and its origins G. E. Schneider 2009 Part 1: Introduction MIT 9.14 Class 1 Brain talk, and

Size: px
Start display at page:

Download "and its origins G. E. Schneider 2009 Part 1: Introduction MIT 9.14 Class 1 Brain talk, and"

Transcription

1 A sketch of the central nervous system and its origins G. E. Schneider 2009 Part 1: Introduction MIT 9.14 Class 1 Brain talk, and the ancient activities of brain cells

2 1. Introduction a) b) The plan for this class 1) The goal: Learn an outline of vertebrate, especially mammalian, neuroanatomy. 2) Reaching the goal will be facilitated by studies of origins, using material from studies of development, comparative anatomy and evolution. 3) Since adaptive function is the driver of evolution, we will pay close attention to functions. Initial topics 1) Some terminology 2) Neurons: their evolution and how we study them

3 Talking about the CNS: terminology Directions (illustrated) Rostral vs. caudal; cf. anterior vs. posterior Dorsal vs. ventral; cf. superior vs. inferior Medial vs. lateral Planes of section (illustrated) Sagittal (mid-sagittal, parasagittal) Coronal (frontal; transverse; cross-section) Horizontal Oblique Major parts of the CNS: You will soon know these! About the terms we use: Multiple synonyms or near-synonyms English, Latin or Greek Pronunciation problems

4 From Butler & Hodos, 1996: Directions PLANES OF SECTION Brain Spinal Cord Brain Spinal Cord Dorsal Posterior (Caudal) Dorsal Posterior (Caudal) Anterior (Rostral, Oral) Anterior (Rostral, Oral) Ventral Ventral Figure by MIT OpenCourseWare.

5 Figure by MIT OpenCourseWare.

6 Man and Bird Figure by MIT OpenCourseWare.

7 Talking about the CNS: terminology Directions (illustrated) Rostralvs. caudal; cf. anterior vs. posterior Dorsalvs. ventral; cf. superior vs. inferior Medialvs. lateral Planes of section (illustrated) Sagittal (mid-sagittal, parasagittal) Coronal (frontal; transverse; cross-section) Horizontal Oblique Major parts of the CNS: You will soon know these! About the terms we use: Multiple synonyms or near-synonyms English, Latin or Greek Pronunciation problems

8 Sections TRANSVERSE (Frontal) HORIZONTAL MIDSAGITTAL PARASAGITTAL (Sagittal) OBLIQUE Figure by MIT OpenCourseWare.

9 Standard planes of section, brain of small rodent Side view Frontal sections Horizontal section Front view Fig 1-2b Parasagittal sections

10 Talking about the CNS: terminology Directions (illustrated) Rostral vs. caudal; cf. anterior vs. posterior Dorsal vs. ventral; cf. superior vs. inferior Medial vs. lateral Planes of section (illustrated) Sagittal (mid-sagittal, parasagittal) Coronal (frontal; transverse; cross-section) Horizontal Oblique Major parts of the CNS: These will be discussed repeatedly, from various points of view. Soon you will remember them! [Illustration] The terms we use: Multiple synonyms or near-synonyms English vs. Latin or Greek Pronunciation problems

11 Preview: Fig 1-3 a. Spinal cord a. Spinal a. cord Spinal cord b. Hindbrain b. Hindbrain (rhombencephalon) b. Hindbrain (rhombencephalon (rhombencephalon c. Midbrain c. Midbrain (mesencephalon) c. Midbrain (mesencephalon) (mesencephalon) d. Tweenbrain d. Tweenbrain (diencephalon) d. Tweenbrain (diencephalon) (diencephalon) e. Endbrain e. Endbrain (telencephalon) e. Endbrain (telencephalon) (telencephalon) The thickening embryonic neural tube Forebrain (prosencephalon)

12 What is the nature of the CNS? One of the difficulties in understanding the brain is that it is like nothing so much as a lump of porridge. -- R.L. Gregory, 1966 [an experimental psychologist] CNS as a tissue: What kind of tissue? What kind of cells? How can we see them? Levels of observation; techniques. CNS as a system: Communication system: information flow/handling Secretory organ What is its functional architecture? [In class 3 we will illustrate this in a basic way, considerably simplified; later we will see more details.] Basic elements of CNS [This week we nerve cells and their properties.] will have a look at First: a look at the gross anatomy of the nervous system some

13 The gross anatomy: A young human from N. Gluhbegovic and T.H. Williams, 1980 (Harper & Row) Positions of vertebrane Note: dura mater; Spinal nerves vs CNS Fig 1-4 Figure by MIT OpenCourseWare.

14 Hamster Brain (similar to rat) Figures removed due to copyright restrictions. Fig.1-5

15 Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons Irritability and conduction Specializations of membrane for irritability Movement Secretion Parallel channels of information flow; integrative activity Endogenous activity

16 Why do organisms need neurons? Protozoa do these things! Limitations of being a single cell are many, especially limits due to small size. Hence, the evolution of multicellular organisms had to occur eventually.

17 Specializations for irritability, seen in modern survivors of primitive species Protozoa: responses to stimulation Sponges and other metazoans: specialized cells responsive to contact or chemicals Coelenterates (Parker s studies): primary sensory neurons plus neurons responsive to other neurons Worms with forward locomotion, with evolution of head receptors and their consequences (We will return to these topics later.)

18 Irritability and conduction: Examples of two neurons Fig.1-6 What are the three major functionally distinct parts of a neuron?

19 A note from comparative anatomy The position of the cell body of somatosensory neurons: The pseudounipolar shape is recent evolution. (Note the DRG cell in the figure.) Ramon y Cajal s picture: in

20 Primary somatosensory neurons in an animal series Sensory cell of the earthworm Sensory cell of a mollusc Sensory cell of a lower fish Fig.1-7 Sensory cell of amphibian, reptile, bird, or mammal Figure by MIT OpenCourseWare.

21 Santiago Ramon y Cajal, drawing at his microscope Fig.1-8 Courtesy of

22 Names for major parts and activities of neurons Cell body (soma) and its branches (dendrites) Membrane potential The cell s irritability: depolarization when stimulated. This is called excitation. Graded conduction of membrane potential change away from the point of stimulation Axon and its end arborization (telodendria) with synaptic contacts on other neurons or muscle or gland cells The axonal membrane is specialized for conduction of action potentials. Action potentials are conducted in a non-decremental fashion. What membrane component had to evolve to accomplish this? Action potentials are found even in jellyfish axons.

23 A cartoon: Distribution of major ions inside & outside the resting neuronal membrane; recording of electrical potentials Fig.1-9 Sodium-potassium pump

24 Irritability and conduction: Examples of two neurons Fig.1-10a

25 Membrane potentials in neurons; in axons Fig.1-10b

26 Specializations of the membrane for irritability At post synaptic sites: receptors for specific released by other neurons molecules In neurons or associated cells found in, or extending into, skin and other peripheral organs, for detection of specific kinds of energy (chemicals in air or in mouth, light, pressure, stretch, hot or cold, electrical potential changes, sounds) Some of these specializations occur with the evolution of modified cilia, e.g., the olfactory and the visual receptor specializations.

27 Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons Irritability and conduction Specializations of membrane for irritability Movement Secretion Parallel channels of information flow; integrative activity Endogenous activity

28 Movement Contractile proteins: actin and myosin Actin is abundant in growing neurons But neurons are not specialized for moving themselves except early in development. Muscle cells retain property. and specialize in that

29 Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons Irritability and conduction Specializations of membrane for irritability Movement Secretion Parallel channels of information flow; integrative activity Endogenous activity

30 Secretion as an output mechanism: For attacking prey In protozoa In sponges For cell-cell communication in sponges It evolved, or was retained, in neurons.

31 Otto Loewi s discovery: chemical transmission at the synapse The controversy in the early years of the 20 th century: Are synapses electrical or chemical? Loewi s dream: He saw how chemical transmission at the synapse could be demonstrated Innervation of the frog heart: accelerator nerve and decelerator nerve Two frog hearts in saline, in separate petri dishes Evidence for Acceleransstoff and Vagusstoff Electrical synapses are also found, less commonly, in the form of gap junctions. These are found already in sponges

32 Chemical Synapse Figure by MIT OpenCourseWare. Fig. 1-11

33 Recording EPSPs and IPSPs Figure by MIT OpenCourseWare.

34 Synapses: varied structural arrangements: Consider the functional possibilities Axo-somatic Axo-dendritic (to dendritic shaft or dendritic spine) Axo-axonal Presynaptic inhibition and facilitation. (Also: dendro-dendritic, dendro-axonal ) Reciprocal synapses Serial synapses Gating mechanisms Synapses without a postsynaptic site

35 Synapses: varied structural arrangements: Consider the functional possibilities Axo-somatic Axo-dendritic (to dendritic shaft or dendritic spine) Fig 1-13a

36 Synapses: varied structural arrangements: Axo-axonal Presynaptic facilitation (Also: Consider the inhibition and dendro-dendritic, dendro-axonal ) Reciprocal synapses functional possibilities Fig 1-13b

37 Synapses: varied structural arrangements: Consider the functional possibilities Serial synapses Gating mechanisms Synapses without a postsynaptic site (not illustrated) Fig 1-13c

38 Secretion: terms Neurotransmitters Neural hormones Cf. endocrine glands Multiple types of synapses Exocytosis Endocytosis Intracellular transport

39 exocytosis endocytosis Common cellular dynamics with neuronal specializations intracellular transport of organelles and molecules Retrograde Anterograde (involving dynein) (involving kinesin) NEXT CLASS: How such cellular dynamics are used in experimental studies of the CNS

40 Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons Irritability and conduction Specializations of membrane for irritability Movement Secretion Parallel channels of information flow; integrative activity Endogenous activity

41 The need for integrative action in multi cellular organisms How does one end of the animal influence other end? How does one side coordinate with the the other side? With multiple inputs and multiple outputs, how can conflicts be avoided? Hence, the evolution of interconnections among multiple subsystems of the nervous system.

42 How can such connections be studied? The methods of neuroanatomy (neuromorphology) The important roles of neurophysiology, neurochemistry, behavioral studies Neuroanatomical methods will be reviewed in the next class. Thereafter, the last primitive cellular mechanism, endogenous activity, will be explained further.

43 MIT OpenCourseWare Brain Structure and Its Origins Spring 2009 For information about citing these materials or our Terms of Use, visit:

A sketch of the central nervous system and its origins. G. E. Schneider 2014 Part 1: Introduction. MIT 9.14 Class 1

A sketch of the central nervous system and its origins. G. E. Schneider 2014 Part 1: Introduction. MIT 9.14 Class 1 A sketch of the central nervous system and its origins G. E. Schneider 2014 Part 1: Introduction MIT 9.14 Class 1 Brain talk, and the ancient activities of brain cells 1 a) The plan for this class 1. Introduction

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

MIT 9.14 Class 2 Neuroanatomical techniques

MIT 9.14 Class 2 Neuroanatomical techniques 9.14 - Brain Structure and its Origins Spring 2005 Massachusetts Institute of Technology Instructor: Professor Gerald Schneider A sketch of the central nervous system and its origins G. Schneider 2005

More information

MITOCW MIT9_14S14_lec03.mp3

MITOCW MIT9_14S14_lec03.mp3 MITOCW MIT9_14S14_lec03.mp3 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions:

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Nervous System Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Sensory Input: Obtaining stimulation from the environment (light, heat, pressure, vibration, chemical,

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Human Body: An Orientation

The Human Body: An Orientation The Human Body: An Orientation Prepared by Dr. Naim Kittana Dr. Suhaib Hattab Faculty of Medicine & Health Sciences An-Najah National University 1 Declaration The content and the figures of this seminar

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Chapter 1- An Orientation to the Human Body NOTES

Chapter 1- An Orientation to the Human Body NOTES Chapter 1- An Orientation to the Human Body NOTES Overview of Anatomy and Physiology: -Anatomy- of body parts and their relationships to one another. -Gross or Macroscopic= large and easily observable

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Chapter 1. The Human Organism 1-1

Chapter 1. The Human Organism 1-1 Chapter 1 The Human Organism 1-1 Overview of Anatomy and Physiology Anatomy: Scientific discipline that investigates the body s structure Physiology: Scientific investigation of the processes or functions

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions Ch 8: Neurons: Cellular and Network Properties, Part 1 Review of the Nervous System Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve cell

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

The Nervous System. Nervous System Organization. Nerve Tissue. Two parts to the nervous system 11/27/2016

The Nervous System. Nervous System Organization. Nerve Tissue. Two parts to the nervous system 11/27/2016 The Nervous System Nervous System Organization Animals must be able to respond to environmental stimuli. Three functions of the nervous system: Sensory input conduction of signals from sensory receptors.

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor Nervous system 3 Basic functions of the nervous system 1-Sensory 2-Integration 3-Motor I. Central Nervous System (CNS) Brain Spinal Cord I. Peripheral Nervous System (PNS) 2) Afferent towards afferent

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes.

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes. 1 Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September 2004. Exam is worth 100 points. You have 75 minutes. True or False (write true or false ; 10 points total; 1 point each) 1.

More information

LEARNING OBJECTIVES FOR BY 124 EXAM Distinguish between osmoregulators and osmoconformers. Give an example of each.

LEARNING OBJECTIVES FOR BY 124 EXAM Distinguish between osmoregulators and osmoconformers. Give an example of each. LEARNING OBJECTIVES FOR BY 124 EXAM 4 CHAPTER 44 1. Distinguish between osmoregulators and osmoconformers. Give an example of each. 2. Discuss the problems that marine organisms, freshwater organisms,

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 3 BIOLOGY AND BEHAVIOR

Chapter 3 BIOLOGY AND BEHAVIOR Chapter 3 BIOLOGY AND BEHAVIOR Section 1: The Nervous System Section 2: The Brain: Our Control Center Section 3: The Endocrine System Section 4: Heredity: Our Genetic Background 1 Section 1: The Nervous

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

INSPIRATION. The Neuron Doctrine...Henriech Wilhelm. The neuron is the anatomic, genetic, system.

INSPIRATION. The Neuron Doctrine...Henriech Wilhelm. The neuron is the anatomic, genetic, system. Denver Ncube 2010 INSPIRATION The Neuron Doctrine...Henriech Wilhelm Waldeyer (1891). The neuron is the anatomic, genetic, trophic and functional unit of the nervous system. BACKGROUND The differences

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Ch 33. The nervous system

Ch 33. The nervous system Ch 33 The nervous system AP bio schedule Tuesday Wed Thursday Friday Plant test Animal behavior lab Nervous system 25 Review Day (bring computer) 27 Review Day (bring computer) 28 Practice AP bio test

More information

1. Neurons & Action Potentials

1. Neurons & Action Potentials Lecture 6, 30 Jan 2008 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008 Kevin Bonine & Kevin Oh 1. Intro Nervous System Fxn (slides 32-60 from Mon 28 Jan; Ch10) 2. Neurons

More information

Introduction Chpt 1. Study Slides

Introduction Chpt 1. Study Slides Introduction Chpt 1 Study Slides A group of molecules working together toward a common function is a: A. Cell B. Atom C. Organelle D. Tissue E. Organ ANSWER A group of molecules working together toward

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Domain 6: Communication

Domain 6: Communication Domain 6: Communication 6.1: Cell communication processes share common features that reflect a shared evolutionary history. (EK3.D.1) 1. Introduction to Communication Communication requires the generation,

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

Physiology 2 nd year. Neuroscience Optional Lecture

Physiology 2 nd year. Neuroscience Optional Lecture Academic year 2018/2019 Physiology 2 nd year Semester 1 Curricula Nervous system physiology Blood physiology Acid-base equilibrium Bibliography: Boron & Boulpaep Medical Physiology, 3 rd edition Physiology

More information

The Nervous System. What did you learn at school today? Neurophysiology!

The Nervous System. What did you learn at school today? Neurophysiology! The Nervous System What did you learn at school today? Neurophysiology! The Nervous System Controls heart rate, emotions, memories, consciousness, and much more. The most intricate and beautifully complex

More information

Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology.

Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology. Name: Period: Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology. 2. Arrange and identify, in order, the six levels of structural organization of the human body.

More information

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 48 Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lines of Communication The

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 12 Neural Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to the Nervous System The Nervous System Includes all neural tissue in the body

More information

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE NAME COURSE BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE Like a telephone switchboard, the nervous system directs a countless number of incoming

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #4 Wednesday, October 4, 2006 7. CHEMICAL SYNAPSES AND GAP JUNCTIONS We will look at: Chemical synapses in the nervous system Gap junctions in

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Synapses. Electrophysiology and Vesicle release

Synapses. Electrophysiology and Vesicle release Synapses Electrophysiology and Vesicle release Major point Cell theory (cells being separated) implies that cells must communicate with each other through extracellular connections most communication is

More information

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross Action Potentials & Nervous System Bio 219 Napa Valley College Dr. Adam Ross Review: Membrane potentials exist due to unequal distribution of charge across the membrane Concentration gradients drive ion

More information

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT POWERPOINT LECTURE SLIDE PRESENTATION by LYNN CIALDELLA, MA, MBA, The University of Texas at Austin Additional text by J Padilla exclusively for physiology at ECC UNIT 2 8 Neurons: PART A Cellular and

More information

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2 Cellular Neuroanatomy II The Prototypical Neuron: Neurites Reading: BCP Chapter 2 Major Internal Features of a Neuron The neuron is the functional unit of the nervous system. A typical neuron has a soma

More information

Neural development its all connected

Neural development its all connected Neural development its all connected How do you build a complex nervous system? How do you build a complex nervous system? 1. Learn how tissue is instructed to become nervous system. Neural induction 2.

More information

Next: Before we talk about topographic organization, we will review some species differences, and take a look at lamination in the midbrain tectum.

Next: Before we talk about topographic organization, we will review some species differences, and take a look at lamination in the midbrain tectum. Next: Before we talk about topographic organization, we will review some species differences, and take a look at lamination in the midbrain tectum. 1 Midbrain: Species comparisons An exercise in topology:

More information

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS BIOLOGY HIGHLIGHTS KEYS Watch the videos and download the transcripts of this section at: online.scuola.zanichelli.it/curtisnuovoinvitoblu/clil > THE HUMAN NERVOUS SYSTEM 2. WARM UP a) The structures that

More information

Bio334 Neurobiology 1 Lecture 2

Bio334 Neurobiology 1 Lecture 2 Evolution of Bio334 Neurobiology 1 Lecture 2 1 Questions from the last lecture Patients with Broca s area lesions do have trouble writing Golgi Cajal debate reticular theory of the brain vs. individual

More information

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron?

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron? Why? Neuron Structure What are the essential structures that make up a neuron? Cells are specialized for different functions in multicellular organisms. In animals, one unique kind of cell helps organisms

More information

18. Which body system is needed for the exchange of oxygen and carbon dioxide? A. Respiratory B. Integumentary C. Digestive D. Urinary 19.

18. Which body system is needed for the exchange of oxygen and carbon dioxide? A. Respiratory B. Integumentary C. Digestive D. Urinary 19. 1 Student: 1. Which of the following is NOT a part of the study of anatomy? A. The structure of body parts B. Predicting the body's responses to stimuli C. Microscopic organization D. The relationship

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells.

1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells. : Nerve Cells and Nerve Impulses TRUE/FALSE 1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells. ANS: F PTS: 1 DIF: factual REF: Anatomy of Neurons 2. A small

More information

Nervous System Part II

Nervous System Part II Nervous System Part II 175 Types of Neurons 1. Motor Neurons 2. Sensory Neurons 3. Interneurons 176 Motor (Efferent) Neurons take information from the CNS to effectors (muscles or glands). Characterized

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which body fluid compartment contains high levels of K +, large anions, and proteins?

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

BIOL Anatomy and Physiology I ( version L )

BIOL Anatomy and Physiology I ( version L ) BIOL 2113 - Anatomy and Physiology I ( version 213L ) Course Title Course Development Learning Support Anatomy and Physiology I Standard No Course Description Introduces the anatomy and physiology of the

More information

The neuron as a secretory cell

The neuron as a secretory cell The neuron as a secretory cell EXOCYTOSIS ENDOCYTOSIS The secretory pathway. Transport and sorting of proteins in the secretory pathway occur as they pass through the Golgi complex before reaching the

More information

Cells. Steven McLoon Department of Neuroscience University of Minnesota

Cells. Steven McLoon Department of Neuroscience University of Minnesota Cells Steven McLoon Department of Neuroscience University of Minnesota 1 Microscopy Methods of histology: Treat the tissue with a preservative (e.g. formaldehyde). Dissect the region of interest. Embed

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

PHYSICS & BIOLOGY IN MEDICINE 218 RADIOLOGIC FUNCTIONAL ANATOMY. Fall 2017

PHYSICS & BIOLOGY IN MEDICINE 218 RADIOLOGIC FUNCTIONAL ANATOMY. Fall 2017 PHYSICS & BIOLOGY IN MEDICINE 218 RADIOLOGIC FUNCTIONAL ANATOMY Fall 2017 INSTRUCTORS Allan MacKenzie-Graham, PhD Jeff Alger, PhD Neuroscience Research Building 225Z 635 Charles Young Drive Email: amg@ucla.edu

More information

Ch 7. The Nervous System 7.1 & 7.2

Ch 7. The Nervous System 7.1 & 7.2 Ch 7 The Nervous System 7.1 & 7.2 SLOs Describe the different types of neurons and supporting cells, and identify their functions. Identify the myelin sheath and describe how it is formed in the CNS and

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

CHAPTER 9 BODY ORGANIZATION. Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1

CHAPTER 9 BODY ORGANIZATION. Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1 CHAPTER 9 BODY ORGANIZATION Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1 Anatomy and Physiology Four basic properties of life: Reception The ability of the organism to control its actions

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Hair Cells: The Sensory Transducers of the Inner Ear

Hair Cells: The Sensory Transducers of the Inner Ear Chapter 1 Hair Cells: The Sensory Transducers of the Inner Ear Hair cells are specialized cells that transform a mechanical motion into changes in membrane potential. Such changes, whereby one form of

More information

Nerves and their impulses. Biology 12 C-11

Nerves and their impulses. Biology 12 C-11 Nerves and their impulses Biology 12 C-11 Nerves and their impulses Nerves are designed to transmit electrical impulses from the dendrites, over the cell body and through the axon. The impulse will then

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

Intercellular Communication. Department of Physiology School of Medicine University of Sumatera Utara

Intercellular Communication. Department of Physiology School of Medicine University of Sumatera Utara Intercellular Communication Department of Physiology School of Medicine University of Sumatera Utara Intercellular Communication and Signal Transduction The ability of cells to communicate with each other

More information

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4 1 2 3 4 5 6 7 8 9 10 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system Sensory Pathways Sensory pathways have four basic

More information

Computational Neuroscience

Computational Neuroscience Computational Neuroscience Zoltán Somogyvári senior research fellow Wigner Research Institute for Physics, Theoretical Department Supporting materials: http://www.kfki.hu/~soma/bscs/ BSCS 2012 Lengyel

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information