Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep

Size: px
Start display at page:

Download "Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep"

Transcription

1 Lecture 4 Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71 Equilibrium for a Multistep Mechanism A + 2B k 1F k 1R C At equilibrium forward and backward rates for the first and second steps k 1F [A][B] 2 =k 1R [C] [C] = [A][B] 2 k 1F = K 1 (1) k 1R C + D k 2F k 2R A + 2B + D E E and k 2F [C][D] = k 2R [E] [E] = [C][D] Multiply equation 1 by equation 2 [C] x [A][B] 2 [E] [C][D] = K 1 K 2 = K eq (for the overall reaction) k 2F = K 2 (2) k 2R [E] [A][B] 2 [D] = K eq The equilibrium constant (K eq ) for a multistep process can be obtained from the overall reaction It is equal to the ratio of products to reactants raised to their stoichiometric numbers

2 Reaction quotient (Q) Q monitors progress of a reaction Q = 0 at moment reactants mixed increases as products form amount products Q = amount reactants is equal to K eq at equilibrium Reaction quotient for reactions in solution Pb 2+ (aq) +2Cl - (aq) PbCl 2 (s) 1 Q = [Pb 2+ ][Cl - ] 2 For dissolved substances: 1) molarity appears in Q 2) pure substances (solids and liquids that are not dissolved) never appear in Q 3) molarities raised to power of n in the overall reaction Reaction quotient (Q) for gases 2C 8 H 18 (g) +25O 2 (g) 16CO 2 (g) + 18H 2 O (g) (P CO2 ) 16 (P H2O ) 18 Q = (P C8H18 ) 2 (P O2 ) 25 for gases the partial pressures appear in Q each is raised to power of n

3 Uses of Q calculating Q is like taking a snapshot of the reaction Tells how far it is from equilibrium if Q less than K eq reaction will be moving forward (towards products) if Q = K eq then reaction is at equilibrium if Q greater than K eq the reaction will be moving backwards (towards reactants) Equilibrium constant (K eq ) equilibrium constant ALWAYS CAPITAL K [C][D] K c = [A][B] P C P D K p = P A P B if it applies to solutions c K eq c stands for concentration in [Molarity] if it applies to gases p K eq p stands for partial pressure Meaning of the size of K eq if K eq is large the reaction tends to have more products than reactants at equilibrium if K eq is small the reaction tends to have more reactants at equilibrium 3

4 Manipulating K eq K eq for the reverse of a reaction 1 K eq (reverse) = K eq (forward) double reaction triple reaction K eq = K eq 2 K eq = K eq 3 (new) (old ) (new) (old ) etc. K eq for an overall reaction when reactions are added K eq for overall reaction is the product of each of the steps K eq values A + B C K 1 = 10 C D + E K 2 = 5 A + B D + E K overall = K 1 K 2 = 50 4

5 5

6 6

7 Le Chateliers Principle If a system at equilibrium is disturbed it will move in a direction to counteract the disturbance LCP is used to predict the direction a reaction will move in response to changes in temperature, pressure, or amounts of reactants/products 7

8 Le Chateliers Principle (changes in reactants/products) What effect will adding Cl ions have? Ag + (aq) + Cl (aq) AgCl (s) disturbance = Cl increased response = system decreases [Cl ] by moving towards products Le Chateliers Principle - If a system at equilibrium is disturbed it will respond by moving in a direction to counteract the disturbance Le Chateliers Principle (changes in reactants/products) What will be the effect of reducing the partial pressure of O 2? Hb (aq) + O 2 (aq) HbO 2 (aq) hemoglobin = Hb oxygenated hemoglobin = HbO 2 disturbance = O 2 decreased this occurs when the hemoglobin reaches a cell that has a lower O 2 concentration due to using it in metabolism. The shift in equilibrium is the release of oxygen to the cell Le Chateliers Principle - If a system response = system responds at equilibrium is disturbed it will respond to raise [O 2 ] by moving towards by moving in a direction to counteract the reactants disturbance Hemoglobin, O 2 and equilibrium lungs [O 2 ] high [O 2 ] hemoglobin = Hb oxygenated hemoglobin = HbO 2 Hb (aq) + O 2 (aq) HbO 2 (aq) high [O 2 ] shifts reaction towards HbO 2 lungs HbO 2 (aq) Hb (aq) + O 2 (aq) cell [O 2 ] low cell low [O 2 ] shifts reaction towards Hb + O 2 8

9 Le Chateliers Principle (changes in applied pressure or volume) If pressure is increased the system will shift towards the side that has smaller volume to reduce the pressure C(s, graphite) C(s, diamond) larger volume smaller volume putting graphite under large pressures reduces the volume and causes it to turn into diamond Le Chateliers Principle (changes in applied pressure or volume) If pressure is decreased (or V is increased) the system will respond by shifting towards the side that has larger volume (more moles of gas) attempting to increase the pressure H 2 CO 3 (aq) CO 2 (g) + H 2 O (l) less moles gas more moles gas pressure is decreased when champagne is uncorked the system responds by trying to increase the pressure. This means shifting the equilibrium towards the side with more moles gas releasing CO 2 gas Le Chateliers Principle (changes in temperature) raising temperature can be thought of as adding heat in order to remove the heat the reaction will move in the direction that consumes heat NH 4 Cl (s) + heat NH 3 (g) + H + (aq) + Cl- (aq) heating will drive reaction towards products reactions that absorb heat ( H positive) are said to be endothermic reactions that release heat ( H negative) are said to be exothermic 9

10 LCP and partial pressures N 2 (g) + 3H 2 (g) 2NH 3 (g) If the applied pressure is increased on this system it would tend to decrease the volume the LCP response is to move to right The reaction quotient is disturbed by this - that is why it responds to find a new equilibrium position K p = p NH3 2 P N2 P H2 3 Say applied P was doubled Q = V will be halved Each partial pressure will be doubled = ¼ of previous value If the total pressure is changed by adding a gas not involved in the reaction at constant volume none of the partial pressures will be changed so there will be no need to re-equilibrate 10

11 How far will it go? Reactant and products concentrations stop changing when Q = K eq Q: How do we figure out [products] and [reactants] at equilibrium? A: The algebra to calculate [products] and [reactants] is usually organized in a table Initial-Change-Equilibrium (ICE) are the three concentrations involved Initial-Change-Equilibrium (ICE) table A + 2B D + 3E initial (M) change (M) 1 -x 2-2x +x +3x Do the initial values have to add up to or multiply out to any particular quantity? Do the changes in concentration have add up to, or multiply out to etc. any particular quantity? say for instance moles A react No, they can be whatever we decide to make them. Yes, they must be in the same ratio as the balanced equation then if x moles A react moles A x 2 moles B = 0.05 moles B x moles A x 2 moles B = 2x moles B 1 mole A 1 mole A react react

12 Initial-Change-Equilibrium table A + 2B D + 3E initial (M) change (M) + -x + -2x + +x + +3x equilibrium x x x 3x (M) plug into Q Q = [D][E]3 [A][B] 2 K eq the equilibrium values if plugged into the reaction quotient will be equal to K eq the initial values plus changes are the equilibrium values Initial-Change-Equilibrium table A + 2B D + 3E initial (M) change (M) -x -2x +x +3x equilibrium x x x 3x (M) K eq = [D][E]3 x*3x [A][B] 2 = (.055-x)(.28-2x) If the initial concentrations and K eq are known the equilibrium concentrations can be calculated The problem is getting x by itself 12

13 13

14 14

15 15

16 initial (M) CO + 2H 2 CH 3 OH change (M) equilibrium (M) initial (M) Fe 3+ + SCN - FeSCN 2+ change (M) equilibrium (M) 16

17 initial (M) H 2 (g) + I 2 (g) 2HI (g) change (M) equilibrium (M) initial (atm) 2NO + Br 2 2NOBr change (atm) equilibrium (atm) 17

Lecture 1. Definition of rate. Reaction rate in solution. distance speed time. Professor Hicks General Chemistry (CHE132)

Lecture 1. Definition of rate. Reaction rate in solution. distance speed time. Professor Hicks General Chemistry (CHE132) Lecture 1 Professor Hicks General Chemistry (CHE132) Definition of rate Rate is how much a quantity changes in a given period of time The speed you drive your car is a rate distance speed time Reaction

More information

CHEMISTRY. Chapter 15 Chemical Equilibrium

CHEMISTRY. Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 8 th Edition Chapter 15 Chemical Kozet YAPSAKLI The Concept of Chemical equilibrium is the point at which the concentrations of all species are constant. Chemical equilibrium

More information

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2.

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2. Chapter 16: Chemical Equilibrium What is meant by an equilibrium system? What is an equilibrium expression? N 2 +3 H 2 2 NH 3 1) Only gases and dissolved species appear in an equilibrium expression. 4

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

Dynamic Equilibrium. going back and forth at the same rate

Dynamic Equilibrium. going back and forth at the same rate Dynamic Equilibrium going back and forth at the same time at the same rate LeChatelier s Principle If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Worksheet 21 - Le Chatelier's Principle

Worksheet 21 - Le Chatelier's Principle Worksheet 21 - Le Chatelier's Principle Le Chatelier's Principle states that if a stress is applied to a system at equilibrium, the system will adjust, to partially offset the stress and will reach a new

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15 Chemical Equilibrium. Equilibrium

Chapter 15 Chemical Equilibrium. Equilibrium Chapter 15 Chemical The Concept of Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system approaches equilibrium, both the forward and

More information

Homework #5 Chapter 6 Chemical Equilibrium

Homework #5 Chapter 6 Chemical Equilibrium Homework #5 Chapter 6 Chemical Equilibrium 2. Assume the reaction is A + B C + D. It is given that K9 and K [C][D]. At the start of [A][B] the reaction, before equilibrium is reached, there are 8 A molecules,

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium The Concept of Equilibrium (15.1) Ways of Expressing Equilibrium Constants (15.2) What Does the Equilibrium Constant Tell Us? (15.3) Factors that Affect Chemical

More information

Chapter 14: Chemical Equilibrium

Chapter 14: Chemical Equilibrium Chapter 14: Chemical Equilibrium Chemical Equilibrium What does is mean to describe a chemical reaction as being in a state of dynamic equilibrium? What are the characteristics and requirements of dynamic

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

Transition state. Products. So what really happens during a reaction? Both forward and reverse reactions occur!

Transition state. Products. So what really happens during a reaction? Both forward and reverse reactions occur! 99 WHAT KEEPS A REACTION FROM GOING BACKWARDS? reactants products reactants... what keeps the reaction on the right from occurring? products Transition state E N E R G Y Reactants The reverse reaction

More information

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium The Concept of Chapter 15 Chemical AP Chemistry 12 North Nova Education Centre 2017 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 14 Lecture Lecture Presentation. Chapter 14. Chemical Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 14 Lecture Lecture Presentation. Chapter 14. Chemical Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 14 Lecture Lecture Presentation Chapter 14 Chemical Equilibrium Sherril Soman Grand Valley State University Hemoglobin Hemoglobin is a protein (Hb), found in red blood cells, that reacts with O

More information

b. There is no net change in the composition (as long as temperature is constant).

b. There is no net change in the composition (as long as temperature is constant). CHAPTER THIRTEEN Questions 9. a. The rates of the forward and reverse reactions are equal at equilibrium. b. There is no net change in the composition (as long as temperature is constant). 10. False. Equilibrium

More information

Write a balanced reaction.. then write the equation.. then solve for something!!

Write a balanced reaction.. then write the equation.. then solve for something!! Chapter 13 - Equilibrium Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Chapter 16 - Principles of Chemical Equilibrium

Chapter 16 - Principles of Chemical Equilibrium Chapter 16 - Principles of Chemical Equilibrium -allreactions are "reversible" - principle of micro-reversibility - the "committed step" - much theory - not always obvious - for some the reverse reaction

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chapter 14: Chemical Equilibrium. Mrs. Brayfield

Chapter 14: Chemical Equilibrium. Mrs. Brayfield Chapter 14: Chemical Equilibrium Mrs. Brayfield 14.2: Dynamic Equilibrium Remember from chapter 13 that reaction rates generally increase with increasing concentration of the reactions and decreases with

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98 Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON Name /98 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Forward Rxn: A + B C + D Reverse Rxn: A + B C + D Written as: A + B C + D OR A + B C + D A reversible reaction has both an endothermic rxn and an exothermic rxn Reactants Exothermic

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 3 Chemical Equilibrium Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition:

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition: Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline 13.1. Chemical Equilibrium A. Definition: B. Consider: N 2 O 4 (g, colorless) 2NO 2 (g, brown) C. 3 Main Characteristics of Equilibrium 13.2-13.4.

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 15. Chemical Equilibrium. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 15 Chemical James F. Kirby Quinnipiac University Hamden, CT The Concept of N 2 O 4 (g) 2 NO 2 (g) Chemical equilibrium occurs when a reaction and its reverse reaction proceed

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage

CHEMICAL EQUILIBRIUM. Chapter 16. Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) PLAY MOVIE Brooks/Cole - Cengage 1 CHEMICAL EQUILIBRIUM Chapter 16 PLAY MOVIE Pb 2+ (aq) + 2 Cl (aq) e PbCl 2 (s) Properties of an Equilibrium Equilibrium systems are DYNAMIC (in constant motion) REVERSIBLE can be approached from either

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

Equilibrium. Slide 1 / 27. Slide 2 / 27. Slide 3 / 27. PART A: Introduction and Ice Tables EQUILIBRIUM

Equilibrium. Slide 1 / 27. Slide 2 / 27. Slide 3 / 27. PART A: Introduction and Ice Tables EQUILIBRIUM New Jersey Center for Teaching and Learning Slide 1 / 27 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

2. Dynamic Equilibrium forward rate = reverse rate reactions happen, but cancel each other out, so that no overall change o steady state

2. Dynamic Equilibrium forward rate = reverse rate reactions happen, but cancel each other out, so that no overall change o steady state Ch. 14 Chemical Equilibrium Chem 210 Jasperse Ch. 14 Handouts 1 14.1 Characteristics of a System at Chemical Equilibrium 1. Not completely on product or reactant side have some of each product favored

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g)

Chapter 13. The Concept of Equilibrium. A System at Equilibrium. The Concept of Equilibrium. Chemical Equilibrium. N 2 O 4 (g) 2 NO 2 (g) PowerPoint to accompany The Concept of Equilibrium Chapter 13 Chemical Equilibrium Figure 13.1 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept

More information

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood?

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood? Concentration Flammable materials burn faster in pure oxygen than in air because the of O 2 is greater. Hospitals must make sure that no flames are allowed near patients receiving oxygen. Surface Area

More information

CHEM N-2 November 2014

CHEM N-2 November 2014 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Le Châtelier s principle 1 Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

Chemical reactions with large K c (also K p) effectively go 100% to products.

Chemical reactions with large K c (also K p) effectively go 100% to products. th 7 Homework: Reading, M&F, ch. 13, pp. 506-524 (applications of equilibrium constants, Le Chatelier s Principle). Problems: Nakon, ch. 17, #9, 10, 12-15, 17, 24, 34; M&F, ch. 13, #41, 42, 44, 49, 51,

More information

1. a. The rates of the forward and reverse reactions are equal at equilibrium.

1. a. The rates of the forward and reverse reactions are equal at equilibrium. CHATER THIRTEEN CHEMICAL EQUILIBRIUM For Review 1. a. The rates of the forward and reverse reactions are equal at equilibrium. b. There is no net change in the composition (as long as temperature is constant).

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

Chapter Outline. The Dynamics of Chemical Equilibrium

Chapter Outline. The Dynamics of Chemical Equilibrium Chapter Outline 14.1 The Dynamics of Chemical Equilibrium 14.2 Writing Equilibrium Constant Expressions 14.3 Relationships between K c and K p Values 14.4 Manipulating Equilibrium Constant Expressions

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) ΔH = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals 1. Chemical equilibrium is said to by dynamic because a. The reaction proceeds quickly b. The mass of the reactants is decreasing c. The macroscopic properties

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Ch 17 Solubility Equilibria. Brown & LeMay

Ch 17 Solubility Equilibria. Brown & LeMay Ch 17 Solubility Equilibria Brown & LeMay When a typical ionic solid is dissolved in water that dissolved material can be assumed to be present as separate hydrated anions & cations. For example: CaF 2

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

Chem 12 Equilibrium, Enthalpy and Entropy Name:

Chem 12 Equilibrium, Enthalpy and Entropy Name: Chem 12 Equilibrium, Enthalpy and Entropy Name: 1. What do people mean when they say that a reaction is reversible? 2. Give four things which are true about a system at equilibrium: 1. _ 2. _ 3. _ 4. _

More information

Henry Le Chatelier ( ) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions.

Henry Le Chatelier ( ) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions. Henry Le Chatelier (1850-1936) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions. He proposed a Law of Mobile equilibrium or Le Chatelier s principle The

More information

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe CHEMISTRY XL-14A CHEMICAL EQUILIBRIA August 20, 2011 Robert Iafe Unit Overview 2 Reactions at Equilibrium Equilibrium Calculations Le Châtelier s Principle Catalysts Reactions at Equilibrium 3 Reversibility

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants, in a dynamic equilibrium. A dynamic equilibrium consists of a forward

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K eq ; Calculating K eq using equilibrium concentrations; Factors that affect equilibrium; Le Chatelier s Principle What

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Name: Name: Page 1 of 6

Name: Name: Page 1 of 6 Name: Name: Name: Name: Worksheet 10: Q, Adding Equations, Equilibrium Calculations, and Le Châtelier Objectives: To be able to calculate Q, the reaction quotient, and know what it means. To be able to

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

5.111 Lecture Summary #20. CHEMICAL EQUILIBRIUM Chapter 9 sections Topics: External effects on K and sig figs for logs.

5.111 Lecture Summary #20. CHEMICAL EQUILIBRIUM Chapter 9 sections Topics: External effects on K and sig figs for logs. 20.1 CHEMICAL EQUILIBRIUM Chapter 9 sections 9.10-9.13 Topics: External effects on K and sig figs for logs. Recall Principle of Le Châtelier: A system in equilibrium that is subjected to stress will react

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry CHAPTER 14 Chemical Equilibrium 17-1 What happens? Stoichiometry How Fast? Kinetics applies to the speed of a reaction, the concentration of product that appears (or of reactant that disappears) per unit

More information

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium?

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium? Chapter 9 Quiz: Chemical Equilibria 1. Which of the following statements is true regarding chemical equilibrium? I. The concentrations of reactants and products at equilibrium are constant, which means

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 3 Chemical Equilibrium Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Exp. 20 - video (time: 41:13 minutes) Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Chemical Equilibrium Previously we have assumed that chemical reactions

More information

Example 14.1 Expressing Equilibrium Constants for Chemical Equations

Example 14.1 Expressing Equilibrium Constants for Chemical Equations Example 14.1 Expressing Equilibrium Constants for Chemical Equations For Practice 14.1 Express the equilibrium constant for the combustion of propane as shown by the balanced chemical equation: Example

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Fu-Yin Hsu Chemical reaction The speed of a chemical reaction is determined by kinetics. The extent of a chemical reaction is determined by thermodynamics. 14.1 Fetal Hemoglobin

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have?

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have? CST Review Part 2 1. In the phase diagram, correctly label the x-axis and the triple point write the names of all six phases transitions in the arrows provided. Liquid Pressure (ATM) Solid Gas 2. How many

More information

Worksheet 18 - Equilibrium. Balance the following reaction, and use it to answer the following 8 questions:

Worksheet 18 - Equilibrium. Balance the following reaction, and use it to answer the following 8 questions: Worksheet 18 - Equilibrium Balance the following reaction, and use it to answer the following 8 questions: N 2 (g) + H 2 (g) NH 3 (g) 1. Starting with 0.500 M N 2 and 0.800 M H 2, the reaction is allowed

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

Chapter 15 REVIEW. Part 1. Part 2

Chapter 15 REVIEW. Part 1. Part 2 () Yes, the evidence from many systems shows that the rate at which reactant particles are colliding to form products is equal to the rate at which products are colliding to form reactants. (3) When a

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter Fifteen. Chemical Equilibrium

Chapter Fifteen. Chemical Equilibrium Chapter Fifteen Chemical Equilibrium 1 The Concept of Equilibrium Dynamic Equilibrium Opposing processes occur at equal rates Forward and reverses reaction proceed at equal rates No outward change is observed

More information

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction Lecture 19 Equilibrium Constant Equilibrium oint of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction In general: ja + kb R + qs K eq [ R] [ S] [ A] [

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Reaction 2: B(aq) 2C(aq) After 30 Minutes [A] (M) [B] (M)

Reaction 2: B(aq) 2C(aq) After 30 Minutes [A] (M) [B] (M) Chapter 6: Phenomena Phenomena: Scientists studied the following reactions by putting different amounts of substances (reactants and products) into a sealed rigid vessel and measuring the concentration

More information

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier

Chemical Equilibrium. Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Chemical Equilibrium Foundation of equilibrium Expressing equilibrium: Equilibrium constants Upsetting equilibrium Le Chatelier Learning objectives Write equilibrium constant expressions for both solutions

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force

Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force Lecture 10 Professor Hicks Inorganic Chemistry (CHE151) Ability to do work What is energy? Work means moving something against a force Energy thought of as an imaginary liquid that gets moved from one

More information