Transcription Regulation and Gene Expression in Eukaryotes FS08 Pharmacenter/Biocenter Auditorium 1 Wednesdays 16h15-18h00.

Size: px
Start display at page:

Download "Transcription Regulation and Gene Expression in Eukaryotes FS08 Pharmacenter/Biocenter Auditorium 1 Wednesdays 16h15-18h00."

Transcription

1 Transcription Regulation and Gene Expression in Eukaryotes FS08 Pharmacenter/Biocenter Auditorium 1 Wednesdays 16h15-18h00. Promoters and Enhancers Systematic discovery of transcriptional regulatory motifs by comparative genomics RG Clerc. February 20, 2008

2 The general problem RNA Transcription factor binding sites convey specificity to regulation

3 Functional classes of promoters Cramer et al., Science, 28 April RNA Polymerases: Pol I Pol II Pol III rrna mrna small RNAs 3 categories of promoters

4

5 Definition of regulatory elements

6 Definition of regulatory elements

7 Binding Assay on Random DNA oligomers: PCR Binding Site Selection

8 Pol I promoters

9 Eukaryotic Pol II promoter: upstream and core NF-kB Fos Oct-1 CBFA-1 CREB etc Transcription activators TATA Basal machinery INR GENE RNA PolII 12 TFIIA 3 TFIIB 1 TFIID (TBP) ca. 14 (1) TFIIE 2 TFIIF 2 TFIIH ca. 9 upstream (regulatory, enhancer) core

10 Transcription factor binding sites convey specificity to promoters The TRANSFAC database contains ~600 redundant matrix description of known transcription factor binding sites (~350 transcription factors) Example: CREB (6 bases) average match 1 / 4>6 (4096 bp), 600,000 matches in the genome, 25,000 genes (Remedy: focus on evolutionary conserved binding sites!)

11 The core promoters in more detail BRE TATA box G/CG/CG/CCGCC TATAAA Initiator PyPyANT/APyPy DPE GA/TCGTG TFIIB TFIID TFIID TFIID TFIIA TBP TAF II 250 TAF II 150 TAF II 60 TAF II 40

12 The TATA box Matrices are derived from known binding sites or binding assays on random DNA oligomers

13 Definition of the upstream promoter elements Example: CAAT (4 bases) average match 1 / 4>4 (256 bp), 1,2 10>6 matches in the genome!

14 Transcriptional enhancers/silencers: First identified in viruses, then in cellular genes Activate (or repress) transcription independently of position (distance) and orientation (no polarity) Are made (and can be created) from partially redundant modules Confer cell-specific or temporal regulation No activity + Reporter Gene Low activity High activity

15 Identification of enhancer modules Enhancer activity is the result of interaction between individual modules

16 Pol III promoters

17

18

19 Systematic discovery of transcriptional regulatory motifs by comparative genomics

20 From computer software to genomes - bioinformatics input int main (int argc, char **argv){int i, j, k;array seqs;linestream ls;int len;char *line;char *cp1, *cp2;int conscount;float compile consscore;seqs = arraycreate(50, char *);ls = ls_createfromfile (argv[1]); line = ls_nextline(ls);while (line = ls_nextline(ls)) {array(seqs, arraymax(seqs), char *) = hlr_strdup(line+10);} ls_destroy(ls);len = program execute strlen(arru(seqs, 0, char*));for (i=0; i<len; i++) {conscount = consscore = 0;for (j=0; j<arraymax(seqs)-1; j++) {cp1 = arru(seqs, j, char*);for (k=j+1; k<arraymax(seqs); k++) {cp = arru(seqs, k, char*);if (cp1 [i] == cp2 [i])consscore += 1;if (cp1 [i] == '-' && cp2 [i] == '-')consscore -= 1;consCount++;}}printf("%d\t%4.2f\n",i+1, output consscore/conscount); }exit(1);} transcrib e splice environment CACTGGCCAGAGACCCTTGCTCTGCTTAAGAGAATCAGGGCCCAACAAGTTTTACTCTTTGTTTCCTGCCTCCCAGGCTTAGTAAAATCACCAACT GACCATCCAAAGGAAGAGCCAGTTCATGCAGAGGCTGCACAGCTACTGGACACTGAAGCGGCAGTCACGGAATGGGGTCCCATTGCTACGTCGCCG translate ACACACCTGCAATCTCAGAGGAACTGTGACCAAGTTGGGGTACTGTGTCCAGTTCCCTGTGGGCTCTGGGAACTAGCGCCAGGGGGACGAAAACCT TTGCAACTGTAGTTTCCAGTGTCAGAGGGCTTAGACTCTTTCCTCCTTTAAGCTAGCCCTCAAACCAGGATCAGCATGGAATGTTCAATGAAAAGT genome catalyze GTTCCTATGTGTTTATGTATTCATTCAACAAACACATACCAAGCATTTATTCTGCCAGGCCTTGGGGACACACAGATTGAGGCACTACCAATAAAT GTGCTCCCTCTTTTGGCTTGACCTGAGTTTCCTGGGCTCTCTTCTCCCTGTTGACCTTTCCTCTGGCTTTCTAATCATCCTCTGATCTTCGTTTTC TACAGAGAGATTCTGAGGATAAGAACTGGGCCCTTAAAGAACAGCTCAAGTCCTGGCAGCGGCTCCGGCATGACTTGGAGCGAGCTCGGCTGCTCA ATTGATCCGCAAGCGGGAAAAACTCAAAAGGGAGACGGTGAGTGCTCCTGGGCCAGCCCTATTTTATAAAAGAAAAAACAAAAAATTAGCCAGGCT phenotype Genome-wide annotation of regulatory motifs using comparative genomics promoters, enhancers, etc

21 Genomes are not computer programs Program Genome sensitive to errors robust efficient, economical (if highly redundant good) Functional dynamically sequences in the human genome: Functional sequences in the static human genome: ~ undergoing 2% protein changes coding ~ 2% protein coding product of an evolution ~ 3% regulatory or structural has a purpose and is ~ 3% process regulatory or structural product of a design functional parts + process junk source code + programmer s comments

22 Neutral evolutionary rates differ within a genome

23 Conservation of functional sites: Mutations strike everywhere... but some are selected against gene conserved vs. non-conserved over the entire transcriptional unit

24 Pairwise sequence comparisons: the phylogenetic footprint concept (Duret et al 1997) Ureta-Vidal et al., Nat. Rev. Genetics, 2003

25 Pairwise comparison to mouse: Dermitzakis & Clark 2002 Based on on genes compared, % 40% of of known regulatory sites sites are are not not detected in in a a human-mouse pairwise comparison.

26 Pairwise comparison to mouse: Liu et al Based on on genes compared, 81% 81% of of known regulatory sites sites are are more more than than 50% 50% conserved in in a a human-mouse pairwise comparison.

27 Pairwise comparison to chicken: Thomas et al Based on on MB MB of of human genomic sequence, chicken detects 94% 94% of of the the coding exonsbut but only only 29% 29% of of the the non-coding conserved regions.

28 Pairwise sequence comparisons Ureta-Vidal et al., Nat. Rev. Genetics, 2003

29 More genomes = more problems high quality, finished assembly errors, sequence gaps Dog Cow Mouse Rat Oposs. GAPDH SLIT3 BACE1 fragments only

30 Comparative genomics database Assembled genome drafts from human, mouse, rat, and dog; genomic contigs from cow; opossum contigs under consideration 17,647 genomic loci from human genome analyzed (full loci) 11,716 loci are covered by human dog cow mouse rat 1,066,662 conservation peaks identified, of which 226,314 are accounted for by known coding exons

31 Comparative genomics: key learnings We detect transcription factor binding sites because conserved during evolution Check for promoter region only is bad! Check for full loci (entire trx unit) is highly recommended! Check for modules of several factor binding sites Do we detect transcription factor binding sites because they are conserved during evolution? Genomic sequences come in different qualities Need to mask problematic bad sequences, parts which do not make sense

Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Ma?hias & RG Clerc

Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Ma?hias & RG Clerc Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Ma?hias & RG Clerc P. Ma?hias, March 5th, 2014 The Basics of Transcrip-on (2) General Transcrip-on Factors: TBP/TFIID

More information

Chapter 20. Initiation of transcription. Eukaryotic transcription initiation

Chapter 20. Initiation of transcription. Eukaryotic transcription initiation Chapter 20. Initiation of transcription Eukaryotic transcription initiation 2003. 5.22 Prokaryotic vs eukaryotic Bacteria = one RNA polymerase Eukaryotes have three RNA polymerases (I, II, and III) in

More information

Предсказание и анализ промотерных последовательностей. Татьяна Татаринова

Предсказание и анализ промотерных последовательностей. Татьяна Татаринова Предсказание и анализ промотерных последовательностей Татьяна Татаринова Eukaryotic Transcription 2 Initiation Promoter: the DNA sequence that initially binds the RNA polymerase The structure of promoter-polymerase

More information

Three types of RNA polymerase in eukaryotic nuclei

Three types of RNA polymerase in eukaryotic nuclei Three types of RNA polymerase in eukaryotic nuclei Type Location RNA synthesized Effect of α-amanitin I Nucleolus Pre-rRNA for 18,.8 and 8S rrnas Insensitive II Nucleoplasm Pre-mRNA, some snrnas Sensitive

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P MaFhias & RG Clerc

Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P MaFhias & RG Clerc Transcrip)on Regula)on And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P MaFhias & RG Clerc P. MaFhias, March 26th, 2014 Co- ac&vators / co- repressors Cell- specific / factor- specific

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Regulation of Transcription in Eukaryotes. Nelson Saibo

Regulation of Transcription in Eukaryotes. Nelson Saibo Regulation of Transcription in Eukaryotes Nelson Saibo saibo@itqb.unl.pt In eukaryotes gene expression is regulated at different levels 1 - Transcription 2 Post-transcriptional modifications 3 RNA transport

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E REVIEW SESSION Wednesday, September 15 5:30 PM SHANTZ 242 E Gene Regulation Gene Regulation Gene expression can be turned on, turned off, turned up or turned down! For example, as test time approaches,

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

Chapter 9 DNA recognition by eukaryotic transcription factors

Chapter 9 DNA recognition by eukaryotic transcription factors Chapter 9 DNA recognition by eukaryotic transcription factors TRANSCRIPTION 101 Eukaryotic RNA polymerases RNA polymerase RNA polymerase I RNA polymerase II RNA polymerase III RNA polymerase IV Function

More information

Intro Gene regulation Synteny The End. Today. Gene regulation Synteny Good bye!

Intro Gene regulation Synteny The End. Today. Gene regulation Synteny Good bye! Today Gene regulation Synteny Good bye! Gene regulation What governs gene transcription? Genes active under different circumstances. Gene regulation What governs gene transcription? Genes active under

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Eukaryotic Gene Expression

Eukaryotic Gene Expression Eukaryotic Gene Expression Lectures 22-23 Several Features Distinguish Eukaryotic Processes From Mechanisms in Bacteria 123 Eukaryotic Gene Expression Several Features Distinguish Eukaryotic Processes

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression 13.4 Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

GENE REGULATION AND PROBLEMS OF DEVELOPMENT GENE REGULATION AND PROBLEMS OF DEVELOPMENT By Surinder Kaur DIET Ropar Surinder_1998@ yahoo.in Mob No 9988530775 GENE REGULATION Gene is a segment of DNA that codes for a unit of function (polypeptide,

More information

Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites

Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites Paper by: James P. Balhoff and Gregory A. Wray Presentation by: Stephanie Lucas Reviewed

More information

Prokaryotic Regulation

Prokaryotic Regulation Prokaryotic Regulation Control of transcription initiation can be: Positive control increases transcription when activators bind DNA Negative control reduces transcription when repressors bind to DNA regulatory

More information

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11 The Eukaryotic Genome and Its Expression Lecture Series 11 The Eukaryotic Genome and Its Expression A. The Eukaryotic Genome B. Repetitive Sequences (rem: teleomeres) C. The Structures of Protein-Coding

More information

UE Praktikum Bioinformatik

UE Praktikum Bioinformatik UE Praktikum Bioinformatik WS 08/09 University of Vienna 7SK snrna 7SK was discovered as an abundant small nuclear RNA in the mid 70s but a possible function has only recently been suggested. Two independent

More information

12-5 Gene Regulation

12-5 Gene Regulation 12-5 Gene Regulation Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 1 of 26 12-5 Gene Regulation Gene Regulation: An Example Gene

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

Topic 4: Equilibrium binding and chemical kinetics

Topic 4: Equilibrium binding and chemical kinetics Topic 4: Equilibrium binding and chemical kinetics Outline: Applications, applications, applications use Boltzmann to look at receptor-ligand binding use Boltzmann to look at PolII-DNA binding and gene

More information

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g.

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g. Gene Expression- Overview Differentiating cells Achieved through changes in gene expression All cells contain the same whole genome A typical differentiated cell only expresses ~50% of its total gene Overview

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are:

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Comparative genomics and proteomics Species available Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Vertebrates: human, chimpanzee, mouse, rat,

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

Transcription Regulation And Gene Expression in Eukaryotes UPSTREAM TRANSCRIPTION FACTORS

Transcription Regulation And Gene Expression in Eukaryotes UPSTREAM TRANSCRIPTION FACTORS Transcription Regulation And Gene Expression in Eukaryotes UPSTREAM TRANSCRIPTION FACTORS RG. Clerc March 26. 2008 UPSTREAM TRANSCRIPTION FACTORS Experimental approaches DNA binding domains (DBD) Transcription

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Sunita Kumari 1, Doreen Ware 1,2 * 1 Cold Spring Harbor Laboratory, Cold Spring Harbor, New

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Temperature Dependent Transcription Initiation in Archaea: Interplay between Transcription Factor B and Promoter Sequence

Temperature Dependent Transcription Initiation in Archaea: Interplay between Transcription Factor B and Promoter Sequence Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-22-2014 Temperature Dependent Transcription Initiation in Archaea: Interplay between Transcription Factor

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators CSEP 59A Summer 26 Lecture 4 MLE, EM, RE, Expression FYI, re HW #2: Hemoglobin History 1 Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression CSEP 590A Summer 2006 Lecture 4 MLE, EM, RE, Expression 1 FYI, re HW #2: Hemoglobin History Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

Deciphering regulatory networks by promoter sequence analysis

Deciphering regulatory networks by promoter sequence analysis Bioinformatics Workshop 2009 Interpreting Gene Lists from -omics Studies Deciphering regulatory networks by promoter sequence analysis Elodie Portales-Casamar University of British Columbia www.cisreg.ca

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Principles of Genetics

Principles of Genetics Principles of Genetics Snustad, D ISBN-13: 9780470903599 Table of Contents C H A P T E R 1 The Science of Genetics 1 An Invitation 2 Three Great Milestones in Genetics 2 DNA as the Genetic Material 6 Genetics

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

16 CONTROL OF GENE EXPRESSION

16 CONTROL OF GENE EXPRESSION 16 CONTROL OF GENE EXPRESSION Chapter Outline 16.1 REGULATION OF GENE EXPRESSION IN PROKARYOTES The operon is the unit of transcription in prokaryotes The lac operon for lactose metabolism is transcribed

More information

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON PROKARYOTE GENES: E. COLI LAC OPERON CHAPTER 13 CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON Figure 1. Electron micrograph of growing E. coli. Some show the constriction at the location where daughter

More information

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering Proteomics 2 nd semester, 2013 1 Text book Principles of Proteomics by R. M. Twyman, BIOS Scientific Publications Other Reference books 1) Proteomics by C. David O Connor and B. David Hames, Scion Publishing

More information

RNA Processing: Eukaryotic mrnas

RNA Processing: Eukaryotic mrnas RNA Processing: Eukaryotic mrnas Eukaryotic mrnas have three main parts (Figure 13.8): 5! untranslated region (5! UTR), varies in length. The coding sequence specifies the amino acid sequence of the protein

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Peter Pristas. Gene regulation in eukaryotes

Peter Pristas. Gene regulation in eukaryotes Peter Pristas BNK1 Gene regulation in eukaryotes Gene Expression in Eukaryotes Only about 3-5% of all the genes in a human cell are expressed at any given time. The genes expressed can be specific for

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide Name: Period: Date: AP Bio Module 6: Bacterial Genetics and Operons, Student Learning Guide Getting started. Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Morgan Raff Roberts Walter Molecular Biology of the Cell Sixth Edition Chapter 6 (pp. 333-368) How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2015 Genetic

More information

The Gene The gene; Genes Genes Allele;

The Gene The gene; Genes Genes Allele; Gene, genetic code and regulation of the gene expression, Regulating the Metabolism, The Lac- Operon system,catabolic repression, The Trp Operon system: regulating the biosynthesis of the tryptophan. Mitesh

More information

Multiple Alignment of Genomic Sequences

Multiple Alignment of Genomic Sequences Ross Metzger June 4, 2004 Biochemistry 218 Multiple Alignment of Genomic Sequences Genomic sequence is currently available from ENTREZ for more than 40 eukaryotic and 157 prokaryotic organisms. As part

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

Eukaryotic vs. Prokaryotic genes

Eukaryotic vs. Prokaryotic genes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11991 Supplementary Figure 1 - Refinement strategy for PIC intermediate assemblies by negative stain EM. The cryo-negative stain structure of free Pol II 1 (a) was used as initial reference

More information

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant?

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant? Name Date Period AP Exam Review Part 6: Molecular Genetics I. DNA and RNA Basics A. History of finding out what DNA really is 1. What was Griffith s experiment and why was it significant? 1 2. What was

More information

Biology 112 Practice Midterm Questions

Biology 112 Practice Midterm Questions Biology 112 Practice Midterm Questions 1. Identify which statement is true or false I. Bacterial cell walls prevent osmotic lysis II. All bacterial cell walls contain an LPS layer III. In a Gram stain,

More information

PROTEIN SYNTHESIS INTRO

PROTEIN SYNTHESIS INTRO MR. POMERANTZ Page 1 of 6 Protein synthesis Intro. Use the text book to help properly answer the following questions 1. RNA differs from DNA in that RNA a. is single-stranded. c. contains the nitrogen

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Inferring Transcriptional Regulatory Networks from Gene Expression Data II Inferring Transcriptional Regulatory Networks from Gene Expression Data II Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

Introduction to molecular biology. Mitesh Shrestha

Introduction to molecular biology. Mitesh Shrestha Introduction to molecular biology Mitesh Shrestha Molecular biology: definition Molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of

More information

Geert Geeven. April 14, 2010

Geert Geeven. April 14, 2010 iction of Gene Regulatory Interactions NDNS+ Workshop April 14, 2010 Today s talk - Outline Outline Biological Background Construction of Predictors The main aim of my project is to better understand the

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression Mechanisms of Gene Control Gene Control in Eukaryotes Master Genes Gene Control In Prokaryotes Epigenetics Gene Expression The overall process by which information flows from

More information

Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam

Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why did the original one-gene, one-enzyme

More information

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16 Genome Evolution Outline 1. What: Patterns of Genome Evolution Carol Eunmi Lee Evolution 410 University of Wisconsin 2. Why? Evolution of Genome Complexity and the interaction between Natural Selection

More information

Designer Genes C Test

Designer Genes C Test Northern Regional: January 19 th, 2019 Designer Genes C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Directions: You will have 50 minutes to complete the test. You may not write on the

More information

TRANSCRIPTOMICS. (or the analysis of the transcriptome) Mario Cáceres. Main objectives of genomics. Determine the entire DNA sequence of an organism

TRANSCRIPTOMICS. (or the analysis of the transcriptome) Mario Cáceres. Main objectives of genomics. Determine the entire DNA sequence of an organism TRANSCRIPTOMICS (or the analysis of the transcriptome) Mario Cáceres Main objectives of genomics Determine the entire DNA sequence of an organism Identify and annotate the complete set of genes encoded

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

Topic 4 - #14 The Lactose Operon

Topic 4 - #14 The Lactose Operon Topic 4 - #14 The Lactose Operon The Lactose Operon The lactose operon is an operon which is responsible for the transport and metabolism of the sugar lactose in E. coli. - Lactose is one of many organic

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA XIUFENG WAN xw6@cs.msstate.edu Department of Computer Science Box 9637 JOHN A. BOYLE jab@ra.msstate.edu Department of Biochemistry and Molecular Biology

More information

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/1/18

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/1/18 Genome Evolution Outline 1. What: Patterns of Genome Evolution Carol Eunmi Lee Evolution 410 University of Wisconsin 2. Why? Evolution of Genome Complexity and the interaction between Natural Selection

More information

Bio 119 Bacterial Genomics 6/26/10

Bio 119 Bacterial Genomics 6/26/10 BACTERIAL GENOMICS Reading in BOM-12: Sec. 11.1 Genetic Map of the E. coli Chromosome p. 279 Sec. 13.2 Prokaryotic Genomes: Sizes and ORF Contents p. 344 Sec. 13.3 Prokaryotic Genomes: Bioinformatic Analysis

More information

The Making of the Fittest: Evolving Switches, Evolving Bodies

The Making of the Fittest: Evolving Switches, Evolving Bodies INTRODUCTION MODELING THE REGULATORY SWITCHES OF THE PITX1 GENE IN STICKLEBACK FISH The types and amounts of proteins produced by a given cell in the body are very important and carefully regulated. Transcribing

More information

Genomes and Their Evolution

Genomes and Their Evolution Chapter 21 Genomes and Their Evolution PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information