Valence Shell Electron Pair Repulsion Model

Size: px
Start display at page:

Download "Valence Shell Electron Pair Repulsion Model"

Transcription

1 Activity 22 Valence hell Electron Pair Repulsion Model Why? Molecules adopt a shape that minimizes their energy. In many cases it is possible to predict the geometry of a molecule simply by considering the repulsive energy of electron pairs. You can use this valence shell electron pair repulsion model (VEPR) to predict shapes and determine whether or not a molecule is polar. cientists commonly use this model when they need to predict or estimate the shape of a molecule. Learning bjective Understand how molecular shape is predicted from the Lewis structure uccess Criterion Accuracy in predicting molecular shapes Prerequisite Activity 21: Lewis Model of Electronic tructure Information The terms Lewis structure, electronic structure, electron arrangement, and electron geometry are used to describe how the bonding and nonbonding electron pairs are positioned in a molecule. The terms molecular shape, molecular structure, and molecular geometry are used to describe how the atoms are positioned relative to each other in a molecule. Activity 22 Valence hell Electron Pair Repulsion Model 145

2 Model: Methodology for Determining Molecular Geometries (hapes or tructures) from the VEPR Model Table 22.1 Methodology Example or sulfur dioxide: tep 1: Draw the Lewis electronic structure. tep 2: Count the number of bonds and nonbonding electron pairs around the central atom. tep 3: Molecules take a shape that minimizes their energy. Arrange the bonds and nonbonding electron pairs to maximize their separation, which minimizes the electron-electron repulsion energy. 1 single + 1 double bond + 1 nonbonding pair = 3. This number is called the steric number. A steric number of 3 in step 2 means a trigonal planar electronic structure minimizes the energy: tep 4: Add the atoms in a way that is consistent with how the electrons are shared, and put the nonbonding electron pairs as far apart as possible. tep 5: Determine the molecular shape from the position of the atoms. The atoms are arranged in a nonlinear or bent shape. 146 oundations of Chemistry

3 Key Questions 1. In tep 1 in the preceding methodology, how do you determine the Lewis electronic structure? 2. Why are bonds and nonbonding electron pairs (aka: lone pairs) spaced as far apart as possible in the structure? 3. According to tep 4 in the methodology, if you have two lone pairs and bonds to four atoms around a central atom, would you position the lone pairs at 90º or 180º to each other? Explain. 4. How would you describe the geometrical arrangement of the bonds and lone pairs around sulfur in sulfur dioxide? 5. How would you describe the shape of sulfur dioxide? (The terms linear and bent are commonly applied to triatomic molecules like 2.) 6. ome triatomic molecules are linear. What feature of 2 leads to the bent geometry? 7. What three insights have your team gained about the shape of molecules by examining the model and responding to the key questions? Activity 22 Valence hell Electron Pair Repulsion Model 147

4 Exercises 1. Complete the illustrations in the following table to show the arrangement of bonds and electron lone pairs that minimizes the energy in each case. Your illustration represents the Lewis electronic structure of the molecule. The number of bonds and lone pairs is called the steric number. Number of Bonds and Lone Pairs Lewis Electronic tructure Illustration of the Electronic tructure Table linear 3 trigonal planar 4 tetrahedral 5 trigonal bipyramid 6 octahedral 148 oundations of Chemistry

5 2. Use the VEPR model to predict the shape of each of the following molecules then sketch the molecule in the first column and the appropriate row of the table below. 3 I3 I6+ b5 C2 e32 i4 Kr4 4 I3 Br5 Table 22.3 tructure/example Illustration linear I- I - I bent trigonal planar tetrahedral i Activity 22 Valence hell Electron Pair Repulsion Model 149

6 tructure/example Illustration trigonal bipyramidal b trigonal pyramidal 2- e - octahedral + I+ 150 oundations of Chemistry

7 tructure/example Illustration square planar Kr square pyramidal Br see-saw tee I Activity 22 Valence hell Electron Pair Repulsion Model 151

8 Problems 1. An article in a journal, Inorganic Chemistry, cites both B 3 and P 3 as examples of flat or planar molecules with bond angles of 120. Another article reports the P bond angle as 98. Which report is consistent with the VEPR model? Explain. B 120 P <109.5 B 3 is an example of a trigonal planar molecule, as shown above. The B angles are predicted to be 120. The P 3 molecule is predicted to be trigonal pyramidal in shape, which is not planar, as stated in the first article. However, the P bond angles of 98 are consistent with the trigonal pyramidal shape. The electronic structure of P 3 is predicted to be tetrahedral, and one might predict the P bond angles to be However, the presence of the lone pair on the phosphorus will decrease the P bond angle, and 98 is consistent with this interpretation. 2. Is the shape of C like that of C 2 or 2? Identify which are linear and which are bent. C C is bent whereas C and C 2 are linear as shown above. 152 oundations of Chemistry

Valence Shell Electron Pair Repulsion Model

Valence Shell Electron Pair Repulsion Model Valence Shell Electron Pair Repulsion Model Why? Molecules adopt a shape that minimizes their energy. In most cases simply considering the repulsive energy of electron pairs is sufficient to predict molecular

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

CHM151LL: VSEPR and Molecular Geometry Tables

CHM151LL: VSEPR and Molecular Geometry Tables CHM151LL: VSEPR and Molecular Geometry Tables VSEPR Model VALENCE-SHELL ELECTRON-PAIR REPULSION (VSEPR) MODEL Lewis structures show the two-dimensional distribution of atoms and electrons. The molecular

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Molecular Shape What information does a structural formula give

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

The VSEPR Model applied to Steric Numbers 2 through 4. (VSEPR Part 3)

The VSEPR Model applied to Steric Numbers 2 through 4. (VSEPR Part 3) This work is licensed by Shawn Shields under a Creativ e Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The VSPR Model applied to Steric Numbers 2 through 4. (VSPR Part 3) By Shawn

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011

Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011 Q: What is the purpose of this lab? Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011 To learn two methods to study and predict the shapes of molecules. One is a rule based paper method

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

Chapter 10 Shapes of Molecules. Dr. Sapna Gupta

Chapter 10 Shapes of Molecules. Dr. Sapna Gupta Chapter 10 Shapes of Molecules Dr. Sapna Gupta Shapes of Molecules - Importance All molecules have a 3D orientations; even the diatomic ones because atoms have a volume. In case of tri atomic or polyatomic

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction

More information

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2 Do now: Brainstorm how you would draw the Lewis diagram for: 2 O CO 2 Shapes of molecules C 4 N 3 2 O C 2 O CO 2 Shapes of molecules Shapes of molecules are determined by the number of bonding and non-bonding

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry VSEPR Theory VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional arrangement of the atoms that make-up a molecule. Determines several properties of a substance,

More information

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures.

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures. Exercise 12 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Molecular Structure Name: Objectives To predict the shapes of molecules based on their Lewis Structures. Background The Valence

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Chang & Goldsby Modified by Dr. Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity Structures, Shapes and Polarity Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity of Molecules Do now: Brainstorm what you know/remember about these L2 concepts

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chem 121 Exam 4 Practice Exam

Chem 121 Exam 4 Practice Exam Chem 121 Exam 4 Practice Exam 1. What is the correct electron configuration for bromine? b. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 4p 6 c. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 d. 1s 2 2s 2 2p 6 3s 2 3p

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES LEARNING OBJECTIVES To build models of selected molecules using VSEPR theory. To illustrate patterns of molecular shapes. BACKGROUND The shapes exhibited

More information

; (c) [Li] [: O :] [Li]. 5a. The electrostatic potential map that corresponds to IF is the one with the most red in it. ... C C H

; (c) [Li] [: O :] [Li]. 5a. The electrostatic potential map that corresponds to IF is the one with the most red in it. ... C C H hapter 10 Answers ractice Examples 1a Mg 1b n, Ge, [: Br :], K, : e: + 2 : : +, [Tl ] +, 2 : : [] 2a (a) [a] [ ] [a] ; (b) [Mg] [: :] [Mg] [: :] [Mg] 2+ 3 2+ 3 2+ 2+ 2b (a) [: I :] [a] [: I :] 2+ 2 ; (b)

More information

EXPERIMENT #13 Lewis Structures and Molecular Geometry

EXPERIMENT #13 Lewis Structures and Molecular Geometry OBJECTIVES: EXPERIMENT #13 s and Draw Lewis structures of atoms, ions, and molecules Build models of linear, trigonal planar tetrahedral, trigonal bipyramidal, and octahedral arrangements of electron pairs

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Bonding and Molecular Structure - PART 1 - VSEPR

Bonding and Molecular Structure - PART 1 - VSEPR Bonding and Molecular Structure - PART 1 - VSEPR Objectives: 1. Understand and become proficient at using VSEPR to predict the geometries of simple molecules and ions. 2. Become proficient at predicting

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS. !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. Ch10 VSEPR Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. version 1.5 Nick DeMello, PhD. 2007-2016 Valence Shell Electron

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model 1 PREDICTING MOLECULAR SHAPE The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model VSEPR = Valence Shell Electron Pair Repulsion Model - Each BOND

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers

4.2.7 & Shapes, and bond angles for molecules with two, three and four negative charge centers 4.2.7 & 4.2.8 Shapes, and bond angles for molecules with two, three and four negative charge centers The shape of a molecule has an important part to play in determining its chemical (e.g. reactivity and

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table.

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. 2. Complete the words of the week assignment. You need to have answers for Tuesday, Thursday and today. Today s : Draw

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry Model 1: Oxidation numbers Oxidation numbers are a useful accountancy tool to help keep track of electrons in compounds and reactions. This is particularly

More information

Experiment #2. Lewis Structures

Experiment #2. Lewis Structures Experiment #2. Lewis Structures A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular rbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips eynman, Nobel

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

: Bond Order = 1.5 CHAPTER 5. Practice Questions

: Bond Order = 1.5 CHAPTER 5. Practice Questions CAPTER 5 Practice Questions 5.1 5.3 S 5.5 Ethane is symmetrical, so does not have a dipole moment. owever, ethanol has a polar group at one end and so has a dipole moment. 5.7 xygen has the valence electron

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

SECTION II: BUILDING MODELS

SECTION II: BUILDING MODELS SECTION II: BUILDING MODELS Lesson 9 New Smells, New Ideas Lesson 10 Two s Company Lesson 11 Let s Build It Lesson 12 What Shape Is That Smell? Lesson 13 Sorting It Out Lesson 14 How Does the Nose Know?

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Chemical Bonding polarity & Dipole Moments. Chapter 8 Part III

Chemical Bonding polarity & Dipole Moments. Chapter 8 Part III Chemical Bonding polarity & Dipole Moments Chapter 8 Part III Exercise Arrange the following bonds from most to least polar: a) N F O F C F b) C F N O Si F c) Cl Cl B Cl S Cl Exercise a) C F, N F, O F

More information

H O H C H H N H H. Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity

H O H C H H N H H. Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity Valence Shell Electron Pair Repulsion: Predicting Shape & Polarity BJECTIVES Students will develop the ability to: 1. Predict the arrangement that valence e pairs assume around an atom (e pair geometry)

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chem 105 Friday, 5 Nov 2010

Chem 105 Friday, 5 Nov 2010 Chem 105 riday, 5 Nov 2010 Lewis formula practice Sub-octet and expanded-octet molecules Molecular geometry Electron pair geometry vs. molecular geometry 11/5/2010 1 The preferred Lewis formula for CN

More information

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 F13--Exam #2 2013.10.18 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A valid Lewis structure of cannot be drawn without violating the

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chemistry Day 30. Tuesday, November 13 th Wednesday, November 14 th, 2018

Chemistry Day 30. Tuesday, November 13 th Wednesday, November 14 th, 2018 Chemistry Day 30 Tuesday, November 13 th Wednesday, November 14 th, 2018 Do-Now: Covalent Bonding CN B 1. Write down today s FLT 2. How can you tell if atoms will form an ionic or a covalent bond? 3. What

More information

4/7/2017. Chapter 5. Chemical Bonding: The Covalent Bond Model

4/7/2017. Chapter 5. Chemical Bonding: The Covalent Bond Model Chapter 5. Chemical Bonding: The Covalent Bond Model Introduction to Inorganic Chemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor all ; Phone:

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

LET S FIRST REVIEW IONIC BONDING

LET S FIRST REVIEW IONIC BONDING COVALENT BONDING LET S FIRST REVIEW IONIC BONDING In an IONIC bond, electrons are lost or gained, resulting in the formation of IONS in ionic compounds. K F K F K F K F K F K F K + F _ The compound potassium

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Molecular Geometry and Bonding Theories

Molecular Geometry and Bonding Theories Molecular Geometry and Bonding Theories The bonds between atomic species in molecules are characterized by bond distances and bond strengths. The angle between three atoms is a very important molecular

More information

GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why?

GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why? GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why? How is Valence Shell Electron Pair Repulsion Theory developed from

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information

Chem 105 Friday 4 Nov 2011

Chem 105 Friday 4 Nov 2011 Chem 105 riday 4 Nov 2011 Chemical & Engineering News magazine Article on alogenated volatile organic compounds and groundwater pollution Valence Shell Electron Pair Repulsion (VSEPR) model Bond polarity

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information