introduction: 58 MASS Spectroscopy 58 MASS Spectroscopy APTER 3 MASS Spectrometry Introduction: In the commonly used electron-impact (EI) mode, a mass spectrometer bombards molecules in the vapour phase with a high-energy electron beam

More information

Chapter 20. Mass Spectroscopy

Chapter 20. Mass Spectroscopy Chapter 20 Mass Spectroscopy Mass Spectrometry (MS) Mass spectrometry is a technique used for measuring the molecular weight and determining the molecular formula of an organic compound. Mass Spectrometry

More information

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#:

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#: rganic hemistry II (HE 232-001) Examination I February 11, 2009 Name (Print legibly): Key (last) (first) Student ID#: PLEASE observe the following: You are allowed to have scratch paper (provided by me),

More information

IR, MS, UV, NMR SPECTROSCOPY

IR, MS, UV, NMR SPECTROSCOPY CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET All Sections CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET General Instructions for the 318 Spectroscopy Problem Set Consult the Lab Manual,

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Benzene and Aromaticity

Benzene and Aromaticity Benzene and Aromaticity Why this Chapter? Reactivity of substituted aromatic compounds is tied to their structure Aromatic compounds provide a sensitive probe for studying relationship between structure

More information

Organic Chemistry II KEY March 25, a) I only b) II only c) II & III d) III & IV e) I, II, III & IV

Organic Chemistry II KEY March 25, a) I only b) II only c) II & III d) III & IV e) I, II, III & IV rganic Chemistry II KEY March 25, 2015 Exam 2: VERSIN A 1. Which of the following compounds will give rise to an aromatic conjugate base? E a) I only b) II only c) II & III d) III & IV e) I, II, III &

More information

1. Which of the following compounds is the weakest base?

1. Which of the following compounds is the weakest base? I. Multiple-choice Questions Fall 2018 1. Which of the following compounds is the weakest base? a. C3C2 b. C3C2 c. N3 d. C3 e. N2 2. Which of the following functional groups is indicated by a strong and

More information

Sample Exam Solutions. Section A. The answers provided are suggestions only and do not represent directly or otherwise official VCAA answers.

Sample Exam Solutions. Section A. The answers provided are suggestions only and do not represent directly or otherwise official VCAA answers. 1 Sample Exam 1 2008 Solutions The answers provided are suggestions only and do not represent directly or otherwise official VAA answers. Section A Q1 n(agl) = 4.85 / (107.9+35.5) = 0.00338 mol n(kl) =

More information

Week 6 notes CHEM

Week 6 notes CHEM Week 6 notes EM1002 2009 Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, hemistry, 2007 (John Wiley) ISBN: 9 78047081 0866 1 Note

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Chapter 12- Structure Determination: Mass Spectrometry and Infrared Spectroscopy Ashley Piekarski, Ph.D. Determining the Structure of an Organic Compound The analysis of the outcome of a reac=on requires

More information

b.(12) Where is pyrrole protonated under strong acidic conditions? Why this site of protonation?

b.(12) Where is pyrrole protonated under strong acidic conditions? Why this site of protonation? 1. Rank the following compounds in the trend requested. (15 points each) a. Rank the following dienes by rate of Diels-Alder reaction. The diene which reacts the fastest with an alkene is 1, while the

More information

Chem 51A Midterm Exam 100 points; 50 minutes November 2, 2009

Chem 51A Midterm Exam 100 points; 50 minutes November 2, 2009 Chem 51A Midterm Exam 100 points; 50 minutes ovember 2, 2009 Problem Possible Points Score 1 15 2 15 3 16 4 12 5 18 6 12 7 12 Total 100 Academic onesty Policy. Academic honesty is strictly enforced on

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

Show all work. Remember: a point a minute! This exam is MUCH longer than the upcoming Final.

Show all work. Remember: a point a minute! This exam is MUCH longer than the upcoming Final. CEM 293 Sample Final Dr..M. Muchall Name Show all work. Remember: a point a minute! This exam is MUC longer than the upcoming Final. Textbook and calculator allowed. The textbook can be marked up, but

More information

Christopher M. Hadad Chemistry 253N Spring Final Exam. Name (PRINT) ANSWER KEY I have neither given nor received aid on this exam (SIGN)

Christopher M. Hadad Chemistry 253N Spring Final Exam. Name (PRINT) ANSWER KEY I have neither given nor received aid on this exam (SIGN) Christopher M. adad Chemistry 253 Spring 2002 Final Exam ame (PRIT) ASWER KEY I have neither given nor received aid on this exam (SIG) There are 8 pages and 300 points on this exam. Please read each question

More information

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS MASS SPECTRA measure a compound s Mol. Wt. p. 213 M + Molecule e - Molecule + 2 e - + + Mole cule + + Mol ecule IONIZATION CHAMBER repellor plate accelerating plates variable field magnet + Mo + lecule

More information