Nature Methods: doi: /nmeth Supplementary Figure 1

Size: px
Start display at page:

Download "Nature Methods: doi: /nmeth Supplementary Figure 1"

Transcription

1 Supplementary Figure 1 Two strategies for application of LOVTRAP. The LOV domain is never entirely open or closed, but rather is in equilibria that favor the open or closed forms in the light and dark, respectively. As shown by Yao et al. 1, 1.6% of LOV2 molecules are in the open conformation in the dark and about 9% are in the closed conformation in the light. Based on this, the configuration with LOV2 on mitochondria (Strategy I) produces essentially no free protein in the dark, because LOV can be kept in excess over Zdk-POI. This offers an advantage for proteins that need to be tightly controlled, such as lethal proteins or proteins where a small amount of free material in the dark produces undesired biological effects. In Strategy I, the amount of protein released upon irradiation will be highly dependent on the ratio of LOV2:Zdk. With a ratio of [LOV2]/[Zdk1]=10:1, about 20% of the POI can be released with light. For Strategy II, about 90% of the protein will be released by light, regardless of the ratio Zdk:LOV2. However, even in the dark there will be a small amount of unbound LOV-POI in the cytosol. When this strategy is used with Zdk1, LOV2 can only be fused to the C-terminus of the POI, because the C-terminus of LOV2 needs to be kept free for Zdk1 binding.

2 Supplementary Figure 2 Crystal structures of LOV2:Zdk complexes. Overall structures and close-up views of interactions between the C-terminal part of the Jα helix (in purple) and Zdk proteins. The residues involved in contacts are shown in ball-and-stick representation and labelled. Dashed black lines represent hydrogen bonds. Zdk1 binds to residues of the LOV globular domain and also requires an interaction with the C-terminus of the LOV2 Jα helix for tight binding. Zdk2 and Zdk3 bind similarly and have similar sequences in the variable region, but they do not require interaction with the LOV2 C-terminus. They bind at a site near that of Zdk1, but with a different orientation.

3 Supplementary Figure 3 Effects of C-terminal Jα modification on LOV2-Zdk1 binding. Effects of LOV2 Jα helix mutations on binding. 1 = Binding tested by radiometric binding assay; 2 = Binding tested using LOVTRAP mitochondrial localization in living cells; 3 = Binding tested using Bio-Layer Interferometry assay. Modifications on the end of the Jα helix abolished the binding. Green: LOV2 core domain; Blue: Jα helix; Gray: Zdk1.

4 Supplementary Figure 4 Activation kinetics of LOVTRAP with different Zdk variants. Zdk1, 2 or 3 was attached to the outer membrane of mitochondria via a TOM20 fragment, and mcherry was attached to LOV2 (for Zdk1, mcherry was attached to N-terminus of LOV2, while for Zdk2 and 3, mcherry was attached to both the N- and C- termini). When Zdk1 was used, substantial fluorescent protein was released after 100 ms of blue light irradiation, and equilibrium was reached within 500 ms irradiation. However, for the systems using Zdk2 or 3, release was slower and only partial release was achieved (b), likely due to the non-negligible affinity of these Zdk variants for the lit-state of LOV2. When using Zdk1, proteins need to be attached to N- terminus of LOV2, but for Zdk2 or 3, either terminus of LOV2 can be used. Scale bar: 10µm.

5 Supplementary Figure 5 Effectiveness of mutations that mimic the dark-state of LOV2. Lov2 was labeled with mcherry fluorescent protein and Zdk1 was anchored at mitochondria. Fluorescence was monitored at a region of the cytosol away from mitochondria. Black: wild-type LOV2, from Figure 1; Red: LOV2 dark state mutant C450A; Blue: Because the widely used C450A dark state mutant shows some response to light, we combined the C450A mutation with other mutations that stabilize the closed form of LOV2 (C450A, L514K, G528A, L531E, andn538e). When this superdark mutant was used in the mcherry- LOV2 construct, light no longer had an effect.

6 Supplementary Figure 6 Protein control by LOVTRAP. (a) HEK293 cells with LOV2 attached to the plasma membrane and Zdk attached to mcherry (left). Fluorescence in a region in cytosol (circle) monitored before, during and after blue light irradiation (right). (b) Reversible cell protrusion produced by light-induced release of constitutively active Zdk-Vav2. (c) Cell area before, during and after light-induced release of constitutively active Vav2 (7 cells), Rac1 (7 cells), RhoA (4 cells) and Control (5 cells). Wilcoxon rank test and permutation test were performed to the medians before and during irradiation. For both tests: p < 1e-6 (Vav2, Rac1, RhoA) and p= (Control). (d) Edge velocity (calculated from 2,017 edge locations sampled in 7 cells) during light-induced release of constitutively active Rac1. Dark blue line indicates median, band indicates 95% confidence interval. (e) Release of constitutively active RhoA led to irreversible contraction and reversible decrease in ruffling. (f) Quantitation of Vav2 effects on ruffling. White = percent cells in which ruffling was induced, blue = percent cells with no obvious effect on ruffling. Cells were transfected either with LOVTRAP (Vav2, n=14) or with LOV and Zdk1 only (Control, n=18). (g) Inhibition of ruffling by RhoA(Q63L), graphed as in (f). Control = expression of LOV2 and Zdk1 only (n= 9), RhoA = LOVTRAP (n= 18). All scale bars 10µm.

7 Supplementary Figure 7 Cell edge morphodynamic changes upon construct activation. Normalized velocities over time (for all three states). Each velocity profile was normalized by its respective median value for the dark state. Center dark colored line indicates median, band indicates 95% confidence interval about median, calculated from n edge locations sampled in m cells. Vav2 n=2,606, m=7 ; Rac1 n = 2,017, m=7; RhoA n=1,637, m=4; Control n=989, m=5.

8 Supplementary Figure 8 The effect of LOVTRAP on cell edge velocity. The effects of Rac1 LOVTRAP (a) and Vav2 LOVTRAP (b) on cell edge velocity (normalized using the basal level before photoactivation). No dependence was observed between cell edge velocity and the expression level of the proteins.

9 Supplementary Figure 9 Effects of LOVTRAP on expression of endogenous Rac1. Endogenous Rac1 expression is shown in the presense of LOVTRAP Vav2, RhoA, and Rac1. Control cells were transfected with LOV2 and Zdk1 only and non-transfected cells were not transfected with any DNA.

10 Supplementary Figure 10 Effect of LOVTRAP on protrusion speeds; Basal line analysis for LOVTRAP Vav2, Rac1 and RhoA. Median cell edge velocity distributions for cells expressing LOVTRAP Vav2, Rac1, RhoA or Control (Zdk1/LOV2 only) calculated from n edge locations sampled in m cells. The blue box represents the 25th to 75th percentile and the center red line represents the median. The whiskers cover 99.3 of the data range and the red points represent outliers. Vav2 n=38,133, m=7; Rac1 n=21,157, m=4; RhoA n=27,213, m=7; Control n=29,148 m=7. We performed the Kruskal-Wallis test to exam the null hypothesis that the all points come from the same distribution. With a p-value of , the test was unable to reject the null hypothesis at a significant level of 29.61%, showing that the cells were indistinguishable from control cells.

11 Supplementary Figure 11 Effects of LOVTRAP on mitochondrial superoxide generation. Mitochondrial superoxide generation is shown in the presense of LOVTRAP Vav2, LOVTRAP RhoA, and LOVTRAP Rac1 in the dark. Control cells were transfected with LOV2 and Zdk1 only and non-transfected cells were not transfected with any DNA. Mitochondrial superoxide generation was measured using MitoSOX Red in flow cytometry 2. In the dark, expression of LOVTRAP Vav2, Rac1 or RhoA had little effect on mitochondrial superoxide generation.

12 Supplementary Figure 12 Effects of LOVTRAP on mitochondrial membrane potential. Mitochondrial membrane potential is shown in the presence of LOVTRAP Vav2, LOVTRAP RhoA, and LOVTRAP Rac1 in the dark. Control cells were transfected with LOV2 and Zdk1 only and non-transfected cells were not transfected with any DNA. Expression of LOVTRAP Vav2, Rac1 or RhoA had little effect on mitochondrial membrane potential. Membrane potential was measured using DilC1(5) Red using flow cytometry. 3

13 Supplementary Figure 13 Time-frequency analysis with Hilbert-Huang decomposition algorithm. Upper box: Hilbert-Huang Transform (HHT) algorithm. Left panel: Synthetic test signal generated as a mixture of noise and several sinusoidal waves with distinct frequencies at different times [1Hz for all times, 3Hz from 0-6 sec and sec, 5Hz and 10Hz from 6-12 sec]. The 1Hz and 10Hz waves have twice the amplitude of the remaining ones. Middle panel: Decomposition of the test signal by the EMD algorithm into 8 intrinsic modes. Right panel: Spectrogram of the test signal after the numerical computation of the Hilbert transform of each mode and its respective analytical signal. Workflow for the time-frequency analysis of the cell edge motion. Cell edge is divided into windows, each tracked over time and velocities calculated. The HHT algorithm is then applied to the velocity profiles, each generating a spectrogram. An average spectrogram representative of the whole cell is calculated by bootstrapping the mean amplitude for each time-frequency pair from all individual spectrograms.

14 Supplementary Figure 14 Time-Frequency analysis of cell edge motion. (a) Left, representative kymograph of cell edge velocity during an experiment with release of Vav2 between 1800 s and 3600 s in pulses of 50 s blue light alternating with 250 s of dark (equals 3.3 mhz blue light pulses). Above kymograph, distribution of edge velocity along cell periphery for each time point (blue line, median velocity; red band, 95% confidence about median). Right, spectrogram derived from velocities in left panel. Right, power density as a function of temporal frequency, collected during pulsatile release of Vav2. Center line indicates median density, band indicates 95% confidence interval about median, calculated from n = 1686 edge locations sampled in m = 5 cells. (b) Representative spectrogram of cells stimulated with 3.3mHz, 4mHz, 6.7mHz and 10mHz blue light pulses. Each panel contains spectral data from n = 2044 edge locations. (c) Representative spectrogram of cells with acutely stimulated activation of constitutively active Rac1Q61L (data from n = 357 edge locations); endogenous Rac1 via release of TIAM-1 DH/PH domain (data from n = 1546 edge locations); of constitutively active VAV2 in the presence of the PI3K inhibitor LY (data from n = 2350 edge locations); and of VAV2 K401A mutant with impaired binding to PI3K-generated phospholipid products (data from n = 1439 edge locations).

15 Supplementary Figure 15 Hypothesis re mechano-chemical signaling pathways driving cell edge oscillations. Vav2 is upstream of proteins controlling assembly and contraction that drive cell protrusion and retraction, and downstream of a mechanochemical feedback response modulating the local concentration of Vav2 signals at the cell edge.

16 Supplementary table 1: List of atom-atom interactions between the residues of the LOV2 domain J helix and the Zdk reagents as calculated by PDBsum. 4 Chain Residue Atom Chain Residue Atom Distance (Å) LOV2-Zdk1 complex (PDB ID: 5EFW) Hydrogen bonds A Glu545 O C Ala12 N 3.34 A Leu546 O' C Gly13 N 2.85 A Leu546 O'' C Arg11 N Non-bonded contacts A Lys544 C C Arg11 N A Lys544 O C Arg11 C 3.66 A Lys544 O C Arg11 N 3.39 A Lys544 O C Arg11 C 3.27 A Lys544 O C Arg11 N A Lys544 O C Arg11 N A Glu545 O C Arg11 C 3.63 A Glu545 O C Arg11 C 3.72 A Glu545 O C Ala12 N 3.34 A Leu546 C C Arg11 C 3.77 A Leu546 C C Ala12 N 3.86 A Leu546 C C Gly13 N 3.78 A Leu546 O' C Ala12 N 3.80 A Leu546 O' C Gly13 N 2.85 A Leu546 O' C Gly13 C 3.44 A Leu546 C C Phe35 C A Leu546 C 1 C Phe35 C A Leu546 C 1 C Phe35 C A Leu546 O'' C Arg11 C 3.16 A Leu546 O'' C Arg11 C 3.59 A Leu546 O'' C Arg11 C 3.80 A Leu546 O'' C Arg11 N LOV2-Zdk2 complex (PDB ID: 5DJT) Non-bonded contacts A Ala543 C B Tyr17 O 3.85 A Ala543 O B Trp24 C 3.20 A Ala543 C B Phe28 C 3.77 A Lys544 C B Trp24 C A Lys544 C B Trp24 N A Lys544 C B Trp24 C LOV2-Zdk3 complex (PDB ID: 5DJU) Hydrogen bonds A Leu546 O'' B Lys27 N 2.53 Non-bonded contacts A Ala543 C B Phe28 C 3.90 A Ala543 O B Trp24 C 3.52 A Lys544 C B Trp24 C 3.71 A Lys544 C B Trp24 C 3.75 A Lys544 C B Trp24 C A Lys544 C B Trp24 C A Lys544 C B Trp24 C A Lys544 C B Trp24 N A Lys544 C B Trp24 C A Leu546 C B Lys27 N 3.59 A Leu546 O' B Lys27 N 3.86 A Leu546 C B Tyr17 C A Leu546 C B Tyr17 O 3.19 A Leu546 O'' B Tyr17 C A Leu546 O'' B Lys27 N 2.53 A Leu546 O'' B Lys27 C 3.66 A Leu546 O'' B Lys27 C 3.52

17 Supplementary Table 2: Comparing the half-life of LOVTRAP with time constants reported in literature LOV2 variants Half-life measured in LOVTRAP (t 1/2 ) Time constant reported in literature (τ) I427T 1.7±0.6 NA V416T 5.0± I427V 5.5± WT 18.5± , 81 7 V416I 239± V416L 496± Note: 1. t 1/2 = τ ln2=0.69 τ 2. Half-life measurements in this study were conducted in living HeLa cells at 37 o C, producing shorter values than those measured with purified proteins at room temperature in other studies. 2,4 3. Protein diffusion rate, which played a role in our assays within cells, had a larger effect on shorter half lives.

18 Supplementary Table 3: DNA fragments used to construct the plasmids in Supplementary Table 1 Fragment used Protein Species Residues Accession Number LOV2 NPH1-1 Avena sativa AAC VAV2 DH/PH/C1 VAV2 Mus musculus NP_ Rac1 Rac1 Homo sapiens NP_ RhoA RhoA Homo sapiens NP_ TIAM1 DH/PH TIAM1 Homo sapiens NP_ NTOM TOM20 Homo sapiens 1-35 NP_ NLyn Lyn Mus musculus 1-16 NP_034877

19 Supplementary Table 4: Primers used to construct Z-library Primer ZL-U141 ZL-B143 ZL-5-66 ZL-3-57 sequence ATG GTG GAT AAC AAA TTC AAT AAA GAA NNK NNK NNK GCC NNK NNK GAA ATC NNK NNK CTG CCA AAC CTG AAT NNK NNK CAG NNK NNK GCC TTC ATC NNK AGC CTG NNK GAT GAT CCA TCT CAG AGC GCC AAT CTG CTG GCC GTC GTC GTC GTC CTT GTA GTC GCT GCC GCC CTG GAA ATA CAG ATT TTC ACC GCC ATG ATG ATG ATG ATG ATG GCT ACC ACC AGA ACC ACC TTT TGG GGC CTG GGC ATC GTT CAG TTT TTT GGC TTC GGC CAG CAG ATT GGC GC TTCTAATACGACTCACTATAGGGACAATTACTATTTACAATTACA ATG GTG GAT AAC AAA TTC AAT AAA GAA TTA ATA GCC GGT GGA CAT TCC CAT ACC TTT GTC GTC GTC GTC CTT GTA GTC GC

20 Supplementary Table 5: X-ray crystallography data collection and refinement statistics LOV2-Zdk1 complex LOV2-Zdk2 complex LOV2-Zdk3 complex Data collection Space group P I4 P Cell dimensions a, b, c (Å) 54,7, 54.7, , 110.1, , 74.5, 81.9 α, β, γ ( ) 90.0, 90.0, , 90.0, , 90.0, 90.0 Resolution (Å) ( )* ( )* ( )* No. unique reflections 17,450 44,465 26,342 R merge (0.528) (0.360) (0.374) I /σi 10.3 (3.3) 15.5 (4.2) 6.7 (2.1) Completeness (%) 99.4 (100.0) 99.6 (99.7) 96.9 (88.3) Redundancy 5.8 (6.3) 5.7 (5.9) 3.0 (2.2) Wilson B (Å 2 ) Refinement Molecules per a.u. 3 (1:2 complex) 2 (1:1 complex) 4 (2 1:1 complex) Resolution (Å) No. unique reflections 17,445 44,463 26,338 R work / R free / / / No. atoms Protein Ligand Water / Ions 94 / / / 5 B-factors Protein Ligand Water + Ions R.m.s. deviations Bond lengths (Å) Bond angles ( ) Ramachandran favored (%) outliers (%) Clashscore * Values in parentheses are for highest-resolution shell.

21 Supplementary Table 6: Plasmids used in this paper ptrap001 ptriex-ntom20-lov2 Fig. 3, Suppl. Fig. 6, Suppl. Fig. 7, Suppl. Fig. 8, Suppl. Fig. 9, Suppl. Fig. 10, Suppl. Fig. 11, Suppl. Fig. 12, Suppl. Fig. 14, Movie 5, Movie 6, Movie 7, Movie 8 ptrap002 ptriex-ntom20-mvenus-zdk1 Fig. 2, Suppl. Fig. 4, Suppl. Fig. 5, Movie 2, Movie 3 ptrap003 ptriex-ntom20-mvenus-zdk2 Supl. Fig. 4 ptrap004 ptriex-ntom20-mvenus-zdk3 Supl. Fig. 4 ptrap005 ptriex-mcherry-lov2 Fig. 2, Suppl. Fig. 4, Suppl. Fig. 5, Suppl. Fig.6, Movie 2, Movie 4 ptrap006 ptriex-mcherry-lov2-mcherry Suppl. Fig. 4 ptrap007 ptriex-mcherry-lov2 C450A Suppl. Fig. 5 ptrap008 ptriex-mcherry-lovsd Suppl. Fig. 5, Movie 3 ptrap009 ptriex-mcherry-lov2 I427V Fig.2 ptrap010 ptriex-mcherry-lov2 V416I Fig.2 ptrap011 ptriex-mcherry-lov2 I427T Fig.2 ptrap012 ptriex-mcherry-lov2 V416T Fig.2 ptrap013 ptriex-mcherry-lov2 V416L Fig.2 ptrap014 PTriEx-NLyn-Venus-Zdk1 Suppl. Fig.6, Movie 4 ptrap015 ptriex-mcherry-zdk1-vav2 DH/PH/C1 Fig. 3, Suppl. Fig. 6, Suppl. Fig. 7, Suppl. Fig. 8,Suppl. Fig. 10, Suppl. Fig. 12, Suppl. Fig. 14, Movie 5, Movie 8 ptrap016 ptriex-mcherry-zdk1-rac1 Q61L Fig. 3, Suppl. Fig. 6, Suppl. Fig. 7, Suppl. Fig. 8,Suppl. Fig. 10, Suppl. Fig. 12, Suppl. Fig. 14, Movie 6 ptrap017 ptriex-mcherry-zdk1-rhoa Q63L Suppl. Fig. 6, Suppl. Fig. 7,Suppl. Fig. 10, Suppl. Fig. 12, Movie 7 ptrap018 ptriex-mcherry-zdk1-vav2 Fig. 3, Suppl. Fig. 14 DH/PH/C1 K401A ptrap019 ptriex-mcherry-zdk1-tiam1 DH/PH Fig. 3, Suppl. Fig. 14 ptrap020 PTriEx-NLyn-Venus Fig.3, Suppl. Fig. 6, Suppl. Fig. 7, Suppl. Fig. 8,Suppl. Fig. 10, Suppl. Fig. 14, Movie 5, Movie 8, ptrap021 ptriex-mcherry-zdk1 Suppl. Fig. 6, Suppl. Fig. 7, Suppl. Fig. 10, Suppl. Fig. 12 ptrap022 ptriex-mvenus-zdk1-vav2 Suppl. Fig. 9, Suppl. Fig. 11 DH/PH/C1 ptrap023 ptriex-mvenus-zdk1-rac1 Q61L Suppl. Fig. 9, Suppl. Fig. 11 ptrap024 ptriex-mvenus-zdk1-rhoa Q63L Suppl. Fig. 9, Suppl. Fig. 11 ptrap025 ptriex-mvenus-zdk1 Suppl. Fig. 9, Suppl. Fig. 11

22 SUPPLEMENTARY NOTE The mitochondrion-anchored molecules should be expressed in excess over the free component, to sequester the POI completely. There can be two configurations for LOVTRAP, as discussed in detail below. Due to a small equilibrium amount of lit-state LOV2 in the dark 1, the ratio between the two components has different effects in each of the two strategies. Here we focus on Zdk1 only. The fraction of LOV2 molecules that are in the closed conformation is given by m = [LOV] close,tot [LOV] tot Where [LOV] tot is the total concentration of the LOV2 domain expressed in the cells, and [LOV] close,tot is the concentration of LOV2 molecules that are in the closed conformation. According to Yao et al. 1, in the dark, 98.4% of LOV2 molecules are in in the closed form and 1.6% are in the open form. Thus m dark =0.984, while in the light, m light =0.09 Strategy I (LOV2 domain is attached to the mitochondria and the POI is fused to Zdk): The ratio between the two components of the system is given by n = [LOV] tot [POI Zdk] tot Where [POI Zdk] tot is the total protein concentrations of Zdk POI fusion protein expressed in the cells. Zdk binds LOV2 molecules in the closed conformation with affinity of 26.2 nm, while it does not bind LOV2 molecules in the open conformation with detectable affinity. The affinity of Zdk molecules and LOV2 molecules in the closed conformation is given by Kd = [POI Zdk] unbound[lov] close,unbound [POI Zdk LOV] Where [POI Zdk] unbound is the concentration of POI Zdk fusion that does not bind to LOV2, [LOV] close,unbound is the concentration of LOV2 that is in the closed conformation but does not bind to Zdk, and [POI Zdk LOV] is the concentration of the POI Zdk~LOV2 complex.

23 Given that [LOV] close,unbound + [POI Zdk LOV] = [LOV] close,tot = m[lov] tot = mn[poi] tot, and [POI] unbound + [POI Zdk LOV] = [POI] tot The concentration of unbound POI can be calculated by [POI] unbound = (mn 1)[POI] tot Kd + {(mn 1)[POI] tot + Kd} 2 + 4Kd[POI] tot 2 Equation 1 Strategy II: (Zdk is attached to the mitochondria and LOV2 is fused to the POI): The ratio between the two components of the system is given by n = [Zdk] tot [LOV POI] tot Similar to the calculation above, [LOV] close,unbound + [Zdk LOV POI] = [LOV] close,tot = m[lov] tot = m[poi] tot [POI] unbound = [POI] tot [Zdk LOV POI] [Zdk] tot = n[lov POI] tot = [Zdk] unbound + [Zdk LOV POI] And Thus Kd = [LOV] close,unboun d[zdk] unbound [Zdk LOV POI] [POI] unbound = (m + n 1)[POI] tot Kd + {(m + n)[poi] tot + Kd} 2 2 4mn[POI] tot 2 Equation 2

24 References 1. Yao, X., Rosen, M.K. and Gardner, K.H. Estimation of the available free energy in a LOV2-J alpha photoswitch. Nat Chem Biol, (8): p Mukhopadhyay, P., et al. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc, (9): p Chen, A.Y. et al. Bocavirus Infection Induces Mitochondrion-Mediated Apoptosis and Cell Cycle Arrest at G2/M Phase. J Virol (11): de Beer T.A.P. et al. PDBsum additions. Nucleic Acids Res., 42, D292- D Kawano, F., Aono, Y., Suzuki, H. and Sato, M. Fluorescence Imaging- Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins. PLoS ONE, , e Christie, J. M. et al. Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry (Mosc.) , Zoltowski, B. D., Vaccaro, B. & Crane, B. R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol ,

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Zn 2+ -binding sites in USP18. (a) The two molecules of USP18 present in the asymmetric unit are shown. Chain A is shown in blue, chain B in green. Bound Zn 2+ ions are shown as

More information

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence

More information

Practical Bioinformatics

Practical Bioinformatics 5/2/2017 Dictionaries d i c t i o n a r y = { A : T, T : A, G : C, C : G } d i c t i o n a r y [ G ] d i c t i o n a r y [ N ] = N d i c t i o n a r y. h a s k e y ( C ) Dictionaries g e n e t i c C o

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA SUPPORTING INFORMATION FOR SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA Aik T. Ooi, Cliff I. Stains, Indraneel Ghosh *, David J. Segal

More information

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Supplemental Table 1. Primers used for cloning and PCR amplification in this study Supplemental Table 1. Primers used for cloning and PCR amplification in this study Target Gene Primer sequence NATA1 (At2g393) forward GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GCC TCC AAC CGC AGC

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Directed self-assembly of genomic sequences into monomeric and polymeric branched DNA structures

More information

Crick s early Hypothesis Revisited

Crick s early Hypothesis Revisited Crick s early Hypothesis Revisited Or The Existence of a Universal Coding Frame Ryan Rossi, Jean-Louis Lassez and Axel Bernal UPenn Center for Bioinformatics BIOINFORMATICS The application of computer

More information

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Clay Carter Department of Biology QuickTime and a TIFF (LZW) decompressor are needed to see this picture. Ornamental tobacco

More information

Number-controlled spatial arrangement of gold nanoparticles with

Number-controlled spatial arrangement of gold nanoparticles with Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Number-controlled spatial arrangement of gold nanoparticles with DNA dendrimers Ping Chen,*

More information

SUPPLEMENTARY DATA - 1 -

SUPPLEMENTARY DATA - 1 - - 1 - SUPPLEMENTARY DATA Construction of B. subtilis rnpb complementation plasmids For complementation, the B. subtilis rnpb wild-type gene (rnpbwt) under control of its native rnpb promoter and terminator

More information

Supplemental Figure 1.

Supplemental Figure 1. A wt spoiiiaδ spoiiiahδ bofaδ B C D E spoiiiaδ, bofaδ Supplemental Figure 1. GFP-SpoIVFA is more mislocalized in the absence of both BofA and SpoIIIAH. Sporulation was induced by resuspension in wild-type

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Evolutionary conservation of codon optimality reveals hidden signatures of co-translational folding Sebastian Pechmann & Judith Frydman Department of Biology and BioX, Stanford

More information

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc Supplemental Figure 1. Prediction of phloem-specific MTK1 expression in Arabidopsis shoots and roots. The images and the corresponding numbers showing absolute (A) or relative expression levels (B) of

More information

Advanced topics in bioinformatics

Advanced topics in bioinformatics Feinberg Graduate School of the Weizmann Institute of Science Advanced topics in bioinformatics Shmuel Pietrokovski & Eitan Rubin Spring 2003 Course WWW site: http://bioinformatics.weizmann.ac.il/courses/atib

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Supplementary information. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization.

Supplementary information. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. Supplementary information Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. Benjamin Cressiot #, Sandra J. Greive #, Wei Si ^#,

More information

3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies

3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies Richard Owen (1848) introduced the term Homology to refer to structural similarities among organisms. To Owen, these similarities indicated that organisms were created following a common plan or archetype.

More information

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr),

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr), 48 3 () Vol. 48 No. 3 2009 5 Journal of Xiamen University (Nat ural Science) May 2009 SSR,,,, 3 (, 361005) : SSR. 21 516,410. 60 %96. 7 %. (),(Between2groups linkage method),.,, 11 (),. 12,. (, ), : 0.

More information

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)-

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Supporting Information for Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Dependence and Its Ability to Chelate Multiple Nutrient Transition Metal Ions Rose C. Hadley,

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Supporting Information

Supporting Information Supporting Information T. Pellegrino 1,2,3,#, R. A. Sperling 1,#, A. P. Alivisatos 2, W. J. Parak 1,2,* 1 Center for Nanoscience, Ludwig Maximilians Universität München, München, Germany 2 Department of

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/5/243/ra68/dc1 Supplementary Materials for Superbinder SH2 Domains Act as Antagonists of Cell Signaling Tomonori Kaneko, Haiming Huang, Xuan Cao, Xing Li, Chengjun

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Supporting Information Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Cuichen Wu,, Da Han,, Tao Chen,, Lu Peng, Guizhi Zhu,, Mingxu You,, Liping Qiu,, Kwame Sefah,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

Protein Threading. Combinatorial optimization approach. Stefan Balev.

Protein Threading. Combinatorial optimization approach. Stefan Balev. Protein Threading Combinatorial optimization approach Stefan Balev Stefan.Balev@univ-lehavre.fr Laboratoire d informatique du Havre Université du Havre Stefan Balev Cours DEA 30/01/2004 p.1/42 Outline

More information

NSCI Basic Properties of Life and The Biochemistry of Life on Earth

NSCI Basic Properties of Life and The Biochemistry of Life on Earth NSCI 314 LIFE IN THE COSMOS 4 Basic Properties of Life and The Biochemistry of Life on Earth Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ WHAT IS LIFE? HARD TO DEFINE,

More information

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises six Orai subunits, each with identical amino acid sequences

More information

The Trigram and other Fundamental Philosophies

The Trigram and other Fundamental Philosophies The Trigram and other Fundamental Philosophies by Weimin Kwauk July 2012 The following offers a minimal introduction to the trigram and other Chinese fundamental philosophies. A trigram consists of three

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R

Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R AAC MGG ATT AGA TAC CCK G GGY TAC CTT GTT ACG ACT T Detection of Candidatus

More information

Electronic supplementary material

Electronic supplementary material Applied Microbiology and Biotechnology Electronic supplementary material A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and

More information

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins Chemistry & Biology, Volume 22 Supplemental Information Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins Daria M. Shcherbakova, Mikhail Baloban, Sergei Pletnev,

More information

Characterization of Pathogenic Genes through Condensed Matrix Method, Case Study through Bacterial Zeta Toxin

Characterization of Pathogenic Genes through Condensed Matrix Method, Case Study through Bacterial Zeta Toxin International Journal of Genetic Engineering and Biotechnology. ISSN 0974-3073 Volume 2, Number 1 (2011), pp. 109-114 International Research Publication House http://www.irphouse.com Characterization of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Secondary structure of CAP (in the camp 2 -bound state) 10. α-helices are shown as cylinders and β- strands as arrows. Labeling of secondary structure is indicated. CDB, DBD and the hinge are

More information

Any protein that can be labelled by both procedures must be a transmembrane protein.

Any protein that can be labelled by both procedures must be a transmembrane protein. 1. What kind of experimental evidence would indicate that a protein crosses from one side of the membrane to the other? Regions of polypeptide part exposed on the outside of the membrane can be probed

More information

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR Online Resource 1. Primers used to generate constructs AtTIL-P91V, AtTIL-P92V, AtTIL-P95V and AtTIL-P98V and YFP(HPR) using overlapping PCR. pentr/d- TOPO-AtTIL was used as template to generate the constructs

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

TM1 TM2 TM3 TM4 TM5 TM6 TM bp

TM1 TM2 TM3 TM4 TM5 TM6 TM bp a 467 bp 1 482 2 93 3 321 4 7 281 6 21 7 66 8 176 19 12 13 212 113 16 8 b ATG TCA GGA CAT GTA ATG GAG GAA TGT GTA GTT CAC GGT ACG TTA GCG GCA GTA TTG CGT TTA ATG GGC GTA GTG M S G H V M E E C V V H G T

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION. doi: /nature07461 Figure S1 Electrophysiology. a ph-activation of. Two-electrode voltage clamp recordings of Xenopus oocytes expressing in comparison to waterinjected oocytes. Currents were recorded at 40 mv. The ph of

More information

Codon Distribution in Error-Detecting Circular Codes

Codon Distribution in Error-Detecting Circular Codes life Article Codon Distribution in Error-Detecting Circular Codes Elena Fimmel, * and Lutz Strüngmann Institute for Mathematical Biology, Faculty of Computer Science, Mannheim University of Applied Sciences,

More information

targets. clustering show that different complex pathway

targets. clustering show that different complex pathway Supplementary Figure 1. CLICR allows clustering and activation of cytoplasmic protein targets. (a, b) Upon light activation, the Cry2 (red) and LRP6c (green) components co-cluster due to the heterodimeric

More information

Regulatory Sequence Analysis. Sequence models (Bernoulli and Markov models)

Regulatory Sequence Analysis. Sequence models (Bernoulli and Markov models) Regulatory Sequence Analysis Sequence models (Bernoulli and Markov models) 1 Why do we need random models? Any pattern discovery relies on an underlying model to estimate the random expectation. This model

More information

Modelling and Analysis in Bioinformatics. Lecture 1: Genomic k-mer Statistics

Modelling and Analysis in Bioinformatics. Lecture 1: Genomic k-mer Statistics 582746 Modelling and Analysis in Bioinformatics Lecture 1: Genomic k-mer Statistics Juha Kärkkäinen 06.09.2016 Outline Course introduction Genomic k-mers 1-Mers 2-Mers 3-Mers k-mers for Larger k Outline

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Supplementary Information

Supplementary Information Supplementary Information An engineered protein antagonist of K-Ras/B-Raf interaction Monique J. Kauke, 1,2 Michael W. Traxlmayr 1,2, Jillian A. Parker 3, Jonathan D. Kiefer 4, Ryan Knihtila 3, John McGee

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

part 3: analysis of natural selection pressure

part 3: analysis of natural selection pressure part 3: analysis of natural selection pressure markov models are good phenomenological codon models do have many benefits: o principled framework for statistical inference o avoiding ad hoc corrections

More information

The role of the FliD C-terminal domain in pentamer formation and

The role of the FliD C-terminal domain in pentamer formation and The role of the FliD C-terminal domain in pentamer formation and interaction with FliT Hee Jung Kim 1,2,*, Woongjae Yoo 3,*, Kyeong Sik Jin 4, Sangryeol Ryu 3,5 & Hyung Ho Lee 1, 1 Department of Chemistry,

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Supplementary Information Intrinsic Localized Modes in Proteins

Supplementary Information Intrinsic Localized Modes in Proteins Supplementary Information Intrinsic Localized Modes in Proteins Adrien Nicolaï 1,, Patrice Delarue and Patrick Senet, 1 Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute,

More information

Title: Robust analysis of synthetic label-free DNA junctions in solution by X-ray scattering and molecular simulation

Title: Robust analysis of synthetic label-free DNA junctions in solution by X-ray scattering and molecular simulation Supplementary Information Title: Robust analysis of synthetic label-free DNA junctions in solution by X-ray scattering and molecular simulation Kyuhyun Im 1,5, Daun Jeong 2,5, Jaehyun Hur 1, Sung-Jin Kim

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter Biochemistry I, Fall Term Sept 9, 2005 Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter 3.1-3.4. Key Terms: ptical Activity, Chirality Peptide bond Condensation reaction ydrolysis

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10955 Supplementary Figures Supplementary Figure 1. Electron-density maps and crystallographic dimer structures of the motor domain. (a f) Stereo views of the final electron-density maps

More information

Supplementary information

Supplementary information Supplementary information The structural basis of modularity in ECF-type ABC transporters Guus B. Erkens 1,2, Ronnie P-A. Berntsson 1,2, Faizah Fulyani 1,2, Maria Majsnerowska 1,2, Andreja Vujičić-Žagar

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI:.38/NCHEM.246 Optimizing the specificity of nucleic acid hyridization David Yu Zhang, Sherry Xi Chen, and Peng Yin. Analytic framework and proe design 3.. Concentration-adjusted

More information

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5 SUPPLEMENTARY TABLES Suppl. Table 1. Protonation states at ph 7.4 and 4.5. Protonation states of titratable residues in GCase at ph 7.4 and 4.5. Histidine: HID, H at δ-nitrogen; HIE, H at ε-nitrogen; HIP,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

- Basic understandings: - Mapping interactions:

- Basic understandings: - Mapping interactions: NMR-lecture April 6th, 2009, FMP Berlin Outline: Christian Freund - Basic understandings: Relaxation Chemical exchange - Mapping interactions: -Chemical shift mapping (fast exchange) Linewidth analysis

More information

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization Supplementary Information Structural basis for precursor protein-directed ribosomal peptide macrocyclization Kunhua Li 1,3, Heather L. Condurso 1,3, Gengnan Li 1, Yousong Ding 2 and Steven D. Bruner 1*

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

Introduction to Molecular Phylogeny

Introduction to Molecular Phylogeny Introduction to Molecular Phylogeny Starting point: a set of homologous, aligned DNA or protein sequences Result of the process: a tree describing evolutionary relationships between studied sequences =

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.8/NCHEM. Conditionally Fluorescent Molecular Probes for Detecting Single Base Changes in Double-stranded DNA Sherry Xi Chen, David Yu Zhang, Georg Seelig. Analytic framework and probe design.. Design

More information

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a series of tmfret-pairs comprised of single cysteine mutants

More information

Chain-like assembly of gold nanoparticles on artificial DNA templates via Click Chemistry

Chain-like assembly of gold nanoparticles on artificial DNA templates via Click Chemistry Electronic Supporting Information: Chain-like assembly of gold nanoparticles on artificial DNA templates via Click Chemistry Monika Fischler, Alla Sologubenko, Joachim Mayer, Guido Clever, Glenn Burley,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

THE MATHEMATICAL STRUCTURE OF THE GENETIC CODE: A TOOL FOR INQUIRING ON THE ORIGIN OF LIFE

THE MATHEMATICAL STRUCTURE OF THE GENETIC CODE: A TOOL FOR INQUIRING ON THE ORIGIN OF LIFE STATISTICA, anno LXIX, n. 2 3, 2009 THE MATHEMATICAL STRUCTURE OF THE GENETIC CODE: A TOOL FOR INQUIRING ON THE ORIGIN OF LIFE Diego Luis Gonzalez CNR-IMM, Bologna Section, Via Gobetti 101, I-40129, Bologna,

More information

part 4: phenomenological load and biological inference. phenomenological load review types of models. Gαβ = 8π Tαβ. Newton.

part 4: phenomenological load and biological inference. phenomenological load review types of models. Gαβ = 8π Tαβ. Newton. 2017-07-29 part 4: and biological inference review types of models phenomenological Newton F= Gm1m2 r2 mechanistic Einstein Gαβ = 8π Tαβ 1 molecular evolution is process and pattern process pattern MutSel

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

ChemiScreen CaS Calcium Sensor Receptor Stable Cell Line

ChemiScreen CaS Calcium Sensor Receptor Stable Cell Line PRODUCT DATASHEET ChemiScreen CaS Calcium Sensor Receptor Stable Cell Line CATALOG NUMBER: HTS137C CONTENTS: 2 vials of mycoplasma-free cells, 1 ml per vial. STORAGE: Vials are to be stored in liquid N

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural characterization of the virulence factor Nuclease A from Streptococcus agalactiae

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

Biosynthesis of Bacterial Glycogen: Primary Structure of Salmonella typhimurium ADPglucose Synthetase as Deduced from the

Biosynthesis of Bacterial Glycogen: Primary Structure of Salmonella typhimurium ADPglucose Synthetase as Deduced from the JOURNAL OF BACTERIOLOGY, Sept. 1987, p. 4355-4360 0021-9193/87/094355-06$02.00/0 Copyright X) 1987, American Society for Microbiology Vol. 169, No. 9 Biosynthesis of Bacterial Glycogen: Primary Structure

More information

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing 0.1% SDS without boiling. The gel was analyzed by a fluorescent

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Quantitation of the binding of pro53 peptide to sorla Vps10p measured by the AP reporter assay. The graph shows tracings of the typical chromogenic AP reaction observed with AP-pro53

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor Structure, Volume 22 Supplemental Information The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor Oliver C. Losón, Raymond Liu, Michael E. Rome, Shuxia Meng, Jens T. Kaiser, Shu-ou Shan,

More information

evoglow - express N kit distributed by Cat.#: FP product information broad host range vectors - gram negative bacteria

evoglow - express N kit distributed by Cat.#: FP product information broad host range vectors - gram negative bacteria evoglow - express N kit broad host range vectors - gram negative bacteria product information distributed by Cat.#: FP-21020 Content: Product Overview... 3 evoglow express N -kit... 3 The evoglow -Fluorescent

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2647 Figure S1 Other Rab GTPases do not co-localize with the ER. a, Cos-7 cells cotransfected with an ER luminal marker (either KDEL-venus or mch-kdel) and mch-tagged human Rab5 (mch-rab5,

More information

Rho1 binding site PtdIns(4,5)P2 binding site Both sites

Rho1 binding site PtdIns(4,5)P2 binding site Both sites localization Mutation site DMSO LatB WT F77A I115A I131A K134A Rho1 binding site PtdIns(4,5)P2 binding site Both sites E186A E199A N201A R84A-E186A-E199A L131A-K136A-E186A L131A-E186A-E199A K136A-E186A-E199A

More information

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

evoglow - express N kit Cat. No.: product information broad host range vectors - gram negative bacteria

evoglow - express N kit Cat. No.: product information broad host range vectors - gram negative bacteria evoglow - express N kit broad host range vectors - gram negative bacteria product information Cat. No.: 2.1.020 evocatal GmbH 2 Content: Product Overview... 4 evoglow express N kit... 4 The evoglow Fluorescent

More information