CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

Size: px
Start display at page:

Download "CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE"

Transcription

1 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light Direction I. Light Quantity Photosynthesis Photoreceptors Chlorophylls Carotenoids Photosynthesis Light Capture II. Light Quality Photosynthetic Efficiency Low Light Grana Stacking Low Red : Far-Red Ratio (high far-red) Phosphatase Remove PO4 LHCII particles bond together High Light Grana Unstacking High Red : Far-Red Ratio (high red) Kinase Form PO4 bonds to LHCII LHCII particles separate Emerson Enhancement Effect Far-Red induced increase in efficiency Photomorphogenesis Seed Germination Release from dormancy Weed seeds Red Light (5 sec) Induce Germination Far-Red (5 sec) Inhibit Germination R + FR - Inhibit R + FR + R - Induce

2 Seedling Development Etiolated Dark long, spindly, white (or yellow) De-Etiolated Light Red Light ( 5 sec pulse) short, thick, green R + FR etiolated Internode Elongation Shade Adapted (Shade Tolerant) No Response Shade Avoidance (Shade Sensitive) Low Red : Far-Red Ratio Canopy Shade Rapid Elongation Escape Shade Planting Density Nearest Neighbor Detection Reflected Far-Red Light Rapid Elongation Tall Plants - Center of dense plot Less Grain Yield More Vegetative Growth Short Plants - Edges of dense plot Less Dense Plot High Grain Yield Less Vegetative Growth III. Light Duration Photoperiodism Daylength Perception Short-Day Plants Dark Period - Longer than Critical Minimum 5 min Night Break Red - Inhibit Flowering Far-Red - Flowering R + FR + R - No Flowering Long-Day Plants Dark Period - Less than Critical Maximum 2

3 3 End-Of-Day Far-Red 8 hr day + 5 min R - No Flowering 8 hr day + 5 min FR - Flowering 8 hr day + FR + R - No Flowering Night Break - Not very effective Daylength Extension Low Red : Far-Red Ratio Like Shade Avoidance Promotes Flowering Not R/FR reversible IV. Directional Information Phototropism Blue Light Stem Bending Toward Light Lateral Redistribution of Auxin Auxin High on Shaded Side Increased Growth Stomatal Opening Blue Light Activation of ATPase H+ ion extrusion H2O uptake Leaf Movement Heliotropism - Legumes Pulvinus Similar to Stomatal Opening Multicellular H+ / K+, Cl- exchange ---> H2O uptake ---> Swelling Dorsal <---> Ventral Dorsal swell ---> Leaf moves down Ventral swell ---> Leaf moves up Paraheliotropism parallel to light Soybeans Orthoheliotropism perpendicular to light Sunflower Solar Tracking V. Photoreceptors (Pigments) 1. Photosynthesis Chlorophylls Carotenoids

4 4 Energy Transfer Light ----> Chemical Energy 2. Photomorphogenesis & Photoperiodism Red / Far-Red Reversible Phytochrome Dark Red Dark P >Pr nm > Pfr > Response < nm Far-Red Molecular Switch Pfr - Active Form 5 Phytochromes (Multigene family) phya > FR inhibition of Stem elongation etiolated plants phyb > R inhibition of Stem elongation etiolated plants -----> FR promotion of internode elongation shade avoidance -----> FR promotion of flowering daylength extension phyc >? phyd >? EOD FR promotion of flowering? phye >? Mechanisms of Action Histidine Kinase Autophosphorylation Nuclear Import Pr - Cytoplasm (Synthesis) Pfr Nucleus (Speckles) Pfr-PIF3 (bhlh Transcription Factor) MYB protein expression (PHYB) 3. Light Direction Phototropism & Heliotropism Blue-Light-Absorbing Photoreceptor (BLAP) Cryptochrome Hypocotyl Elongation, Circadian Clock CRY1 & CRY2 N-Terminal Pterin + FAD Binding Similar to Photolyase but no activity No Kinase activity

5 Phototropin Hypocotyl Bending, Stomatal Opening PHOT1 & PHOT2 Flavoprotein 2 LOV Domains + 2 FMN N-Terminus ser/thr Kinase activity C-Terminus Carotenoid (Zeaxanthin) 4. UV Absorbing Photoreceptor (None Identified) UV-B DNA Thymidine Dimers Chromosome Damage UV-A Protein Photolyase DNA Repair 5

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation Blue Light and Photomorphogenesis Q: Figure 18.3 Blue light responses - phototropsim of growing Corn Coleoptile 1. How do we know plants respond to blue light? 2. What are the functions of multiple BL

More information

Electromagenetic spectrum

Electromagenetic spectrum Light Controls of Plant Development 1 Electromagenetic spectrum 2 Light It is vital for photosynthesis and is also necessary to direct plant growth and development. It acts as a signal to initiate and

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

LECTURE 4: PHOTOTROPISM

LECTURE 4: PHOTOTROPISM http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ LECTURE 4: PHOTOTROPISM LECTURE FLOW 1. 2. 3. 4. 5. INTRODUCTION DEFINITION INITIAL STUDY PHOTROPISM MECHANISM PHOTORECEPTORS

More information

Flower Development Pathways

Flower Development Pathways Developmental Leading to Flowering Flower Development s meristem Inflorescence meristem meristems organ identity genes Flower development s to Flowering Multiple pathways ensures flowering will take place

More information

Analysis of regulatory function of circadian clock. on photoreceptor gene expression

Analysis of regulatory function of circadian clock. on photoreceptor gene expression Thesis of Ph.D. dissertation Analysis of regulatory function of circadian clock on photoreceptor gene expression Tóth Réka Supervisor: Dr. Ferenc Nagy Biological Research Center of the Hungarian Academy

More information

Seeing without eyes-how plants learn from light

Seeing without eyes-how plants learn from light Seeing without eyes-how plants learn from light by STEPHEN DAY 1. INTRODUCTION Plants detect the intensity, direction, colour, and duration of light and use this information to regulate their growth and

More information

AP Biology Plant Control and Coordination

AP Biology Plant Control and Coordination AP Biology Plant Control and Coordination 1. What is the effect of the plant hormone ethylene on fruit ripening? 2. How does fruit change as it ripens? 3. What is the mechanism behind ripening? 4. Why

More information

Plant Growth and Development

Plant Growth and Development Plant Growth and Development Concept 26.1 Plants Develop in Response to the Environment Factors involved in regulating plant growth and development: 1. Environmental cues (e.g., day length) 2. Receptors

More information

Chapter 39. Plant Response. AP Biology

Chapter 39. Plant Response. AP Biology Chapter 39. Plant Response 1 Plant Reactions Stimuli & a Stationary Life u animals respond to stimuli by changing behavior move toward positive stimuli move away from negative stimuli u plants respond

More information

15. PHOTOPERIODISM. 1. Short day plants

15. PHOTOPERIODISM. 1. Short day plants 15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod,

More information

LIGHT SIGNAL TRANSDUCTION IN HIGHER PLANTS

LIGHT SIGNAL TRANSDUCTION IN HIGHER PLANTS Annu. Rev. Genet. 2004. 38:87 117 doi: 10.1146/annurev.genet.38.072902.092259 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 11, 2004 LIGHT

More information

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts Effects of & Duration Review of Light Concepts Effects of and Duration on Greenhouse Crops Roberto Lopez Light is a form of energy referred to as electromagnetic radiation. The amount of energy of each

More information

Regulatory Systems in Plants (Ch 39)

Regulatory Systems in Plants (Ch 39) Regulatory Systems in Plants (Ch 39) Plants show complex responses to environmental stimuli Problem: no nervous system (detection) & no muscular system (response) Various mechanisms for detecting stimuli

More information

Plants are sessile. 10d-17/giraffe-grazing.jpg

Plants are sessile.   10d-17/giraffe-grazing.jpg Plants are sessile www.mccullagh.org/db9/ 10d-17/giraffe-grazing.jpg Plants have distinct requirements because of their sessile nature Organism-level requirements Must adjust to environment at given location

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Assessment Chapter Test B Plant Responses In the space provided, write the letter of the description that best matches the term or phrase. 1. thigmonasty 2. auxin 3. ethylene 4. phytochrome 5. abscisic

More information

The signal transducing photoreceptors of plants

The signal transducing photoreceptors of plants Int. J. Dev. Biol. 49: 653-664 (2005) doi: 10.1387/ijdb.051989kf The signal transducing photoreceptors of plants KEARA A. FRANKLIN*, VICTORIA S. LARNER and GARRY C. WHITELAM Department of Biology, University

More information

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model Chapter 39 Plants Response Plant Reactions Stimuli & a Stationary life Animals respond to stimuli by changing behavior Move toward positive stimuli Move away from negative stimuli Plants respond to stimuli

More information

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering by Valverde et. Al Published in Science 2004 Presented by Boyana Grigorova CBMG 688R Feb. 12, 2007 Circadian Rhythms: The Clock Within

More information

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals Name: AP Biology Mr. Croft Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals This concept brings together the general ideas on cell communication from Chapter 5.6 with specific

More information

1. Climatic Factors. Light Water Temperature Wind Humidity

1. Climatic Factors. Light Water Temperature Wind Humidity Plant Environment - Factors Affecting Plant Growth & Distribution 1. Climatic Factors Light Water Temperature Wind Humidity 1. Climatic factors (Light) Effect of light intensities, quality, and duration

More information

10/4/2017. Chapter 39

10/4/2017. Chapter 39 Chapter 39 1 Reception 1 Reception 2 Transduction CYTOPLASM CYTOPLASM Cell wall Plasma membrane Phytochrome activated by light Cell wall Plasma membrane Phytochrome activated by light cgmp Second messenger

More information

Chapter 25 Plant Processes. Biology II

Chapter 25 Plant Processes. Biology II Chapter 25 Plant Processes Biology II 25.1 Nutrients and Transport Plants grow by adding new cells through cell division Must have steady supply of raw materials to build new cells Nutrients (most) Plants

More information

Marcelo J. Yanovsky and Steve A. Kay

Marcelo J. Yanovsky and Steve A. Kay LIVING BY THE CALENDAR: HOW PLANTS KNOW WHEN TO FLOWER Marcelo J. Yanovsky and Steve A. Kay Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It

More information

Light signals and the growth and development of plants a gentle introduction

Light signals and the growth and development of plants a gentle introduction The Plant Photobiology Notes 1 Light signals and the growth and development of plants a gentle introduction Pedro J. Aphalo Draft of May 21, 2001 Department of Biology and Faculty of Forestry University

More information

Ch Plant Hormones

Ch Plant Hormones Ch. 39 Plant Hormones I. Plant Hormones Chemical signals that coordinate the parts of an organism. Only minute amounts are needed to get the desired response. Control plant growth and development by affecting

More information

Sensory Systems in Plants

Sensory Systems in Plants Sensory Systems in Plants 1. If temperatures suddenly rise 5 to 10º C, proteins are produced to help stabilize other proteins. 2. Rapid turgor pressure changes in specialized multicellular swellings called

More information

A. Stimulus Response:

A. Stimulus Response: Plant Hormones A. Stimulus Response: A house plant on a windowsill grows light. If you rotate the plant, it reorients its growth until its leaves face the window again. The growth of a shoot towards light

More information

LECTURE 04: PHYTOCHROME

LECTURE 04: PHYTOCHROME http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 04: PHYTOCHROME Photoreversibility is the most distinctive property of phytochrome 9/19/2017 1 LECTURE OUTCOMES

More information

Responses to Light. Responses to Light

Responses to Light. Responses to Light Sensory Systems in Plants Chapter 41 Pigments other than those used in photosynthesis can detect light and mediate the plant s response to it Photomorphogenesis refers to nondirectional, light-triggered

More information

Plant Responses to Internal and External Signals

Plant Responses to Internal and External Signals LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 39 Plant Responses to Internal

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 PLANT GROWTH IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 INDETERMINATE GROWTH = throughout life meristems like stem cells in humans Shoot tip (shoot apical meristem and young leaves) lateral Axillary

More information

Light perception. phytochromes, cryptochromes, phototropins.

Light perception. phytochromes, cryptochromes, phototropins. Light perception phytochromes, cryptochromes, phototropins. all photoreceptors consist of proteins bound to light absorbing pigments i.e. chromophores. the spectral sensitivity of each photoreceptor depends

More information

Photomorphogenesis in Plants and Bacteria 3rd Edition

Photomorphogenesis in Plants and Bacteria 3rd Edition Photomorphogenesis in Plants and Bacteria 3rd Edition Function and Signal Transduction Mechanisms Eberhard Schäfer and Ferenc Nagy (Eds.) PHOTOMORPHOGENESIS IN PLANTS AND BACTERIA 3RD EDITION Photomorphogenesis

More information

Chapter 39 Plant Responses to Internal and External Signals

Chapter 39 Plant Responses to Internal and External Signals Chapter 39 Plant Responses to Internal and External Signals Overview: Stimuli and a Stationary Life Plants, being rooted to the ground, must respond to whatever environmental change comes their way For

More information

23-. Shoot and root development depend on ratio of IAA/CK

23-. Shoot and root development depend on ratio of IAA/CK Balance of Hormones regulate growth and development Environmental factors regulate hormone levels light- e.g. phototropism gravity- e.g. gravitropism temperature Mode of action of each hormone 1. Signal

More information

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Multiple inductive pathways control the timing of flowering Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Induction of flowering Multiple cues Photoperiodism Duration of the Light

More information

Lighting Solutions for Horticulture. The Light of Professional Knowledge

Lighting Solutions for Horticulture. The Light of Professional Knowledge Lighting Solutions for Horticulture The Light of Professional Knowledge Hortiled Hortiled began its activity in 2006 promoting research in the field of plant illumination in collaboration with scientists

More information

PLANT PHYSIOLOGY. a- Photoperiodism c- Vernalization. b- Auxin precursors d- plant development.

PLANT PHYSIOLOGY. a- Photoperiodism c- Vernalization. b- Auxin precursors d- plant development. Benha university Faculty of science Botany Department Micro&chem.. 3 th year Exam. 2013 PLANT PHYSIOLOGY Q1: Define the following:- a- Photoperiodism c- Vernalization b- Auxin precursors d- plant development.

More information

Chapter 33 Control Systems in Plants

Chapter 33 Control Systems in Plants Chapter Control Systems in Plants Figure.0_ Chapter : Big Ideas PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko

More information

REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Gas exchange a. structure: stomates b. function: diffusion, supports

More information

CONTROL SYSTEMS IN PLANTS

CONTROL SYSTEMS IN PLANTS AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROL SYSTEMS IN PLANTS HORMONES MECHANISM FOR HORMONE ACTION Plant Form and Function Activity #5 page 1 CONTROL OF CELL ELONGATION Plant

More information

Chapter 33 Control Systems in Plants

Chapter 33 Control Systems in Plants Chapter 33 Control Systems in Plants PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by

More information

Plant Stimuli pp Topic 3: Plant Behaviour Ch. 39. Plant Behavioural Responses. Plant Hormones. Plant Hormones pp

Plant Stimuli pp Topic 3: Plant Behaviour Ch. 39. Plant Behavioural Responses. Plant Hormones. Plant Hormones pp Topic 3: Plant Behaviour Ch. 39 Plants exist in environments that are constantly changing. Like animals, plants must be able to detect and react to stimuli in the environment. Unlike animals, plants can

More information

Chapter 39: Plant Responses to Internal and External Signals

Chapter 39: Plant Responses to Internal and External Signals AP Biology Reading Guide Fred and Theresa Holtzclaw Julia Keller 12d Chapter 39: Plant Responses to Internal and External Signals 1. What causes a shriveled potato to grow skinny, pale sprouts? Morphological

More information

Engineering light response pathways in crop plants for improved performance under high planting density

Engineering light response pathways in crop plants for improved performance under high planting density Engineering light response pathways in crop plants for improved performance under high planting density Tom Brutnell Boyce Thompson Institute for Plant Research Cornell University, Ithaca NY 6000 years

More information

Light Regulation of Flowering Time in Arabidopsis

Light Regulation of Flowering Time in Arabidopsis Chapter 38 Light Regulation of Flowering Time in Arabidopsis Xuhong Yu and Chentao Lin Introduction Plant development is dependent on not only endogenous conditions but also environmental factors. One

More information

Apollo LED Grow Lights

Apollo LED Grow Lights Apollo LED Grow Lights UL APPROVED LED DRIVER Input Voltage Safety Low Temperature Modular Assembling IDS Colorful Outlook Lens LEDs 100-240V AC power input, 50/60HZ working frequency, suitable for global

More information

Blue light affects many aspects of plant growth and development.

Blue light affects many aspects of plant growth and development. Plant blue-light receptors Chentao Lin Plants have several blue-light receptors, which regulate different aspects of growth and development. Recent studies have identified three such receptors: cryptochrome

More information

Describe plant meristems. Where are they located? perpetually embryonic cells found at tips of roots and shoots (apical vs.

Describe plant meristems. Where are they located? perpetually embryonic cells found at tips of roots and shoots (apical vs. Which conditions have the higher rate of transpiration? Light or dark: Humid or dry: Breezy or still air: Hot or warm: light (need CO 2 for photosyn.) dry (lower H 2 O potential out) breezy (greater evaporation)

More information

Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants

Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants COMMENTARY 475 Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants Ferenc Nagy 1,2, Stefan Kircher 3 and Eberhard Schäfer 3, * 1 Plant Biology Institute, Biological

More information

Unit Two: Chemical Control

Unit Two: Chemical Control Unit Two: Chemical Control 3.1 Plant growth and development are regulated by hormones Tropism is a biological phenomenon in which plants grow toward or away from an environmental stimulus, such as light,

More information

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception Theses of the Ph.D. dissertation János Bindics Supervisor: Dr. Ferenc Nagy Hungarian Academy of Sciences Biological

More information

Not just the presence of light, but direction, intensity, wavelength as well.

Not just the presence of light, but direction, intensity, wavelength as well. Not just the presence of light, but direction, intensity, wavelength as well. Need this to measure the passage of days and seasons ED and BLUE light are the most important colors in regulating this in

More information

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants:

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants: Plant Responses and Adaptations Plant Hormones Hormone - a substance that is produced in 1 part of an organism & affects another part of the same individual (a chemical messenger) Plant hormones are chemical

More information

Phytochromes and Shade-avoidance Responses in Plants

Phytochromes and Shade-avoidance Responses in Plants Annals of Botany 96: 169 175, 2005 doi:10.1093/aob/mci165, available online at www.aob.oupjournals.org BOTANICAL BRIEFING Phytochromes and Shade-avoidance Responses in Plants KEARA A. FRANKLIN and GARRY

More information

Plant Growth and Development Part I I

Plant Growth and Development Part I I Plant Growth and Development Part I I 1 Simply defined as: making with light Chlorophyll is needed (in the cells) to trap light energy to make sugars and starches Optimum temperature: 65 o F to 85 o F

More information

GENETIC AND ENVIRONMENTAL CONTROL OF PLANT ARCHITECTURE IN ARABIDOPSIS AND STRAWBERRY

GENETIC AND ENVIRONMENTAL CONTROL OF PLANT ARCHITECTURE IN ARABIDOPSIS AND STRAWBERRY GENETIC AND ENVIRONMENTAL CONTROL OF PLANT ARCHITECTURE IN ARABIDOPSIS AND STRAWBERRY By TINGTING ZHANG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Ch 25 - Plant Hormones and Plant Growth

Ch 25 - Plant Hormones and Plant Growth Ch 25 - Plant Hormones and Plant Growth I. Patterns of plant growth A. Plant continue to grow, even in old age. i.e. new leaves, needles, new wood, new cones, new flowers, etc. B. Meristem continues to

More information

Common Effects of Abiotic Stress Factors on Plants

Common Effects of Abiotic Stress Factors on Plants Common Effects of Abiotic Stress Factors on Plants Plants are living organisms which lack ability of locomotion. Animals can move easily from one location to other. Immovable property of plants makes it

More information

Plant Growth & Development. By: Johnny M. Jessup Agriculture Teacher/FFA Advisor

Plant Growth & Development. By: Johnny M. Jessup Agriculture Teacher/FFA Advisor Plant Growth & Development By: Johnny M. Jessup Agriculture Teacher/FFA Advisor Introduction There are 7 plant processes that effect growth which are. Photosynthesis Respiration Absorption Transpiration

More information

Growth and development of plants influenced by: Genetic factors External environmental factors Chemicals Plants respond to chemicals that are

Growth and development of plants influenced by: Genetic factors External environmental factors Chemicals Plants respond to chemicals that are Plant Responses PLANT HORMONES Growth and development of plants influenced by: Genetic factors External environmental factors Chemicals Plants respond to chemicals that are naturally inside them and to

More information

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark Cytokinin Abundant in young, dividing cells Shoot apical meristem Root apical meristem Synthesized in root tip, developing embryos, young leaves, fruits Transported passively via xylem into shoots from

More information

AP Plants II Practice test

AP Plants II Practice test AP Plants II Practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. The figure below shows the results of a study to determine the effect

More information

Bio 100 Guide 27.

Bio 100 Guide 27. Bio 100 Guide 27 http://www.offthemarkcartoons.com/cartoons/1994-11-09.gif http://www.cneccc.edu.hk/subjects/bio/album/chapter20/images/plant_growth.jpg http://pgjennielove.files.wordpress.com/2008/06/apical_meristem.png

More information

Life Science Journal 2014;11(9) Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis

Life Science Journal 2014;11(9)   Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis Sung-Il Kim 1, Sang Ik Song 3, Hak Soo Seo 1, 2, 4 * 1 Department of Plant Science and Research Institute of Agriculture

More information

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D.

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D. THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING AnitaHajdu Thesis of the Ph.D. dissertation Supervisor: Dr. LászlóKozma-Bognár - senior research associate Doctoral

More information

Plant Development. Chapter 31 Part 1

Plant Development. Chapter 31 Part 1 Plant Development Chapter 31 Part 1 Impacts, Issues Foolish Seedlings, Gorgeous Grapes Gibberellin and other plant hormones control the growth and development of plants environmental cues influence hormone

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 33 Control Systems in Plants Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 33 Control Systems in Plants Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 33 Control Systems in Plants 33.1 Multiple-Choice Questions 1) Which of the following is a health benefit associated with increasing

More information

Chapter Introduction Lesson 1 Energy Processing in Plants Lesson 2 Plant Responses Chapter Wrap-Up

Chapter Introduction Lesson 1 Energy Processing in Plants Lesson 2 Plant Responses Chapter Wrap-Up Chapter Introduction Lesson 1 Energy Processing in Plants Lesson 2 Plant Responses Chapter Wrap-Up Materials for Plant Processes Xylem and phloem the vascular tissue in most plants transport materials

More information

Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis

Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis The Plant Cell, Vol. 10, 1479 1487, September 1998, www.plantcell.org 1998 American Society of Plant Physiologists Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis Paul F.

More information

Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity

Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity The Plant Cell, Vol. 12, 2499 2509, December 2000, www.plantcell.org 2000 American Society of Plant Physiologists Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for

More information

Greenhouse Supplemental Light Quality for Vegetable Nurseries

Greenhouse Supplemental Light Quality for Vegetable Nurseries Greenhouse Supplemental Light Quality for Vegetable Nurseries Chieri Kubota and Ricardo Hernández The University of Arizona LED Symposium (Feb 20, 2015) Supplemental lighting from late fall to early spring

More information

Factors which influence plant growth

Factors which influence plant growth Factors which influence plant growth Environment Irradiation, Day-length, Temperature, Water availability, Gases Soil, Nutrients Plant Hormones Growth Hormones Auxins Cytokinins Gibberellins Ethylene Abscisic

More information

Plant Responses to Internal and External Signals Lecture Outline

Plant Responses to Internal and External Signals Lecture Outline Plant Responses to Internal and External Signals Lecture Outline Overview: Stimuli and a Stationary Life At every stage in the life of a plant, sensitivity to the environment and coordination of responses

More information

Temperature and light as ecological factors for plants

Temperature and light as ecological factors for plants PLB/EVE 117 Plant Ecology Fall 2005 1 Temperature and light as ecological factors for plants I. Temperature as an environmental factor A. The influence of temperature as an environmental factor is pervasive

More information

Biology 120 J. Greg Doheny. Chapter 39 Plant Responses to Signals are Mediated by Plant Hormones

Biology 120 J. Greg Doheny. Chapter 39 Plant Responses to Signals are Mediated by Plant Hormones Biology 120 J. Greg Doheny Chapter 39 Plant Responses to Signals are Mediated by Plant Hormones Plants are able to change their growth and behavior in response to external signals (ie-growing towards light,

More information

GROWTH AND DEVELOPMENT

GROWTH AND DEVELOPMENT CHAPTER IX Stages of Growth and Development VEGETATIVE GROWTH AND DEVELOPMENT 4/6/2008 DMA: Chapter 9 Hartmann's Plant 1 Shoot and Root Systems The root system and the shoot system tend to maintain a balance:

More information

Yield Responses to Supplemental Lighting

Yield Responses to Supplemental Lighting Yield Responses to Supplemental Lighting Solar radiation Sunlight s full spectrum ranges from 3 to 3 nm Heat Light for plant growth and development Three dimensions Celina Gómez, PhD Environmental Horticulture

More information

Photosynthesis. From Sunlight to Sugar

Photosynthesis. From Sunlight to Sugar Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical

More information

PHOTOSYNTHESIS Autotrophs Heterotrophs ENERGY

PHOTOSYNTHESIS Autotrophs Heterotrophs ENERGY Did You Know? How Plants Make Food That most of the Oxygen in the air is thought to be from PHOTOSYNTHESIS Nutrition Autotrophs (make their own food) Ex) Green plants, protists, algae, phytoplankton Nutrition

More information

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands Control of Plant Height and Branching in Ornamentals Ep Heuvelink Horticulture and Product Physiology group, Wageningen University, the Netherlands Compact plants = desired external quality Currently often

More information

Unit 8 Plant Form and Function. Chapter 31: Plant Responses to Internal and External Signals

Unit 8 Plant Form and Function. Chapter 31: Plant Responses to Internal and External Signals Unit 8 Plant Form and Function Chapter 31: Plant Responses to Internal and External Signals Overview: The Race to Live Young seedlings must outcompete their neighbors in the race for resources in order

More information

Stephen Pearce 1,2, Nestor Kippes 1, Andrew Chen 1, Juan Manuel Debernardi 1 and Jorge Dubcovsky 1,3*

Stephen Pearce 1,2, Nestor Kippes 1, Andrew Chen 1, Juan Manuel Debernardi 1 and Jorge Dubcovsky 1,3* Pearce et al. BMC Plant Biology (2016) 16:141 DOI 10.1186/s12870-016-0831-3 RESEARCH ARTICLE Open Access RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions

More information

? Lighting is in our culture Lighting is in our culture LED USE WHY

? Lighting is in our culture Lighting is in our culture LED USE WHY WHY USE LED? Lighting is in is our in culture our culture THE FUNDAMENTAL REASONING BEHIND THE USE OF GROW LIGHTS - COMMUNITY CONCERNS NOURISHING OUR PLANET AND ITS PEOPLE In the last 50 years, our world

More information

Water Potential. The physical property predicting the direction in which water will flow. Pressure

Water Potential. The physical property predicting the direction in which water will flow. Pressure Transport In Plants Water Potential The physical property predicting the direction in which water will flow Pressure water moves from high water potential to low water potential Water Potential (a) Left

More information

How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below?

How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below? Volume 4, Number 21 March 2016 by Roberto Lopez rglopez@msu.edu and Joshua Craver jcraver@purdue.edu How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below? In this

More information

LECTURE 3: INTRODUCTION TO LIGHT RESPONSE

LECTURE 3: INTRODUCTION TO LIGHT RESPONSE http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 3: INTRODUCTION TO LIGHT RESPONSE LECTURE FLOW 1. INTRODUCTION 1. Definition 2. Other Tropism 2. TYPES OF LIGHT

More information

The shade avoidance syndrome: multiple responses mediated by multiple phytochromes

The shade avoidance syndrome: multiple responses mediated by multiple phytochromes Plant, Cell and Environment (1997) 20, 840 844 TECHNICAL REPORT (white this line if not required) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes H. SMITH & G. C. WHITELAM

More information

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid Plant Hormones Lecture 9: Control Systems in Plants What is a Plant Hormone? Compound produced by one part of an organism that is translocated to other parts where it triggers a response in target cells

More information

Chapter 39: Plant Responses to Internal and External Signals

Chapter 39: Plant Responses to Internal and External Signals AP Biology Reading Guide Name Chapter 39: Plant Responses to Internal and External Signals Concept 39.1 Signal transduction pathways link signal reception to response This concept brings together the general

More information

Plant Responses and Adaptations Video

Plant Responses and Adaptations Video Plant Responses and Adaptations Video Hormone -a substance that is produced in one part of an organism & affects another part of the same individual Plant hormones are chemical substances Control a plant

More information

The Cell: The smallest unit in living things that shows the characteristics of life; the basic building blocks of life.

The Cell: The smallest unit in living things that shows the characteristics of life; the basic building blocks of life. The Cell: The smallest unit in living things that shows the characteristics of life; the basic building blocks of life. What is a cell s function? Each cell contains information (DNA) that is used as instructions

More information

Phytochrome Signaling Mechanisms

Phytochrome Signaling Mechanisms Phytochrome Signaling Mechanisms Authors: Jigang Li, Gang Li, Haiyang Wang, and Xing Wang Deng Source: The Arabidopsis Book, 2011(9) Published By: American Society of Plant Biologists URL: https://doi.org/10.1199/tab.0148

More information

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 1) Which of the following is the naturally occurring auxin in plants? a) indolebutyric acid b) naphthaleneacetic acid c) indoleacetic acid d) zeatin e) kinetin

More information

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 11, 2000: pp. 505 510 doi: 10.1006/scdb.2000.0202, available online at http://www.idealibrary.com on Nucleo-cytoplasmic partitioning of the plant photoreceptors

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information