Procedure to Create NCBI KOGS

Size: px
Start display at page:

Download "Procedure to Create NCBI KOGS"

Transcription

1 Procedure to Create NCBI KOGS full details in: Tatusov et al (2003) BMC Bioinformatics 4: Detect and mask typical repetitive domains Reason: masking prevents spurious lumping of non-orthologs based only on common shared domains o Examples PPR Repeat 35 amino acids long up to 18 copiers per protein generally copy number is expanded in plants C2H2 classic zinc finger domain 25 amino acids long binds to major groove of DNA protein can function as a transcription regulator 2. All-against-all BLASTP analysis Comparison of amino acid sequences All sequences used as the database Each sequence used as a query against this database P values can be rather high Ubiquitin cluster

2 3. Mutually consistent triangles of genome specific best hits 4. Merge triangles with common sides 5. Manual analysis of each cluster to eliminate false positives 6. Assignment of masked proteins (step 1) to clusters 7. Perform phylogenetic clustering on KOGs with proteins from multiple species Species Arabidopsis thaliana (thale cress) Caenorhabditis elegans (worm) Drosophila melanogaster (fruit fly) Homo sapiens (human) Saccharomyces cerevisiae (baker yeast) Schizosaccharomyces pombe (fission yeast) Encephalitozoon cuniculi (Microsporidia) Species Designation A C D H Y P E Species Groupings with Largest Members Genomes Members CDH 1147 ACDHYP 928 ACDHYPE 860 ACDH 484 CDHYP 152

3 Examples of KOGs KOG containing all species 860 clusters KOG 0001: Ubiquitin and ubiquitin-like proteins Species Number of members Arabidopsis thaliana (thale cress) 29 Caenorhabditis elegans (worm) 12 Drosophila melanogaster (fruit fly) 3 Homo sapiens (human) 17 Saccharomyces cerevisiae (baker yeast) 2 Schizosaccharomyces pombe (fission yeast) 1 Encephalitozoon cuniculi (Microsporidia) 1

4 Arabidopsis At5g20620 vs. Baker Yeast YLL039c >YLL039c Length = 381 Score = 723 bits (1866), Expect = 0.0 Identities = 370/381 (97%), Positives = 381/381 (99%) Query: 1 MQIFVKTLTGKTITLEVESSDTIDNVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLADYN 60 MQIFVKTLTGKTITLEVESSDTIDNVK+KIQDKEGIPPDQQRLIFAGKQLEDGRTL+DYN Sbjct: 1 MQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYN 60 Query: 61 IQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVKAKIQDKEGIPPDQQRLI 120 IQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVK+KIQDKEGIPPDQQRLI Sbjct: 61 IQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLI 120 Query: 121 FAGKQLEDGRTLADYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVKA 180 FAGKQLEDGRTL+DYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVK+ Sbjct: 121 FAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVESSDTIDNVKS 180 Query: 181 KIQDKEGIPPDQQRLIFAGKQLEDGRTLADYNIQKESTLHLVLRLRGGMQIFVKTLTGKT 240 KIQDKEGIPPDQQRLIFAGKQLEDGRTL+DYNIQKESTLHLVLRLRGGMQIFVKTLTGKT Sbjct: 181 KIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKT 240 Query: 241 ITLEVESSDTIDNVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLADYNIQKESTLHLVLR 300 ITLEVESSDTIDNVK+KIQDKEGIPPDQQRLIFAGKQLEDGRTL+DYNIQKESTLHLVLR Sbjct: 241 ITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLR 300 Query: 301 LRGGMQIFVKTLTGKTITLEVESSDTIDNVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTL 360 LRGGMQIFVKTLTGKTITLEVESSDTIDNVK+KIQDKEGIPPDQQRLIFAGKQLEDGRTL Sbjct: 301 LRGGMQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTL 360 Query: 361 ADYNIQKESTLHLVLRLRGGS 381 +DYNIQKESTLHLVLRLRGG+ Sbjct: 361 SDYNIQKESTLHLVLRLRGGN 381 Arabidopsis At5g20620 vs. Arabidopsis At1g14650 >At1g14650 Length = 785 Score = 38.5 bits (88), Expect = Identities = 24/68 (35%), Positives = 39/68 (57%), Gaps = 1/68 (1%) Query: 314 GKTITLEVES-SDTIDNVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLADYNIQKESTLH 372 G+ + + V+S S+ + ++K KI + IP ++Q+L L+D +LA YN+ L Sbjct: 715 GQFMEITVQSLSENVGSLKEKIAGEIQIPANKQKLSGKAGFLKDNMSLAHYNVGAGEILT 774 Query: 373 LVLRLRGG 380 L LR RGG Sbjct: 775 LSLRERGG 782

5 KOG 0001: 40S Ribosomal Protein S17 Species Number of members Arabidopsis thaliana (thale cress) 4 Caenorhabditis elegans (worm) 1 Drosophila melanogaster (fruit fly) 1 Homo sapiens (human) 8 Saccharomyces cerevisiae (baker yeast) 2 Schizosaccharomyces pombe (fission yeast) 2 Encephalitozoon cuniculi (Microsporidia) 1

6

Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors

Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors Arli Parikesit, Peter F. Stadler, Sonja J. Prohaska Bioinformatics Group Institute of Computer Science University

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Evaluation. Course Homepage.

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Evaluation. Course Homepage. CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 389; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs06.html 1/12/06 CAP5510/CGS5166 1 Evaluation

More information

Advanced Algorithms and Models for Computational Biology

Advanced Algorithms and Models for Computational Biology Advanced Algorithms and Models for Computational Biology Introduction to cell biology genomics development and probability Eric ing Lecture January 3 006 Reading: Chap. DTM book Introduction to cell biology

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

ECOL/MCB 320 and 320H Genetics

ECOL/MCB 320 and 320H Genetics ECOL/MCB 320 and 320H Genetics Instructors Dr. C. William Birky, Jr. Dept. of Ecology and Evolutionary Biology Lecturing on Molecular genetics Transmission genetics Population and evolutionary genetics

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

CGS 5991 (2 Credits) Bioinformatics Tools

CGS 5991 (2 Credits) Bioinformatics Tools CAP 5991 (3 Credits) Introduction to Bioinformatics CGS 5991 (2 Credits) Bioinformatics Tools Giri Narasimhan 8/26/03 CAP/CGS 5991: Lecture 1 1 Course Schedules CAP 5991 (3 credit) will meet every Tue

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Welcome to BIOL 572: Recombinant DNA techniques

Welcome to BIOL 572: Recombinant DNA techniques Lecture 1: 1 Welcome to BIOL 572: Recombinant DNA techniques Agenda 1: Introduce yourselves Agenda 2: Course introduction Agenda 3: Some logistics for BIOL 572 Agenda 4: Q&A section Agenda 1: Introduce

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Computational Structural Bioinformatics

Computational Structural Bioinformatics Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://koehllab.genomecenter.ucdavis.edu/teaching/ecs129 koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

BSC 4934: QʼBIC Capstone Workshop" Giri Narasimhan. ECS 254A; Phone: x3748

BSC 4934: QʼBIC Capstone Workshop Giri Narasimhan. ECS 254A; Phone: x3748 BSC 4934: QʼBIC Capstone Workshop" Giri Narasimhan ECS 254A; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/bsc4934_su10.html July 2010 7/12/10 Q'BIC Bioinformatics 1 Overview of Course"

More information

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions?

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions? 1 Supporting Information: What Evidence is There for the Homology of Protein-Protein Interactions? Anna C. F. Lewis, Nick S. Jones, Mason A. Porter, Charlotte M. Deane Supplementary text for the section

More information

Introduction to protein alignments

Introduction to protein alignments Introduction to protein alignments Comparative Analysis of Proteins Experimental evidence from one or more proteins can be used to infer function of related protein(s). Gene A Gene X Protein A compare

More information

Lecture Materials are available on the 321 web site

Lecture Materials are available on the 321 web site MENDEL AND MODELS Explore the Course Web Site http://fire.biol.wwu.edu/trent/trent/biol321index.html Lecture Materials are available on the 321 web site http://fire.biol.wwu.edu/trent/trent/321lectureindex.html

More information

11/24/13. Science, then, and now. Computational Structural Bioinformatics. Learning curve. ECS129 Instructor: Patrice Koehl

11/24/13. Science, then, and now. Computational Structural Bioinformatics. Learning curve. ECS129 Instructor: Patrice Koehl Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://www.cs.ucdavis.edu/~koehl/teaching/ecs129/index.html koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

Science of Information Initiative

Science of Information Initiative Science of Information Initiative Wojciech Szpankowski and Ananth Grama... to integrate research and teaching activities aimed at investigating the role of information from various viewpoints: from fundamental

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

Related Courses He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

Related Courses He who asks is a fool for five minutes, but he who does not ask remains a fool forever. CSE 527 Computational Biology http://www.cs.washington.edu/527 Lecture 1: Overview & Bio Review Autumn 2004 Larry Ruzzo Related Courses He who asks is a fool for five minutes, but he who does not ask remains

More information

Gene mention normalization in full texts using GNAT and LINNAEUS

Gene mention normalization in full texts using GNAT and LINNAEUS Gene mention normalization in full texts using GNAT and LINNAEUS Illés Solt 1,2, Martin Gerner 3, Philippe Thomas 2, Goran Nenadic 4, Casey M. Bergman 3, Ulf Leser 2, Jörg Hakenberg 5 1 Department of Telecommunications

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

Small RNA in rice genome

Small RNA in rice genome Vol. 45 No. 5 SCIENCE IN CHINA (Series C) October 2002 Small RNA in rice genome WANG Kai ( 1, ZHU Xiaopeng ( 2, ZHONG Lan ( 1,3 & CHEN Runsheng ( 1,2 1. Beijing Genomics Institute/Center of Genomics and

More information

BLAST. Varieties of BLAST

BLAST. Varieties of BLAST BLAST Basic Local Alignment Search Tool (1990) Altschul, Gish, Miller, Myers, & Lipman Uses short-cuts or heuristics to improve search speed Like speed-reading, does not examine every nucleotide of database

More information

Pyrobayes: an improved base caller for SNP discovery in pyrosequences

Pyrobayes: an improved base caller for SNP discovery in pyrosequences Pyrobayes: an improved base caller for SNP discovery in pyrosequences Aaron R Quinlan, Donald A Stewart, Michael P Strömberg & Gábor T Marth Supplementary figures and text: Supplementary Figure 1. The

More information

Sequence Database Search Techniques I: Blast and PatternHunter tools

Sequence Database Search Techniques I: Blast and PatternHunter tools Sequence Database Search Techniques I: Blast and PatternHunter tools Zhang Louxin National University of Singapore Outline. Database search 2. BLAST (and filtration technique) 3. PatternHunter (empowered

More information

You are required to know all terms defined in lecture. EXPLORE THE COURSE WEB SITE 1/6/2010 MENDEL AND MODELS

You are required to know all terms defined in lecture. EXPLORE THE COURSE WEB SITE 1/6/2010 MENDEL AND MODELS 1/6/2010 MENDEL AND MODELS!!! GENETIC TERMINOLOGY!!! Essential to the mastery of genetics is a thorough knowledge and understanding of the vocabulary of this science. New terms will be introduced and defined

More information

Heuristic Methods. Heuristic methods for alignment Sequence databases Multiple alignment Gene and protein prediction

Heuristic Methods. Heuristic methods for alignment Sequence databases Multiple alignment Gene and protein prediction Heuristic methods for alignment Sequence databases Multiple alignment Gene and protein prediction Armstrong, 2010 Heuristic Methods! FASTA! BLAST! Gapped BLAST! PSI-BLAST Armstrong, 2010 1 Assumptions

More information

2 The Proteome. The Proteome 15

2 The Proteome. The Proteome 15 The Proteome 15 2 The Proteome 2.1. The Proteome and the Genome Each of our cells contains all the information necessary to make a complete human being. However, not all the genes are expressed in all

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Multiple Sequence Alignments

Multiple Sequence Alignments Multiple Sequence Alignments...... Elements of Bioinformatics Spring, 2003 Tom Carter http://astarte.csustan.edu/ tom/ March, 2003 1 Sequence Alignments Often, we would like to make direct comparisons

More information

Hands-On Nine The PAX6 Gene and Protein

Hands-On Nine The PAX6 Gene and Protein Hands-On Nine The PAX6 Gene and Protein Main Purpose of Hands-On Activity: Using bioinformatics tools to examine the sequences, homology, and disease relevance of the Pax6: a master gene of eye formation.

More information

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11 The Eukaryotic Genome and Its Expression Lecture Series 11 The Eukaryotic Genome and Its Expression A. The Eukaryotic Genome B. Repetitive Sequences (rem: teleomeres) C. The Structures of Protein-Coding

More information

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total)

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 12 The Cell Cycle Unit 5: Cell Division and Development Guided

More information

Comparing Genomes! Homologies and Families! Sequence Alignments!

Comparing Genomes! Homologies and Families! Sequence Alignments! Comparing Genomes! Homologies and Families! Sequence Alignments! Allows us to achieve a greater understanding of vertebrate evolution! Tells us what is common and what is unique between different species

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

- conserved in Eukaryotes. - proteins in the cluster have identifiable conserved domains. - human gene should be included in the cluster.

- conserved in Eukaryotes. - proteins in the cluster have identifiable conserved domains. - human gene should be included in the cluster. NCBI BLAST Services DELTA-BLAST BLAST (http://blast.ncbi.nlm.nih.gov/), Basic Local Alignment Search tool, is a suite of programs for finding similarities between biological sequences. DELTA-BLAST is a

More information

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST Big Idea 1 Evolution INVESTIGATION 3 COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

6.096 Algorithms for Computational Biology. Prof. Manolis Kellis

6.096 Algorithms for Computational Biology. Prof. Manolis Kellis 6.096 Algorithms for Computational Biology Prof. Manolis Kellis Today s Goals Introduction Class introduction Challenges in Computational Biology Gene Regulation: Regulatory Motif Discovery Exhaustive

More information

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

More information

Introduction to Bioinformatics Integrated Science, 11/9/05

Introduction to Bioinformatics Integrated Science, 11/9/05 1 Introduction to Bioinformatics Integrated Science, 11/9/05 Morris Levy Biological Sciences Research: Evolutionary Ecology, Plant- Fungal Pathogen Interactions Coordinator: BIOL 495S/CS490B/STAT490B Introduction

More information

CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems

CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems April 2008 CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems Lihua Julie Zhu Sept 10th 2014 Michael Brodsky Jianhong Ou INSTALLATION First install R 3.1.0 Windows:

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Comparative Features of Multicellular Eukaryotic Genomes

Comparative Features of Multicellular Eukaryotic Genomes Comparative Features of Multicellular Eukaryotic Genomes C elegans A thaliana O. Sativa D. melanogaster M. musculus H. sapiens Size (Mb) 97 115 389 120 2500 2900 # Genes 18,425 25,498 37,544 13,601 30,000

More information

Introduction of Biotechnology

Introduction of Biotechnology Handai Cyber University Introduction of Biotechnology No.5:Genome biotechnology and yeast Graduate School of Engineering, Osaka University Graduate School of Information Science, Osaka University 1 International

More information

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are:

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Comparative genomics and proteomics Species available Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Vertebrates: human, chimpanzee, mouse, rat,

More information

Genome Sequences and Evolution

Genome Sequences and Evolution Jones & Bartlett Learning LLC, an Ascend Learning Company.. Chapter 5 Genome Sequences and Evolution Chapter Outline 5.1 Introduction 5.2 5.3 Prokaryotic Gene Numbers Range Over an Order of Magnitude Total

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute Bioinformatics Definitions The use of computational

More information

Inparanoid: a comprehensive database of eukaryotic orthologs

Inparanoid: a comprehensive database of eukaryotic orthologs D476 D480 Nucleic Acids Research, 2005, Vol. 33, Database issue doi:10.1093/nar/gki107 Inparanoid: a comprehensive database of eukaryotic orthologs Kevin P. O Brien, Maido Remm 1 and Erik L. L. Sonnhammer*

More information

Bio2. Heuristics, Databases ; Multiple Sequence Alignment ; Gene Finding. Biological Databases (sequences) Armstrong, 2007 Bioinformatics 2

Bio2. Heuristics, Databases ; Multiple Sequence Alignment ; Gene Finding. Biological Databases (sequences) Armstrong, 2007 Bioinformatics 2 Bio2 Heuristics, Databases ; Multiple Sequence Alignment ; Gene Finding Biological Databases (sequences) 1 Biological Databases Introduction to Sequence Databases Overview of primary query tools and the

More information

Protein function prediction based on sequence analysis

Protein function prediction based on sequence analysis Performing sequence searches Post-Blast analysis, Using profiles and pattern-matching Protein function prediction based on sequence analysis Slides from a lecture on MOL204 - Applied Bioinformatics 18-Oct-2005

More information

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool Basic Local Alignment Search Tool Alignments used to uncover homologies between sequences combined with phylogenetic studies o can determine orthologous and paralogous relationships Local Alignment uses

More information

Prediction of Protein-protein Interactions on the Basis of Evolutionary Conservation of Protein Functions

Prediction of Protein-protein Interactions on the Basis of Evolutionary Conservation of Protein Functions Prediction of Protein-protein Interactions on the Basis of Evolutionary Conservation of Protein Functions Ekaterina Kotelnikova 1, Andrey Kalinin 1, Anton Yuryev 1, and Sergei Maslov 2 1 Ariadne Genomics

More information

BIOINFORMATICS. Improved Network-based Identification of Protein Orthologs. Nir Yosef a,, Roded Sharan a and William Stafford Noble b

BIOINFORMATICS. Improved Network-based Identification of Protein Orthologs. Nir Yosef a,, Roded Sharan a and William Stafford Noble b BIOINFORMATICS Vol. no. 28 Pages 7 Improved Network-based Identification of Protein Orthologs Nir Yosef a,, Roded Sharan a and William Stafford Noble b a School of Computer Science, Tel-Aviv University,

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

NUCLEOTIDE SUBSTITUTIONS AND THE EVOLUTION OF DUPLICATE GENES

NUCLEOTIDE SUBSTITUTIONS AND THE EVOLUTION OF DUPLICATE GENES Conery, J.S. and Lynch, M. Nucleotide substitutions and evolution of duplicate genes. Pacific Symposium on Biocomputing 6:167-178 (2001). NUCLEOTIDE SUBSTITUTIONS AND THE EVOLUTION OF DUPLICATE GENES JOHN

More information

Annotation of Drosophila grimashawi Contig12

Annotation of Drosophila grimashawi Contig12 Annotation of Drosophila grimashawi Contig12 Marshall Strother April 27, 2009 Contents 1 Overview 3 2 Genes 3 2.1 Genscan Feature 12.4............................................. 3 2.1.1 Genome Browser:

More information

Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network Sohyun Hwang 1, Seung Y Rhee 2, Edward M Marcotte 3,4 & Insuk Lee 1 protocol 1 Department of

More information

Peeling the yeast protein network

Peeling the yeast protein network 444 DOI 10.1002/pmic.200400962 Proteomics 2005, 5, 444 449 REGULAR ARTICLE Peeling the yeast protein network Stefan Wuchty and Eivind Almaas Department of Physics, University of Notre Dame, Notre Dame,

More information

In Search of the Biological Significance of Modular Structures in Protein Networks

In Search of the Biological Significance of Modular Structures in Protein Networks In Search of the Biological Significance of Modular Structures in Protein Networks Zhi Wang, Jianzhi Zhang * Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan,

More information

Universal Rules Governing Genome Evolution Expressed by Linear Formulas

Universal Rules Governing Genome Evolution Expressed by Linear Formulas The Open Genomics Journal, 8, 1, 33-3 33 Open Access Universal Rules Governing Genome Evolution Expressed by Linear Formulas Kenji Sorimachi *,1 and Teiji Okayasu 1 Educational Support Center and Center

More information

GEP Annotation Report

GEP Annotation Report GEP Annotation Report Note: For each gene described in this annotation report, you should also prepare the corresponding GFF, transcript and peptide sequence files as part of your submission. Student name:

More information

Fundamentally different strategies for transcriptional regulation are revealed by information-theoretical analysis of binding motifs

Fundamentally different strategies for transcriptional regulation are revealed by information-theoretical analysis of binding motifs Fundamentally different strategies for transcriptional regulation are revealed by information-theoretical analysis of binding motifs Zeba Wunderlich 1* and Leonid A. Mirny 1,2 1 Biophysics Program, Harvard

More information

Comparison of Protein-Protein Interaction Confidence Assignment Schemes

Comparison of Protein-Protein Interaction Confidence Assignment Schemes Comparison of Protein-Protein Interaction Confidence Assignment Schemes Silpa Suthram 1, Tomer Shlomi 2, Eytan Ruppin 2, Roded Sharan 2, and Trey Ideker 1 1 Department of Bioengineering, University of

More information

Reminders about Eukaryotes

Reminders about Eukaryotes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 16: Eukaryotes at last! http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Reminders about Eukaryotes Eukaryotes arose around

More information

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics Chapter 18 Lecture Concepts of Genetics Tenth Edition Developmental Genetics Chapter Contents 18.1 Differentiated States Develop from Coordinated Programs of Gene Expression 18.2 Evolutionary Conservation

More information

7.06 Problem Set #4, Spring 2005

7.06 Problem Set #4, Spring 2005 7.06 Problem Set #4, Spring 2005 1. You re doing a mutant hunt in S. cerevisiae (budding yeast), looking for temperaturesensitive mutants that are defective in the cell cycle. You discover a mutant strain

More information

Genome Sequencing & DNA Sequence Analysis

Genome Sequencing & DNA Sequence Analysis 7.91 / 7.36 / BE.490 Lecture #1 Feb. 24, 2004 Genome Sequencing & DNA Sequence Analysis Chris Burge What is a Genome? A genome is NOT a bag of proteins What s in the Human Genome? Outline of Unit II: DNA/RNA

More information

The Gene The gene; Genes Genes Allele;

The Gene The gene; Genes Genes Allele; Gene, genetic code and regulation of the gene expression, Regulating the Metabolism, The Lac- Operon system,catabolic repression, The Trp Operon system: regulating the biosynthesis of the tryptophan. Mitesh

More information

Network alignment and querying

Network alignment and querying Network biology minicourse (part 4) Algorithmic challenges in genomics Network alignment and querying Roded Sharan School of Computer Science, Tel Aviv University Multiple Species PPI Data Rapid growth

More information

Evolution and Development Evo-Devo

Evolution and Development Evo-Devo Evolution and Development Evo-Devo Darwin wrote a book on barnacles. Plate 1 (Lepas), from A monograph on the sub-class Cirripedia, by Charles Darwin. Comparative embryology There is an obvious similarity

More information

G C T G U A. template strand

G C T G U A. template strand A 5 w 3 3 c 5 mrna RNA polymerase T G C A G C C T G U A coding or sense st AUG?? template strand The triplet code 3 bases = 1 amino acid Punctuation: sta rt: sto p: AUGA CUU CAGUAAC AU U AA C C AUG = methionine,

More information

Example of Function Prediction

Example of Function Prediction Find similar genes Example of Function Prediction Suggesting functions of newly identified genes It was known that mutations of NF1 are associated with inherited disease neurofibromatosis 1; but little

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2013 Week3: Blast Algorithm, theory and practice Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and Systems Biology

More information

GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny

GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny Phylogenetics and chromosomal synteny of the GATAs 1273 GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny CHUNJIANG HE, HANHUA CHENG* and RONGJIA ZHOU* Department

More information

Proteins: Structure & Function. Ulf Leser

Proteins: Structure & Function. Ulf Leser Proteins: Structure & Function Ulf Leser This Lecture Proteins Structure Function Databases Predicting Protein Secondary Structure Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding

More information

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega BLAST Multiple Sequence Alignments: Clustal Omega What does basic BLAST do (e.g. what is input sequence and how does BLAST look for matches?) Susan Parrish McDaniel College Multiple Sequence Alignments

More information

RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES

RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES Molecular Biology-2018 1 Definitions: RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES Heterologues: Genes or proteins that possess different sequences and activities. Homologues: Genes or proteins that

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

Improved network-based identification of protein orthologs

Improved network-based identification of protein orthologs BIOINFORMATICS Vol. 24 ECCB 28, pages i2 i26 doi:.93/bioinformatics/btn277 Improved network-based identification of protein orthologs Nir Yosef,, Roded Sharan and William Stafford Noble 2,3 School of Computer

More information

Protein function studies: history, current status and future trends

Protein function studies: history, current status and future trends 19 3 2007 6 Chinese Bulletin of Life Sciences Vol. 19, No. 3 Jun., 2007 1004-0374(2007)03-0294-07 ( 100871) Q51A Protein function studies: history, current status and future trends MA Jing, GE Xi, CHANG

More information

Computational identification and analysis of MADS box genes in Camellia sinensis

Computational identification and analysis of MADS box genes in Camellia sinensis www.bioinformation.net Hypothesis Volume 11(3) Computational identification and analysis of MADS box genes in Camellia sinensis Madhurjya Gogoi*, Sangeeta Borchetia & Tanoy Bandyopadhyay Department of

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Comparative Network Analysis COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Biomolecular Network Components 2 Accumulation of Network Components

More information

Arabidopsis genomic information for interpreting wheat EST sequences

Arabidopsis genomic information for interpreting wheat EST sequences Funct Integr Genomics (2003) 3:33 38 DOI 10.1007/s10142-002-0075-1 REVIEW Bryan Clarke Mark Lambrecht Seung Y. Rhee Arabidopsis genomic information for interpreting wheat EST sequences Received: 12 April

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

The MANTiS Manual. Contents. MANTiS Version 1.1

The MANTiS Manual. Contents. MANTiS Version 1.1 The MANTiS Manual MANTiS Version 1.1 Contents Connection to the MANTiS database... 2 Memory settings... 2 Main functionalities... 2 Character Mapping View... 4 Genome content View... 5 Biological processes

More information

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Sunita Kumari 1, Doreen Ware 1,2 * 1 Cold Spring Harbor Laboratory, Cold Spring Harbor, New

More information

Comparative Analysis of Molecular Interaction Networks

Comparative Analysis of Molecular Interaction Networks Comparative Analysis of Molecular Interaction Networks Jayesh Pandey 1, Mehmet Koyuturk 2, Shankar Subramaniam 3, Ananth Grama 1 1 Purdue University, 2 Case Western Reserve University 3 University of California,

More information

MCB142/ICB163 Overview. Instructors:

MCB142/ICB163 Overview. Instructors: MCB142/ICB163 Overview Instructors: Professor Sharon Amacher Professor Abby Dernburg Professor Monty Slatkin GSIs: Kristin Camfield Nat Hallihan Hana Lee Christine Preston Richard Price Kate Smallenburg

More information

Characterization of New Proteins Found by Analysis of Short Open Reading Frames from the Full Yeast Genome

Characterization of New Proteins Found by Analysis of Short Open Reading Frames from the Full Yeast Genome YEAST VOL. 13: 1363 1374 (1997) Characterization of New Proteins Found by Analysis of Short Open Reading Frames from the Full Yeast Genome MIGUEL A. ANDRADE 1 *, ANTOINE DARUVAR 1, GEORG CASARI 2, REINHARD

More information

Emergence of gene regulatory networks under functional constraints

Emergence of gene regulatory networks under functional constraints under functional constraints Institute of Physics, Jagiellonian University, Kraków, Poland in collaboration with Zdzislaw Burda, Andre Krzywicki and Olivier C. Martin 30 November 2012, Leipzig, CompPhys12

More information

Bioinformatics and BLAST

Bioinformatics and BLAST Bioinformatics and BLAST Overview Recap of last time Similarity discussion Algorithms: Needleman-Wunsch Smith-Waterman BLAST Implementation issues and current research Recap from Last Time Genome consists

More information

Supplemental Materials

Supplemental Materials JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION, May 2013, p. 107-109 DOI: http://dx.doi.org/10.1128/jmbe.v14i1.496 Supplemental Materials for Engaging Students in a Bioinformatics Activity to Introduce Gene

More information

Comparative Bioinformatics Midterm II Fall 2004

Comparative Bioinformatics Midterm II Fall 2004 Comparative Bioinformatics Midterm II Fall 2004 Objective Answer, part I: For each of the following, select the single best answer or completion of the phrase. (3 points each) 1. Deinococcus radiodurans

More information

SI Materials and Methods

SI Materials and Methods SI Materials and Methods Gibbs Sampling with Informative Priors. Full description of the PhyloGibbs algorithm, including comprehensive tests on synthetic and yeast data sets, can be found in Siddharthan

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program

Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program Jan Ihmels 1[, Sven Bergmann 1,2[, Judith Berman 3, Naama Barkai 1*

More information

CSE 427 Comp Bio. Sequence Alignment

CSE 427 Comp Bio. Sequence Alignment CSE 427 Comp Bio Sequence Alignment 1 Sequence Alignment What Why A Dynamic Programming Algorithm 2 Sequence Alignment Goal: position characters in two strings to best line up identical/similar ones with

More information