The Path Integral Formulation of Quantum Mechanics

Size: px
Start display at page:

Download "The Path Integral Formulation of Quantum Mechanics"

Transcription

1 The Path Integral Formulation of Quantum Mechanics Shekhar Suresh Chandra March 15, 2005 Prerequisite: Knowledge of the Lagrangian Formalism (which can be found on my site also). Thirty-one years ago, Dick Feynman told me about his sum over histories version of quantum mechanics. The electron does anything it likes, he said. It just goes in any direction at any speed,... however it likes, and then you add up the amplitudes and it gives you the wavefunction. I said to him, Youre crazy. But he wasnt. Freeman Dyson, 1980 [1] In the classical theory of mechanics, the motion of an object occurs only in is to undergo the least action, i.e. it abides the Hamilton s Principle of Least Action where the action is defined by δs δ t2 t 1 L(q(t), q(t))dt 0 (1) S t2 t 1 L(q(t), q(t))dt (2) Quantum Mechanically however, the quantum mechanical object explores every possible path in its motion. Richard Feynman developed this idea to formulate Quantum Mechanics in a different way (by using path integrals) and definition (2) played a critical role. This formulation is useful in the theory of Quantum Fields. Non-relativistic quantum mechanics is governed by the Schrodinger Equation i t Ψ(t)> Ĥ(ˆp, ˆq) Ψ(t)> Monash University. Shekhar.Chandra@spme.monash.edu.au 1

2 2 where Ψ(t)> is the state vector in Hilbert space. The formal solution 1 to this is Ψ(t)> e iĥt/ Ψ(0)> In the generalised co-ordinate system q, the above becomes q, t> e iĥt/ q > (3) Therefore the transitional amplitude for the particle at q propagating to q, i.e. the probability density of particle transiting from q to q is <q, t q, t> <q e iĥ(t t)/ q > (4) This is known as the Feynman Kernal or Propagator. Conducting the path integral formalism for the propagator, one can construct the Quantum Mechanical Transitional Amplitude from the classical Lagrangian of the system, without the need for Hilbert Space state vectors and noncommuting Operators. In order to do this, we must divide the time interval t t into small sub-intervals, i.e. t n t + n t and so t t N t where n 0, 1,..., N 1. We substitute this into the propagator to get <q e iĥn t/ q > (5) Now at each sub-interval, a set of basis states is introduced using the completeness relation 2 Therefore the propagator q n ><q n dq n I (6) <q e iĥn t/ q > <q e iĥ t/ Ie iĥ t/ Ie iĥ t/ I... q > Substituting for the identity I in above <q e iĥn t/ q >... dq N 1... dq <q e iĥ t/ q N 1 ><q N 1... q 1 ><q 1 e iĥ t/ q > Which can be re-written as <q e iĥn t/ q > N 1 n1 dq n <q e iĥ t/ q N 1 ><q N 1... q 1 ><q 1 e iĥ t/ q > (7) 1 proof can be found in appendix A 2 proof can be found in appendix B

3 3 The physical interpretation of the above equation is that the particle can take any path in its transition from (q, t) to (q, t ). Now the inner products, i.e. tranisition amplitudes (sometimes referred to as transfer matiices ) T (q n+1, q n ) <q n+1 e iĥ t/ q n > Can be simplified in some cases. We shall consider such a case of a free particle, i.e. when Ĥ ˆp2 2m (8) Therefore, the transition matrix becomes <q n+1 e iĥ t/ I q n > dp n 2π <q n+1 e iĥ t/ p n ><p n q n > (9) Here we have used a slightly different form of the completeness relation (one with normalisation constants kept for future convenience), namely of the form 1 2π p n ><p n dp n I (10) Using the property of state vectors, that F (Â) A> F (A) A> and relation (8) then Using this, the relation (9) becomes <q n+1 e iĥ t/ I q n > e iĥ t/ p n > e ip2 t/2m p n > dp n 2 2π e ip t/2m <q n+1 p n ><p n q n > (11) Each of the bra-kets in the above can be determined from the normalisation convention 3 Hence relation (11) becomes <q n+1 e iĥ t/ I q n > <q n p n > e ipnqn/ dp n 2 2π e ip t/2m e ipnqn+1/ e ipnqn/ (12) dp n 2 2π e ip t/2m e ipn(qn+1 qn)/ (13) The above relation is the form of a Gaussian. Making the change of variables 3 proof can be found in appendix C α t m (14) J 1 (q n+1 q n ) (15)

4 A FORMAL SOLUTION TO SCHRODINGER S EQUATION 4 Then the Gaussian Integral 4 is I Now the transfer matrix can be written Substituting back into the kernel <q n+1 e iĥ t/ q n > e 1 2 iαx2 +ijx dx 2πi α im 2π t ei t m 2 ij 2 e 2α ( qn+1 ) qn 2 t <q e iĥn t/ q > ( ) N/2 N 1 im 2π t ( im 2π t ) N/2 N 1 n0 n0 N 1 dq n n0 dq n e i t m 2 e i t m 2 N 1 n0 ( qn+1 qn ) 2 t (16) ( qn+1 qn t ) 2 (17) Now we proceed to take the limit as t 0 and hence N, the result being ( ) lim t 0 <q e iĥ(t t)/ i t 1 q > Dq(t)exp t 2 m q2 (t)dt Which is off the form of <q e iĥ(t t)/ q > ( ) i t Dq(t)exp L(q, q)dt t ( ) i Dq(t)exp S(q, q) (18) (19) Appendix A Formal Solution to Schrodinger s Equation Theorem 1 Show that q, t> e iĥt/ q > We start with the Schrodinger Equation i Ψ> Ĥ Ψ> t which can be writen as 1 Ψ> t Ψ> Ĥ i 4 worked through in appendix D

5 B PROOF OF THE COMPLETENESS RELATION 5 Notice that... Ψ> t d Ψ> Ψ 0> Ψ> iĥ dt (20) t 0 [ ] Ψ> log e ( Ψ>) iĥ [ ] t t (21) Ψ 0> t 0 log e ( Ψ>) log e ( Ψ 0 >) iĥ (t t 0) (22) ( ) Ψ> log e iĥ Ψ 0 > (t t 0) (23) Ψ> Ψ 0 > e iĥ (t t0) (24) Ψ> e iĥ (t t0) Ψ 0 > (25) B Proof of the Completeness Relation Theorem 2 Show that q ><q dq I Take any arbitary ket, say ξ >, then check for consistency ξ > I ξ > (26) Here we have used the sifting property of the delta function. dq q ><q ξ > (27) dq q > δ(q ξ) (28) ξ > (29) C Proof of Normalisation Convention Theorem 3 Show that <q n p n > <p n q n > e ipnqn/ We begin by writing the state vector as Ψ> I Ψ>

6 C PROOF OF NORMALISATION CONVENTION 6 Then we substitute the identity with the co-ordinate completeness relation Ψ> dq n q n ><q n Ψ> Now we project the state vector onto the momentum representation p and we get <p n Ψ> dq n <p n q n ><q n Ψ> (30) Since < q n Ψ > is the co-ordinate representation of the state vector, we denote it by Ψ q >. Similarly < p n Ψ > is the momentum representation of the state vector, we denote it by Ψ p >. Hence equation 30 becomes Ψ p > dq n <p n q n > Ψ q > (31) The above is of the form of a Fourier Transform, as the co-ordinate space is being transformed into momentum or reciprocal space. Fourier Transform is of the form F [f(q)] Therefore, in order for equation 31 to be true f(q)e ipq/ dq <p n q n > e ipnqn/ (32) For the case of < q n p n >, it will be the coomplex conjugate of equation 32. This can be shown by taking the momentum completeness relation instead of the co-ordinate completeness relation, giving Ψ> dp n p n ><p n Ψ> Projecting the state vector onto co-ordinate representation to acquire the momentum equivalent relation to equation 30, namely <q n Ψ> dp n <q n p n ><p n Ψ> Re-writing the above in a similar way for the <p n q n > case, giving Ψ q > Now this is the inverse Fourier Transform, which has the form F 1 [f(p)] Hence dq n <q n p n > Ψ p > (33) f(p)e ipq/ dp <q n p n > <p n q n > e ipnqn/ (34)

7 D THE GAUSSIAN INTEGRAL 7 D The Gaussian Integral Theorem 4 Show that I e 1 2 iαx2 +ijx dx 2πi α ij 2 e 2α References [1] Dyson F. Some Strangeness in the Proportion, edited by H. Woolf AddisonWesley, Reading, MA, 1980, p. 376.

We start with some important background material in classical and quantum mechanics.

We start with some important background material in classical and quantum mechanics. Chapter Basics We start with some important background material in classical and quantum mechanics.. Classical mechanics Lagrangian mechanics Compared to Newtonian mechanics, Lagrangian mechanics has the

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

Path integrals in quantum mechanics

Path integrals in quantum mechanics Path integrals in quantum mechanics Phys V3500/G8099 handout #1 References: there s a nice discussion of this material in the first chapter of L.S. Schulman, Techniques and applications of path integration.

More information

Formalism of Quantum Mechanics

Formalism of Quantum Mechanics Dirac Notation Formalism of Quantum Mechanics We can use a shorthand notation for the normalization integral I = "! (r,t) 2 dr = "! * (r,t)! (r,t) dr =!! The state! is called a ket. The complex conjugate

More information

arxiv: v5 [quant-ph] 1 Feb 2018

arxiv: v5 [quant-ph] 1 Feb 2018 IU-TH-9 Momentum and Hamiltonian in omplex Action Theory arxiv:1105.1294v5 [quant-ph] 1 Feb 2018 Keiichi Nagao a,b1 and Holger Bech Nielsen b2 a Faculty of Education, Ibaraki University, Bunkyo 2-1-1,

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

Momentum relation and classical limit in the future-not-included complex action theory

Momentum relation and classical limit in the future-not-included complex action theory Momentum relation and classical limit in the future-not-included complex action theory Keiichi Nagao Ibaraki Univ. Aug. 7, 2013 @ YITP Based on the work with H.B.Nielsen PTEP(2013) 073A03 (+PTP126 (2011)102,

More information

Lecture-05 Perturbation Theory and Feynman Diagrams

Lecture-05 Perturbation Theory and Feynman Diagrams Lecture-5 Perturbation Theory and Feynman Diagrams U. Robkob, Physics-MUSC SCPY639/428 September 3, 218 From the previous lecture We end up at an expression of the 2-to-2 particle scattering S-matrix S

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Preliminaries: what you need to know

Preliminaries: what you need to know January 7, 2014 Preliminaries: what you need to know Asaf Pe er 1 Quantum field theory (QFT) is the theoretical framework that forms the basis for the modern description of sub-atomic particles and their

More information

Tutorials to Quantum Mechanics II, SS Problem Sheet 5 - Solutions

Tutorials to Quantum Mechanics II, SS Problem Sheet 5 - Solutions Lehrstuhl für Kosmologie, Professor Dr. V. Mukhanov Tutorials to Quantum Mechanics II, SS 29 Problem Sheet 5 - Solutions Exercise 31 1. Calculate ˆq ˆp 2ˆq ˆp ˆq 2 ˆp. 2. Write the Hamiltonian Ĥ ˆq ˆp2

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

PHYS-454 The position and momentum representations

PHYS-454 The position and momentum representations PHYS-454 The position and momentum representations 1 Τhe continuous spectrum-a n So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.! n

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Quantum Field Theory. Victor Gurarie. Fall 2015 Lecture 9: Path Integrals in Quantum Mechanics

Quantum Field Theory. Victor Gurarie. Fall 2015 Lecture 9: Path Integrals in Quantum Mechanics Quantum Field Theory Victor Gurarie Fall 015 Lecture 9: Path Integrals in Quantum Mechanics 1 Path integral in quantum mechanics 1.1 Green s functions of the Schrödinger equation Suppose a wave function

More information

Why quantum field theory?

Why quantum field theory? Why quantum field theory? It is often said that quantum field theory is the natural marriage of Einstein s special theory of relativity and the quantum theory. The point of this section will be to motivate

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach

Andrea Marini. Introduction to the Many-Body problem (I): the diagrammatic approach Introduction to the Many-Body problem (I): the diagrammatic approach Andrea Marini Material Science Institute National Research Council (Monterotondo Stazione, Italy) Zero-Point Motion Many bodies and

More information

Under evolution for a small time δt the area A(t) = q p evolves into an area

Under evolution for a small time δt the area A(t) = q p evolves into an area Physics 106a, Caltech 6 November, 2018 Lecture 11: Hamiltonian Mechanics II Towards statistical mechanics Phase space volumes are conserved by Hamiltonian dynamics We can use many nearby initial conditions

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Introduction to Path Integrals

Introduction to Path Integrals Introduction to Path Integrals Consider ordinary quantum mechanics of a single particle in one space dimension. Let s work in the coordinate space and study the evolution kernel Ut B, x B ; T A, x A )

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

PLEASE LET ME KNOW IF YOU FIND TYPOS (send  to Teoretisk Fysik KTH Advanced QM (SI2380), Lecture 2 (Summary of concepts) 1 PLEASE LET ME KNOW IF YOU FIND TYPOS (send email to langmann@kth.se) The laws of QM 1. I now discuss the laws of QM and their

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

Wave Packet Representation of Semiclassical Time Evolution in Quantum Mechanics

Wave Packet Representation of Semiclassical Time Evolution in Quantum Mechanics Wave Packet Representation of Semiclassical Time Evolution in Quantum Mechanics Panos Karageorge, George Makrakis ACMAC Dept. of Applied Mathematics, University of Crete Semiclassical & Multiscale Aspects

More information

POSTULATES OF QUANTUM MECHANICS

POSTULATES OF QUANTUM MECHANICS POSTULATES OF QUANTUM MECHANICS Quantum-mechanical states - In the coordinate representation, the state of a quantum-mechanical system is described by the wave function ψ(q, t) = ψ(q 1,..., q f, t) (in

More information

Q U A N T U M M E C H A N I C S : L E C T U R E 5

Q U A N T U M M E C H A N I C S : L E C T U R E 5 Q U A N T U M M E C H A N I C S : L E C T U R E 5 salwa al saleh Abstract This lecture discusses the formal solution of Schrödinger s equation for a free particle. Including the separation of variables

More information

Synchro-Betatron Motion in Circular Accelerators

Synchro-Betatron Motion in Circular Accelerators Outlines Synchro-Betatron Motion in Circular Accelerators Kevin Li March 30, 2011 Kevin Li Synchro-Betatron Motion 1/ 70 Outline of Part I Outlines Part I: and Model Introduction Part II: The Transverse

More information

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Euclidean path integral formalism: from quantum mechanics to quantum field theory : from quantum mechanics to quantum field theory Dr. Philippe de Forcrand Tutor: Dr. Marco Panero ETH Zürich 30th March, 2009 Introduction Real time Euclidean time Vacuum s expectation values Euclidean

More information

A short and personal introduction to the formalism of Quantum Mechanics

A short and personal introduction to the formalism of Quantum Mechanics A short and personal introduction to the formalism of Quantum Mechanics Roy Freeman version: August 17, 2009 1 QM Intro 2 1 Quantum Mechanics The word quantum is Latin for how great or how much. In quantum

More information

p-adic Feynman s path integrals

p-adic Feynman s path integrals p-adic Feynman s path integrals G.S. Djordjević, B. Dragovich and Lj. Nešić Abstract The Feynman path integral method plays even more important role in p-adic and adelic quantum mechanics than in ordinary

More information

1 Notes and Directions on Dirac Notation

1 Notes and Directions on Dirac Notation 1 Notes and Directions on Dirac Notation A. M. Steane, Exeter College, Oxford University 1.1 Introduction These pages are intended to help you get a feel for the mathematics behind Quantum Mechanics. The

More information

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011 Path integrals and the classical approximation D. E. Soper University of Oregon 4 November 0 I offer here some background for Sections.5 and.6 of J. J. Sakurai, Modern Quantum Mechanics. Introduction There

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Phase Space Formulation of Quantum Mechanics

Phase Space Formulation of Quantum Mechanics Phase Space Formulation of Quantum Mechanics Tony Bracken Centre for Mathematical Physics and Department of Mathematics University of Queensland SMFT07, Melbourne, January-February 2007 Lecture 1 Introduction:

More information

The Path Integral Formulation of Quantum Mechanics

The Path Integral Formulation of Quantum Mechanics Based on Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert R. Hibbs, and Feynman s Thesis The Path Integral Formulation Vebjørn Gilberg University of Oslo July 14, 2017 Contents 1 Introduction

More information

1 Quantum fields in Minkowski spacetime

1 Quantum fields in Minkowski spacetime 1 Quantum fields in Minkowski spacetime The theory of quantum fields in curved spacetime is a generalization of the well-established theory of quantum fields in Minkowski spacetime. To a great extent,

More information

8.05, Quantum Physics II, Fall 2013 TEST Wednesday October 23, 12:30-2:00pm You have 90 minutes.

8.05, Quantum Physics II, Fall 2013 TEST Wednesday October 23, 12:30-2:00pm You have 90 minutes. 8.05, Quantum Physics II, Fall 03 TEST Wednesday October 3, :30-:00pm You have 90 minutes. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books). There

More information

Nine Formulations of Quantum Mechanics

Nine Formulations of Quantum Mechanics Nine Formulations of Quantum Mechanics Daniel F. Styer, Miranda S. Balkin, Kathryn M. Becker, Matthew R. Burns, Christopher E. Dudley, Scott T. Forth, Jeremy S. Gaumer, Mark A. Kramer, David C. Oertel,

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/23//2017 Physics 5701 Lecture Outline 1 General Formulation of Quantum Mechanics 2 Measurement of physical quantities and observables 3 Representations

More information

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Symmetry, Integrability and Geometry: Methods and Applications Vol. (5), Paper 3, 9 pages Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Marcos MOSHINSKY and Emerson SADURNÍ

More information

1 Planck-Einstein Relation E = hν

1 Planck-Einstein Relation E = hν C/CS/Phys C191 Representations and Wavefunctions 09/30/08 Fall 2008 Lecture 8 1 Planck-Einstein Relation E = hν This is the equation relating energy to frequency. It was the earliest equation of quantum

More information

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocw.mit.edu 8.33 Relativistic Quantum Field Theory I Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

PRINCIPLES OF QUANTUM MECHANICS. Lecture schedule and meeting hours

PRINCIPLES OF QUANTUM MECHANICS. Lecture schedule and meeting hours EP2210 PRINCIPLES OF QUANTUM MECHANICS July November 2016 Lecture schedule and meeting hours The course will consist of about 42 lectures, including about 8 10 tutorial sessions. However, note that there

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Sketchy Notes on Lagrangian and Hamiltonian Mechanics Sketchy Notes on Lagrangian and Hamiltonian Mechanics Robert Jones Generalized Coordinates Suppose we have some physical system, like a free particle, a pendulum suspended from another pendulum, or a field

More information

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving: When do we use Quantum Mechanics? (Engel 2.1) Basically, when λ is close in magnitude to the dimensions of the problem, and to the degree that the system has a discrete energy spectrum The Schrodinger

More information

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday). PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday. 1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an approximation because of problems with relativistic

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

PRINCIPLES OF QUANTUM MECHANICS. Lecture schedule and meeting hours

PRINCIPLES OF QUANTUM MECHANICS. Lecture schedule and meeting hours EP2210 PRINCIPLES OF QUANTUM MECHANICS July November 2018 Lecture schedule and meeting hours The course will consist of about 42 lectures, including about 8 10 tutorial sessions. However, note that there

More information

To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p:

To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p: 3.2 Construction of the path integral 101 To make this point clear, let us rewrite the integral in a way that emphasizes its dependence on the momentum variable p: q f e iĥt/ q i = Dq e i t 0 dt V (q)

More information

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday,

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday, ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set, 15.09.014. (0 points in total) Problems are due at Monday,.09.014. PROBLEM 4 Entropy of coupled oscillators. Consider two coupled simple

More information

Mathematical Introduction

Mathematical Introduction Chapter 1 Mathematical Introduction HW #1: 164, 165, 166, 181, 182, 183, 1811, 1812, 114 11 Linear Vector Spaces: Basics 111 Field A collection F of elements a,b etc (also called numbers or scalars) with

More information

Canonical Quantization

Canonical Quantization Canonical Quantization March 6, 06 Canonical quantization of a particle. The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced

More information

An Introduction to Quantum Field Theory

An Introduction to Quantum Field Theory An Introduction to Quantum Field Theory Hartmut Wittig Theory Group Deutsches Elektronen-Synchrotron, DESY Notkestrasse 85 22603 Hamburg Germany Lectures presented at the School for Young High Energy Physicists,

More information

Chapter 4: Lagrangian Formalism

Chapter 4: Lagrangian Formalism 28 Chapter 4: Lagrangian Formalism Lagrange s general formulation of mechanics in terms of variational principles shows that conservation of energy arises as a direct consequence of temporal symmetry -

More information

Feynman Path Integrals in Quantum Mechanics

Feynman Path Integrals in Quantum Mechanics Feynman Path Integrals in Quantum Mechanics Christian Egli October, 2004 Abstract This text is written as a report to the seminar course in theoretical physics at KTH, Stockholm. The idea of this work

More information

10. Zwanzig-Mori Formalism

10. Zwanzig-Mori Formalism University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 0-9-205 0. Zwanzig-Mori Formalism Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

1 Position Representation of Quantum State Function

1 Position Representation of Quantum State Function C/CS/Phys C191 Quantum Mechanics in a Nutshell II 10/09/07 Fall 2007 Lecture 13 1 Position Representation of Quantum State Function We will motivate this using the framework of measurements. Consider first

More information

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 1 Coordinate and Momentum Representations Let us consider an eigenvalue problem for a Hermitian

More information

Physics 215 Quantum Mechanics 1 Assignment 5

Physics 215 Quantum Mechanics 1 Assignment 5 Physics 15 Quantum Mechanics 1 Assignment 5 Logan A. Morrison February 10, 016 Problem 1 A particle of mass m is confined to a one-dimensional region 0 x a. At t 0 its normalized wave function is 8 πx

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Lecture 20. Parity and Time Reversal

Lecture 20. Parity and Time Reversal Lecture 20 Parity and Time Reversal November 15, 2009 Lecture 20 Time Translation ( ψ(t + ɛ) = Û[T (ɛ)] ψ(t) = I iɛ ) h Ĥ ψ(t) Ĥ is the generator of time translations. Û[T (ɛ)] = I iɛ h Ĥ [Ĥ, Ĥ] = 0 time

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics

Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics Canonical Transformations and the Hamilton-Jacobi Theory in Quantum Mechanics Jung-Hoon Kim and Hai-Woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Taejon, 305-70,

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

Linear Algebra and Dirac Notation, Pt. 1

Linear Algebra and Dirac Notation, Pt. 1 Linear Algebra and Dirac Notation, Pt. 1 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, 2017 1 / 13

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Approximating the infinite - a model theoretic look at quantum physics

Approximating the infinite - a model theoretic look at quantum physics Approximating the infinite - a model theoretic look at quantum physics Åsa Hirvonen (Joint work with Tapani Hyttinen) Department of Mathematics and Statistics University of Helsinki, Finland Crossing Worlds,

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

QFT at finite Temperature

QFT at finite Temperature Benjamin Eltzner Seminar on Theoretical Elementary Particle Physics and QFT, 13.07.06 Content 1 Path Integral and Partition Function Classical Partition Function The Quantum Mechanical Partition Function

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

INTRODUCTION TO QUANTUM FIELD THEORY

INTRODUCTION TO QUANTUM FIELD THEORY Utrecht Lecture Notes Masters Program Theoretical Physics September 2006 INTRODUCTION TO QUANTUM FIELD THEORY by B. de Wit Institute for Theoretical Physics Utrecht University Contents 1 Introduction 4

More information

Lecture 7. More dimensions

Lecture 7. More dimensions Lecture 7 More dimensions 67 68 LECTURE 7. MORE DIMENSIONS 7.1 Introduction In this lecture we generalize the concepts introduced so far to systems that evolve in more than one spatial dimension. While

More information

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors,

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, chmy564-19 Fri 18jan19 Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, 3. Theorems vs. Postulates Scalar (inner) prod.

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

Angular Momentum in Quantum Mechanics.

Angular Momentum in Quantum Mechanics. Angular Momentum in Quantum Mechanics. R. C. Johnson March 10, 2015 1 Brief review of the language and concepts of Quantum Mechanics. We begin with a review of the basic concepts involved in the quantum

More information

Introduction to Quantum Field Theory

Introduction to Quantum Field Theory Introduction to Quantum Field Theory John Cardy Hilary Term 2012 Version 19/1/12 Abstract These notes are intended to supplement the lecture course Field Theory in Condensed Matter and are not intended

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Time in Quantum Physics: from an extrinsic parameter to an in

Time in Quantum Physics: from an extrinsic parameter to an in Time in Quantum Physics: from an extrinsic parameter to an intrinsic observable 60th Anniversary of Abhay Ashtekar II. Institut für Theoretische Physik, Hamburg (based on joint work with Romeo Brunetti

More information

B. Physical Observables Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If A is such

B. Physical Observables Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If A is such G25.2651: Statistical Mechanics Notes for Lecture 12 I. THE FUNDAMENTAL POSTULATES OF QUANTUM MECHANICS The fundamental postulates of quantum mechanics concern the following questions: 1. How is the physical

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

10. Zwanzig-Mori Formalism

10. Zwanzig-Mori Formalism University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 205 0. Zwanzig-Mori Formalism Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories

Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories EJTP 5, No. 17 (2008) 65 72 Electronic Journal of Theoretical Physics Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories W. I. Eshraim and N. I. Farahat Department of Physics Islamic University

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

Foundations of Mathematical Physics

Foundations of Mathematical Physics Foundations of Mathematical Physics Paul P. Cook and Neil Lambert Department of Mathematics, King s College London The Strand, London WC2R 2LS, UK email: paul.cook@kcl.ac.uk email: neil.lambert@kcl.ac.uk

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Path integrals in quantum mechanics

Path integrals in quantum mechanics Path integrals in quantum mechanics (Appunti per il corso di Fisica Teorica 1 016/17) 14.1.016 Fiorenzo Bastianelli Quantum mechanics can be formulated in two equivalent ways: (i) canonical quantization,

More information