EXPERIMENT #13 Lewis Structures and Molecular Geometry

Size: px
Start display at page:

Download "EXPERIMENT #13 Lewis Structures and Molecular Geometry"

Transcription

1 OBJECTIVES: EXPERIMENT #13 s and Draw Lewis structures of atoms, ions, and molecules Build models of linear, trigonal planar tetrahedral, trigonal bipyramidal, and octahedral arrangements of electron pairs Relate proper Lewis structure with the correct three dimensional structure of the molecule or ion Even before physicists and chemists understood the quantum nature of the electron and the chemical bond, G. N. Lewis observed that the valence electrons of stable molecules and ions are arranged in four pairs for a total of eight an octet of electrons. The Lewis structure of a molecule or ion emphasizes this observation. Since electrons are negatively charged and negative charges repel each other, we can assume these repulsions can be minimized by keeping the electrons in bonds as far from each other as possible. Sidgwick and Powell, and more recently Gillespie and Nyholm, have refined this assumption and have shown that well-defined geometric shapes are the result. These shapes maximize distances (minimize electron repulsions) in three-dimensional space. It is these shapes that a molecule or ion may take. Thus, a knowledge of the Lewis structure of a molecule allows us to make predictions about its shape. Once the shape of a molecule is known, properties dependent upon its shape, such as bond hybridization and dipole moment, can be predicted. The central atom in a molecule or ion may have two, three, four, five, or six electron domains (or groups) surrounding it. These electron domains may form bonds with other atoms or they may be non-bonding domains. A domain may consist of a single pair of electrons (single bond or non-bonding pair), two pairs (double bond) or three pairs (triple bond). For example, in the Lewis structure for ammonia, NH3, the central nitrogen atom is surrounded by four electron domains. Three of these domains are single bonds to hydrogen atoms, the remaining electron domain is the lone pair or nonbonding pair. The orientation of the bonds around the central atom, in other words the three dimensional shape, is determined by the number of electron domains surrounding the central atom. The chart below describes the electron domain geometry around the central atom. When using this chart, it is important to remember that multiple bonds (double and triple bonds) are considered as a single electron domain. H bonding pairs H N: H non-bonding or lone pairs The shape of the molecule or ion is related to the electron domain geometry. The name given to the shape of a molecule or ion is the shape defined by the number of bonding domains. This is summarized in the chart below. When using this chart, it is important to remember that multiple bonds (double and triple bonds) are considered as a single electron domain.) 133 P a g e

2 EXPERIMENT #13 LEWIS STRUCTURES TABLE I: ELECTRON DOMAIN GEOMETRY Number of Electron Around the Central Electron Domain Geometry Predicted Bond Angles Hybridization 2 linear 180 sp 3 trigonal planar 120 sp 2 4 tetrahedral sp 3 5 trigonal bipyramidal 120 sp 3 d 90 6 octahedral 90 sp 3 d 2 TABLE II: MOLECULAR GEOMETRY Number of Electron Surrounding the Central Surrounding the Central Example 2 2 Linear CO2 3 3 trigonal planar BF3 2 angular, planar bent, V-shaped (120 bond angle) NO2-4 4 Tetrahedral CH4 3 Pyramidal NH3 2 angular, planar bent, V-shaped (109.5 bond angle) H2O 5 5 trigonal bipyramidal PCl5 4 Seesaw SF4 3 T-shaped ClF3 2 Linear XeF2 6 6 Octahedral SF6 5 square pyramidal BrF5 4 square planar XeF4 134 P a g e

3 EXPERIMENT #13 LEWIS STRUCTURES Linear Trigonal V-Shape, 120 Tetrahedral Pyramidal V-Shape, Trigonal Bipyramid See-Saw T-Shape Linear (Distorted Tetrahedron) Octahedron Square Pyramid Square Planar FIGURE I: Molecular Shapes Derived from Solid Geometry 135 P a g e

4 EXPERIMENT #13 LEWIS STRUCTURES Rules for Drawing s 1. Count up the valence electrons for all atoms in formula. 2. Add an electron for each negative charge on an ion; subtract an electron for each positive charge on an ion. 3. Attach atoms in a way which makes chemical sense. Draw a line between each attached pair; this consumes two electrons from the total calculated in step Add pairs of electrons to fulfill the octet rule; duet rule for hydrogen. 5. If necessary make nonbonding pair(s) bonding pair(s), but do not alter the total number of electrons calculated in step If necessary, expand octet for atoms in third row or lower in the periodic table. PROCEDURE: (Review the rules for drawing Lewis structures before coming to lab.) 1. From the group of molecules/ions you are assigned, draw the Lewis structures using the rules you learned in class. This will allow you to determine the geometry around the central atom. 2. From the model kits find the spheres having 4, 5, and 6 holes drilled in them. These spheres will represent a central atom in a molecule or ion. The number of holes drilled into the ball will be usedto represent the number of electron domains around the central atom. 3. Using the sphere containing five holes, find the holes which are diametrically opposed. (These holes are 180 apart.) Place a wooden stick into each of these two holes. A molecule or ion containing a central atom surrounded by only two electron domains will have a linear arrangement of these electron domains. If these are bonding domains, the molecule will be linear; that is, it will have the shape of a straight line. 4. Using the sphere containing five holes, find the three holes in the same plane. (These holes are 120 apart.) Place a wooden stick into each of these three holes. A molecule or ion containing a central atom surrounded by three electron domains will have a trigonal planar arrangement of these electron domains. If these are bonding domains, the molecule will be trigonally planar; that is, it will have the shape of a triangle. (The triangle will be an equilateral triangle, if the three bonds are identical.) 5. Remove one of the wooden sticks. This is a model of a molecule or ion whose central atom is surrounded by three electron domains, but contains only two bonding domains. This molecule is V-shaped. It is a planar molecule with a bond angle of Using the sphere containing four holes, build a model of a tetrahedron by placing a wooden stick into each hole. The angle between each of the sticks is 109. It is important to be able to draw a three dimensional tetrahedron on a two dimensional piece of paper. Practice drawing a tetrahedron. Watch closely as your instructor demonstrates how to do this. [The solid line (FIGURE I) represents a bond or electron group in the plane of the paper. For a tetrahedron there are two such lines. 136 P a g e

5 EXPERIMENT #13 LEWIS STRUCTURES The wedge indicates a bond or electron domain coming out of the plane of the page toward the reader, while the dashed line indicates a bond or electron domain going behind the plane of the paper, away from the reader.] 7. Remove one stick from the tetrahedron. The resulting three dimensional shape is a pyramid. The angle between each electron domain of the pyramid is approximately 109. If you can draw a tetrahedron, you can also draw a pyramid. 8. Remove a second stick from the tetrahedron. The resulting three dimensional shape is a planar, bent shape. It is also called V-shaped, but the angle between the two bonds is approximately 109 (see above). 9. Go back to the sphere containing five holes. Place a wooden stick into each of the five holes. A molecule or ion containing central atom surrounded by five electron domains will have a trigonal bipyramidal arrangement of these electron domains. If these are all bonding domains, the molecule will be a trigonal bipyramid. Notice that there are two types of electron domains, depending on their orientation in space. The three electron domains 120 from each other are in the same plane. They form a triangle and are said to occupy the equatorial positions of a trigonal bipyramid. The two electron domains 180 from each other are said to occupy the axial positions of a trigonal bipyramid. [Watch closely as your instructor demonstrates how to draw a trigonal bipyramid. The solid (FIGURE I) line represents a bond or electron group in the plane of the paper. Note that there are three such lines. The wedge indicates a bond or electron domain coming out of the plane of the page, while the dashed line indicates a bond or electron domain going behind the plane of the paper.] 10. The shape of a molecule or ion having a central atom surrounded by five electron domains, but containing only four bonds, is made from the trigonal bipyramid by removing one of the wooden sticks. But which stick do we remove, the axial or the equatorial? It turns out that removal of one of the equatorial sticks (or electron domains) gives the shape having the minimum amount of electron domain repulsions. (You may want to convince yourself of this by discussions with your classmates or your instructor.) The shape of a molecules whose central atom is surrounded by five electron groups, but contains only four bonds is a distorted tetrahedron or see-saw. Build such a model by removing an equatorial bond from your model of a trigonal bipyramid. The bond angles are 180, 120, and If we remove one more equatorial bond, we see the shape of a molecule whose central atom is surrounded by five electron domains, but contains only three bonds. Such a molecule is T-shaped. The bond angles are 180 and Using the sphere containing six holes, build a model of an octahedron by placing a wooden s tick into each hole. The angle between each of the sticks is 90. It is important to be able to draw a three dimensional octahedron on a two dimensional piece of paper. Practice drawing an octahedron. [Watch closely as your instructor demonstrates how to do this. The solid line (FIGURE I) represents a bond or electron domain in the plane of the paper. For an octahedron 137 P a g e

6 EXPERIMENT #13 LEWIS STRUCTURES there are two such lines. The wedge indicates a bond or electron domain coming out of the plane of the page; there are two such lines. The dashed line indicates a bond or electron domain going behind the plane of the paper; there are two such lines.] If all the atoms bonded to the central atom in the octahedron are the same, then each of the bonds in the octahedron is identical. Build such a model to show that this statement is true. When drawn as shown in FIGURE I, an octahedron appears to have two types of bonds. The four bonds forming the square are equatorial bonds, and the bond above the square and the bond below the square are axial bonds. 13. The shape of a molecule or ion having a central atom surrounded by six electron domains, but containing only five bonds, is made from the octahedron by removing one of the wooden sticks. But which stick do we remove, the axial or the equatorial? It turns out that removal of one of the axial sticks (or bonds) gives the shape having the minimum amount of electronic repulsions. (You may want to convince yourself of this by discussions with your classmates or your instructor.) The shape of a molecule whose central atom is surrounded by six electron domains, but contains only five bonds is a square pyramid. The bond angles are 90. Build such a model by removing an axial bond from your model of an octahedron. 14. If we remove one more axial bond, we see the shape of a molecule whose central atom is surrounded by six electron domains, but contains only four bonds. Such a molecules is a square plane. The bond angles are P a g e

7 NAME Section Date s and In the boxes provided below draw the Lewis structure of each ion or molecule from the groups you are assigned. Also, include in the space indicated, the formula, the number of valence electrons, electron domain geometry, number of bonds, molecular geometry, and the hybridization of the central atom. Group I: CO 2, BCl 3, SO 3, CHCl 3, SO 4 2, H 2S, NI 3, SO 2, PCl 5, SF 4, ClF 3, I 3, C 2H 2, SF 6, BrF 5, XeF 4 Group II: CS 2, BF 3, NO 2, CH 2Cl 2, ClO 4, H 2O, AsH 3, O 3, AsF 5, XeO 2F 2, BrF 3, XeF 2, C 2H 4, IOF 5, TeF 5, ICl 4 Group V H 2CCCH 2, CH 2CH 2, C 2H 2Cl 2, H 2CO, CH 3C(=O)OH, C 6H 6 (all carbons sp 2 ) 139 P a g e

8 140 P a g e

9 NAME Section Date 141 P a g e

10 142 P a g e

11 NAME Section Date 143 P a g e

12 H 2 CCCH P a g e

13 NAME Section Date CH 2 CH 2 C 2 H 2 Cl 2 H 2 CO 145 P a g e

14 CH 3 C(=O)OH C 6 H 6 (all carbons sp 2 ) 146 P a g e

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity Structures, Shapes and Polarity Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity of Molecules Do now: Brainstorm what you know/remember about these L2 concepts

More information

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES LEARNING OBJECTIVES To build models of selected molecules using VSEPR theory. To illustrate patterns of molecular shapes. BACKGROUND The shapes exhibited

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

Experiment 21 Lewis structures and VSEPR Theory

Experiment 21 Lewis structures and VSEPR Theory Experiment 21 Lewis structures and VSEPR Theory Introduction 1. Lewis Structures and Formal Charge LG.N. Lewis, at the University of California at Berkeley devised a simple way to understand the nature

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment LESSON 10 Glossary: Molecular Geometry Dipole moment Electronegativity Molecular geometry Pi bond Polar covalent bond Sigma bond Valence-shell electronpair repulsion (VSEPR) model a quantitative measure

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. Ch10 VSEPR Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. version 1.5 Nick DeMello, PhD. 2007-2016 Valence Shell Electron

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Review Chapter 10: Theories of Bonding & Structure. Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop

Review Chapter 10: Theories of Bonding & Structure. Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop Review Chapter 10: Theories of Bonding & Structure Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop Chapter 10 Concepts q VESPR theory q Predict molecular geometry

More information

Lecture B2 VSEPR Theory

Lecture B2 VSEPR Theory Lecture B2 VSEPR Theory Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

From 2-D to 3-D. Chapter 9 Molecular Geometry

From 2-D to 3-D. Chapter 9 Molecular Geometry From 2-D to 3-D Chapter 9 Molecular Geometry 1 Moving on to Shapes A chemical formula tells us The identity of atoms The number of atoms The Lewis structure tells us The identity of atoms The number of

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Would you expect SeF6 to be soluble in water? Yes No Explain your answer in terms of the shape and polarity of SeF6.

Would you expect SeF6 to be soluble in water? Yes No Explain your answer in terms of the shape and polarity of SeF6. COLLATED QUESTIONS Lewis structures and shapes (up to six electron pairs about the central atom for molecules and polyatomic ions, including those with multiple bonds), polarity of molecules. 2017:3 (c)

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011

Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011 Q: What is the purpose of this lab? Lab Lecture on VSEPR and SPARTAN Chem 141 Lab Dr Abrash 10/3/2011 To learn two methods to study and predict the shapes of molecules. One is a rule based paper method

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

SECTION II: BUILDING MODELS

SECTION II: BUILDING MODELS SECTION II: BUILDING MODELS Lesson 9 New Smells, New Ideas Lesson 10 Two s Company Lesson 11 Let s Build It Lesson 12 What Shape Is That Smell? Lesson 13 Sorting It Out Lesson 14 How Does the Nose Know?

More information

CHM151LL: VSEPR and Molecular Geometry Tables

CHM151LL: VSEPR and Molecular Geometry Tables CHM151LL: VSEPR and Molecular Geometry Tables VSEPR Model VALENCE-SHELL ELECTRON-PAIR REPULSION (VSEPR) MODEL Lewis structures show the two-dimensional distribution of atoms and electrons. The molecular

More information

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures.

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures. Exercise 12 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Molecular Structure Name: Objectives To predict the shapes of molecules based on their Lewis Structures. Background The Valence

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% Test 2 - Letter Grade Distribution by SI Attendance

N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% Test 2 - Letter Grade Distribution by SI Attendance CHEM 200/202 Exam 2 N = 727 Mean = 68% Diff T-Test P-Value SI 223 (31%) 71% No SI 504 (69%) 66% 5%

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1 Chapter 10 The Shapes of Molecules 10-1 The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction

More information

Practice Worksheet for Lewis Structures (Mahaffy Ch )

Practice Worksheet for Lewis Structures (Mahaffy Ch ) Practice Worksheet for Lewis Structures (Mahaffy Ch. 10.1 10.5 ) 1. Main concepts Lewis Structures a. Connectivity b. Bonds & Lone pairs c. Electron Geometry & Molecular Shape d. Resonance Structures Formal

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Lewis Dot Structures and Molecular Geometry

Lewis Dot Structures and Molecular Geometry Experiment 11 Lewis Dot Structures and Molecular Geometry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose

More information

This is Molecular Geometry and Covalent Bonding Models, chapter 9 from the book Principles of General Chemistry (index.html) (v. 1.0M).

This is Molecular Geometry and Covalent Bonding Models, chapter 9 from the book Principles of General Chemistry (index.html) (v. 1.0M). This is Molecular Geometry and Covalent Bonding Models, chapter 9 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab) Chemical Bonding Types of Bonds Ionic Bonding Lewis Structures Covalent Bonding Resonance Structures Octet Rule Polar Molecules Molecular Geometries VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

More information

The Shapes of Molecules. Chemistry II

The Shapes of Molecules. Chemistry II The Shapes of Molecules Chemistry II Lewis Structures DEFINITIN: A structure of a molecule showing how the valence electrons are arranged. 1) nly the valence electrons appear in a Lewis structure. 2) The

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Molecular Geometry and Electron Domain Theory *

Molecular Geometry and Electron Domain Theory * OpenStax-CNX module: m12594 1 Molecular Geometry and Electron Domain Theory * John S. Hutchinson This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular rbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips eynman, Nobel

More information

Experiment 12 Molecular Architecture

Experiment 12 Molecular Architecture Experiment 12 Molecular Architecture PRE-LABORATORY QUESTIONS The following preparatory questions should be answered before coming to laboratory. They are intended to introduce you to several ideas that

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

experiment11 Molecular Structures

experiment11 Molecular Structures 59 experiment11 OBJECTIVES To determine the number of valence electrons in molecules. To determine the Lewis structure of molecules. To determine the electron pair geometry and geometry (shape) of molecules.

More information

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc...

For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... Lewis Structure Lab For this you need to know covalent bonds, Lewis dots, electronegativity, geometric shapes, duet & octet, single/double/triple bonds, etc... I can t assume you have had all these, so

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Name(s) Lewis Dot Structures, VSEPR, and Geometries of Centers in Molecules/Ions

Name(s) Lewis Dot Structures, VSEPR, and Geometries of Centers in Molecules/Ions Name(s) Lewis Dot Structures, VSEPR, and Geometries of Centers in Molecules/Ions Vocabulary and General Information 1. A center (or central atom) in a molecule or polyatomic ion (PAI) is defined to be

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table.

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. 2. Complete the words of the week assignment. You need to have answers for Tuesday, Thursday and today. Today s : Draw

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Molecular Shape What information does a structural formula give

More information