The Particle in a Box

Size: px
Start display at page:

Download "The Particle in a Box"

Transcription

1 Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given: 2008/11/07 Date Revised: 2008/11/07

2 The Particle in a Box Section 5.2 Simple One-Dimensional Problems: The Particle in a Box Page 325 Relation to { x } and { p } Basis States We make the obvious point that our energy eigenstates are not position eigenstates: position operator eigenstates are independent of the Hamiltonian, and our states are just not the same as the position operator eigenstates in the { x }-basis representation, so they are not the same in any representation. We can also easily see that, even though the eigenstates of the Hamiltonian have a definite energy, they do not have a definite momentum. The momentum eigenstates are not dependent on the form of the Hamiltonian; it is always true that ψ p,x (x) = x p = 1 2 π e i p x (5.41) Note that we consider momentum eigenstates for the entire real line because the inner product space we began with was for functions on the entire real line: while the wavefunction vanishes outside the box, it is still a well-defined function there. The position basis matrix representation ψ En,x (x) = x ψ En of our eigenstate ψ En is different from the above position-basis matrix representations of the p basis elements in two ways:

3 The Particle in a Box (cont.) Section 5.2 Simple One-Dimensional Problems: The Particle in a Box Page 326 Since the ψ En,x (x) are sines and cosines, we would need to take linear combinations of states at p and p to obtain them. h i More importantly, ψ En,x (x) only equal to ψ p,x (x) over the interval L 2, L, 2 even though both ψ En,x (x) and ψ p,x (x) are defined on the entire real line. Hence, our energy eigenstates are simply not equal to momentum eigenstates. These facts are not surprising and arise simply from the fact that the Hamiltonian makes dynamics happen. In order for { x } basis states to be eigenstates of the Hamiltonian, a particle, once placed at a point, must never move from that point or spread out in position. Not even the free particle Hamiltonian allows that! And, while the free particle Hamiltonian s eigenstates are also momentum eigenstates, that clearly holds because there is no potential to affect the momentum of the particle. Once one includes any kind of potential, there is a force that can change the particle momentum and thus eigenstates of the Hamiltonian simply cannot be eigenstates of momentum.

4 General Considerations on Bound States and Quantization Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 327 Whence Quantization? We made the point above that the quantization of energies for the particle in a box arises because of boundary conditions imposed by the potential energy function, not by the postulates. This argument holds generally for the bound states of any potential. We present a less detailed version of the argument given in Shankar Section 5.2 on this point. Bound states are states whose energy E is less than the asymptotic value of the potential at ±. Classically, this is the case where the particle simply does not have enough energy to escape to ±. Quantum mechanically, the wavefunction must fall off at ±. To make the argument, we need to count up the number of free parameters and see how they are determined by the boundary conditions. For an arbitrary potential, one can think of breaking it up into small intervals of size ɛ. As ɛ 0, the potential can be treated as piecewise constant. We thus have our exponential solutions in any interval, with the argument being imaginary or real depending on whether E is greater than or less than the value of V (x) in the interval. There are four coefficient degrees of freedom for each of these intervals (the real and imaginary parts of the A and B coefficients).

5 General Considerations on Bound States and Quantization (cont.) Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 328 We have matching of both ψ x (x) and d ψx (x) at all the boundaries (the derivative dx must now match also because the steps in the potential are finite, as opposed to the particle-in-a-box case). That imposes four conditions (two equations each with real and imaginary parts) at each edge of the interval. Now, let us cascade the conditions from left to right. Suppose the four coefficient degrees of freedom in the interval have been set. That gives the four conditions that the wavefunction in the first finite interval must meet. The four coefficent degrees of freedom in the first finite interval thus are set. This procedure cascades through the last finite interval, which sets the four conditions at the last boundary. This provides enough information to set the four coefficient degrees of freedom in the + infinite interval. So, once the four coefficient degrees of freedom in the interval and the energy E are set, the rest of the wavefunction is determined. Now, let s consider how these first four coefficient degrees of freedom are set depending on whether we have a free or bound state.

6 General Considerations on Bound States and Quantization (cont.) Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 329 For a free state, we are allowed to keep both the e ±i k x solutions since there is no worry about either blowing up at ±. That means we have both the A and B coefficients, and so we really have four degrees of freedom. For free states, we will always have two energy-degenerate states with the same energy, a right-going state and a left-going state. One can see this by noting that the energy eigenvalue of the Schrödinger Equation does not care about the sign of the argument of the imaginary exponential because two derivatives are taken: d 2 dx 2 e±i k x = k 2 e ±i k x So, for a free particle, there will always be two independent, energy-degenerate solutions in the ± regions. Since they are independent, their overall phases are arbitrary and independent. We make an arbitrary choice for this phase (e.g., take A and B to be real in the region) and that sets the phase of the two independent solutions. The amplitude of A and B in the region will then be determined by normalization, as the two states must individually be normalized (to delta functions, since they do not decay away at ± ). Once we have set A and B in the region, the matching conditions cascade through to fully determine the wavefunction on the rest of the real line out to +. Thus, in the end, we are able to meet all the conditions on the wavefunction using only the coefficient degrees of freedom. No quantization is required.

7 General Considerations on Bound States and Quantization (cont.) Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 330 For a bound state, the wavefunction must become real exponential outside of some x for a given value of E because E is less than V somewhere: recall that the solution in any region where the potential is piecewise constant is So, when V > E, κ is real. r 2 m e ±κ x with κ = (V E) 2 Once we are forced into the real exponential solution, we acquire an additional condition we did not have in the free-particle case: the wavefunction may not blow up at ± in order for it to be normalizable. This eliminates two of the four coefficient degrees of freedom in each infinite interval. Essentially, we get four additional conditions that we didn t have in the free particle case, which sets A = 0 in the region and B = 0 in the + region. In the interval, this presents no problem: rather than having two independent solutions, we have a single solution, but we still pick an arbitrary phase and normalization for the wavefunction in this region as before. Again, the matching conditions cascade through. However, now in the + region, instead of having four coefficient degrees of freedom to use to meet the four matching conditions, we only have the A coefficient degree of freedom because B = 0 is necessary to prevent the wavefunction from blowing up at +. The only way to meet the four matching conditions is to restrict the freedom in E. Hence, we obtain energy quantization.

8 General Considerations on Bound States and Quantization (cont.) Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 331 The final case to consider is when the energy is such that the particle is bound on one side and free on the other. In such cases, there will be no energy quantization, but there will also not be independent left- and right-going solutions. The easiest way to see this is to begin defining the wavefunction on the bound side, which we will take to be the side without loss of generality. The argument goes through as above, resulting in four matching conditions at the left edge of the + interval. Here, we can satisfy the four matching conditions without quantizing E simply be allowing the four matching conditions to set A and B in this region. A and B get tied together, tying the nominally independent e ±i k x solution together. So, being bound on one side removes energy degeneracy but does not result in quantization. Classically, the way to see this is that, if you start out with a left-going state heading into this potential, it will encounter the potential barrier at and be turned around into a right-going state. Since the eigenstates of the Hamiltonian are time-independent, they must contain both these behaviors. Thus, the solution is a superposition of left-going and right-going in the unbound region. (As an aside, this is also a way to think about the solutions in the bound regions for which E > V : since the particle is bound and thus bounces off the potential barriers on the two sides, it can be in neither a pure left-going or right-going state. Thus, our solution in bound regions is always the sum of the left- and right-going waves.)

9 General Considerations on Bound States and Quantization (cont.) Section 5.3 Simple One-Dimensional Problems: General Considerations on Bound States and Quantization Page 332 How did this all of this function in our particle in a box case? One can think of it in terms of keeping V 0 finite, considering only the bound state solutions, and then letting V 0 go to infinity. With finite V 0, the above generic bound state explanation would apply, resulting in energy quantization for bound states. Then, letting V 0 would not change this, but would simply eliminate any free states. We did not do the problem in this fashion because, by letting V 0 a bit earlier, we could conclude that the wavefunction vanished in the ± regions. Rather than setting four conditions at the left side of the box using the wavefunction and its derivative, we instead set two conditions at each side of the both on the wavefunction alone. This was still four total conditions on the region II solution, fully specifying it. It would have been a bit more painful to do it in the generic way because we would have to carry along the non-vanishing region I and III solutions a bit longer, resulting in more algebra.

10 The Continuity Equation for Probability Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 333 Analogy to Electromagnetism Postulate 3 of QM tells us to interpret x ψ(t) as the probability P(x, t) that the position of the particle is in the interval x to x + dx at time t; P(x, t) is a probability density for finding the particle. This is similar to the idea of a charge density in electromagnetism, ρ(x). In the case of electromagnetism, we have the following important results: The charge in an infinitesimal interval dx or volume d 3 x is dq(x, t) = ρ(x, t) dx or dq( x, t) = ρ( x, t) d 3 x The total charge in an interval [a, b] or volume V is Z b Q(t) = a The total charge over all space is conserved. Z dx ρ(x, t) or Q(t) = d 3 x ρ( x, t) V

11 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 334 The electric current density is defined as j(x, t) = ρ(x, t) v(x, t) or j( x, t) = ρ( x, t) v( x, t) where v or v is the velocity of the charges currently at position x or x at time t. s The charge density satisfies the continuity equation ρ(x, t) t + j(x, t) x = 0 or ρ( x, t) t + j(x, t) = 0 Note the use of partial derivatives now. If one thinks of the charge density as a density smoothed over a large number of point charges, those charges are moving their position is a function of t. By, we mean do not move along t with the charge that moves at velocity v (or v), just sit at a point x and watch the charges flow by and measure the rate of change of the density at the point x and by, we mean look at the gradient in x at a fixed point x, again do x not move in x with the charges.

12 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 335 The integral version of the continuity equation is or Z b dx ρ(x, t) + [j(b, t) j(a, t)] = 0 t a Z Z d 3 x ρ( x, t) + d 2 x ˆn( x) j( x, t) = 0 t V S V In the one-dimensional case, we initially had an integral over the interval [a, b] of the perfect differential j(x,t), which we simply integrated to get the x difference of the values of j(x, t) at the boundaries. In the three-dimensional case, we used Gauss s law to convert the volume integral of the divergence of j( x, t) to a surface integral; ˆn is the outward surface normal at x. Note that, in both cases, the boundary is fixed in time. The continuity equation says that charge must flow from one point to another in a smooth fashion no sudden appearance or disappearance of charge is possible. Given that overall charge is conserved, we then have that the electrical current density must either vanish at infinity or the total current flux must vanish.

13 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 336 We can prove total conservation and the continuity equation for quantum-mechanical probability density, which is P(x, t) = x ψ(t) 2 = ψ x (x, t) 2 or P( x, t) = x ψ(t) 2 = ψ x ( x, t) 2 (5.42) We shall see that the approprate definition for the associated probability current is or j(x, t) = i 2 m i j( x, t) = 2 m ψx (x, t) x «ψx (x, t) ψx (x, t) x ψ x (x, t) ψ x ( x, t) ψ x ( x, t) ψ x ( x, t) ψ x ( x, t) (5.43)

14 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 337 First, let us prove that total probability is conserved. This is just a matter of using the fact that the Schrödinger Equation implies unitary evolution of the state when H is time-independent: Z V Z d 3 x P( x, t) = d 3 x ψ(t) x x ψ(t) = ψ(t) ψ(t) V = ψ(0) U (t)u(t) ψ(0) = ψ(0) ψ(0) Hence, if we take a time derivative of the integrated probability, we get zero: the total probability is conserved:. Z d d 3 x P( x, t) = 0 (5.44) dt V

15 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 338 Now, let us prove the other important result from E&M, the continuity equation. We prove this by explicitly taking the time derivative of the probability density using the Schrödinger Equation. We will prove this for the three-dimensional case; the restriction of the proof to one dimension will be clear. Note also that we immediately restrict to the position-space representation ψ x ( x, t) = x ψ(t) because we are really only interested in the probability density and current in this representation. It would be interesting to discuss the probability current in other representations (momentum, energy, etc.), but is not relevant here.

16 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 339 We have P( x, t) t = ψx ψx ( x, t) ( x, t) + ψ x ( x, t) ψ x ( x, t) t t = ψx ( x, t)» i» i H( x, t)ψx ( x, t) + ψ x ( x, t) = i ψ x ( x, t)» 2 2 ψ x ( x, t) + V ( x, t)ψ x ( x, t) 2 m + i» ψx ( x, t) 2 2 m H ( x, t)ψx ( x, t) 2 ψx ( x, t) + V ( x, t)ψx ( x, t) = i h ψx ( x, t) 2 ψ x ( x, t) ψ x ( x, t) 2 ψx ( x, t) 2 m where we used the Schrödinger Equation and its conjugate to get from the first line to the second, wrote out the Hamiltonian in the third line (using the fact that the potential V ( x, t) must be real for the Hamiltonian to be Hermitian and generalizing d 2 /dx 2 to 2 for three dimensions), and then canceled the V ( x, t) term to get the last line. i

17 The Continuity Equation for Probability (cont.) Section 5.4 Simple One-Dimensional Problems: The Continuity Equation for Probability Page 340 Finally, pull one to the front of the expression and manipulate a bit: P( x, t) t» = i 2 m» i 2 m = j( x, t) h ψx ( x, t) ψ x ( x, t) ψ x ( x, t) ψ i x ( x, t) h i ψ x ( x, t) ψx ( x, t) ψx ( x, t) ψ x ( x, t) and we have our desired result for the continuity equation: P( x, t) t + j( x, t) = 0 (5.45)

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

Lecture 6. 1 Normalization and time evolution 1. 2 The Wavefunction as a Probability Amplitude 3. 3 The Probability Current 5

Lecture 6. 1 Normalization and time evolution 1. 2 The Wavefunction as a Probability Amplitude 3. 3 The Probability Current 5 Lecture 6 B. Zwiebach February 23, 2016 Contents 1 Normalization and time evolution 1 2 The Wavefunction as a Probability Amplitude 3 3 The Probability Current 5 4 Probability current in 3D and current

More information

Bound and Scattering Solutions for a Delta Potential

Bound and Scattering Solutions for a Delta Potential Physics 342 Lecture 11 Bound and Scattering Solutions for a Delta Potential Lecture 11 Physics 342 Quantum Mechanics I Wednesday, February 20th, 2008 We understand that free particle solutions are meant

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

Generators for Continuous Coordinate Transformations

Generators for Continuous Coordinate Transformations Page 636 Lecture 37: Coordinate Transformations: Continuous Passive Coordinate Transformations Active Coordinate Transformations Date Revised: 2009/01/28 Date Given: 2009/01/26 Generators for Continuous

More information

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3 Contents Lecture 1: Solving the Time-Independent Schrödinger Equation B. Zwiebach March 14, 16 1 Stationary States 1 Solving for Energy Eigenstates 3 3 Free particle on a circle. 6 1 Stationary States

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

6. Qualitative Solutions of the TISE

6. Qualitative Solutions of the TISE 6. Qualitative Solutions of the TISE Copyright c 2015 2016, Daniel V. Schroeder Our goal for the next few lessons is to solve the time-independent Schrödinger equation (TISE) for a variety of one-dimensional

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Physics 342 Lecture 34 Relativistic Quantum Mechanics Lecture 34 Physics 342 Quantum Mechanics I Wednesday, April 30th, 2008 We know that the Schrödinger equation logically replaces Newton s second law

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4 Lectures and : Hydrogen Atom B. Zwiebach May 4, 06 Contents The Hydrogen Atom Hydrogen atom spectrum 4 The Hydrogen Atom Our goal here is to show that the two-body quantum mechanical problem of the hydrogen

More information

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation Chemistry 4531 Mathematical Preliminaries Spring 009 I. A Primer on Differential Equations Order of differential equation Linearity of differential equation Partial vs. Ordinary Differential Equations

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5 BASICS OF QUANTUM MECHANICS 1 Reading: QM Course packet Ch 5 Interesting things happen when electrons are confined to small regions of space (few nm). For one thing, they can behave as if they are in an

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

Physics 486 Discussion 5 Piecewise Potentials

Physics 486 Discussion 5 Piecewise Potentials Physics 486 Discussion 5 Piecewise Potentials Problem 1 : Infinite Potential Well Checkpoints 1 Consider the infinite well potential V(x) = 0 for 0 < x < 1 elsewhere. (a) First, think classically. Potential

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Wave Mechanics Relevant sections in text: , 2.1

Wave Mechanics Relevant sections in text: , 2.1 Wave Mechanics Relevant sections in text: 1.1 1.6, 2.1 The wave function We will now create a model for the system that we call a particle in one dimension. To do this we should define states and observables.

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev Problem The ionization potential tells us how much energy we need to use to remove an electron, so we know that any energy left afterwards will be the kinetic energy of the ejected electron. So first we

More information

Q U A N T U M M E C H A N I C S : L E C T U R E 5

Q U A N T U M M E C H A N I C S : L E C T U R E 5 Q U A N T U M M E C H A N I C S : L E C T U R E 5 salwa al saleh Abstract This lecture discusses the formal solution of Schrödinger s equation for a free particle. Including the separation of variables

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline:

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: Linearly Varying Potential Triangular Potential Well Time-Dependent Schrödinger Equation Things you should know when you leave Key

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 9, February 8, 2006 The Harmonic Oscillator Consider a diatomic molecule. Such a molecule

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Project: Vibration of Diatomic Molecules

Project: Vibration of Diatomic Molecules Project: Vibration of Diatomic Molecules Objective: Find the vibration energies and the corresponding vibrational wavefunctions of diatomic molecules H 2 and I 2 using the Morse potential. equired Numerical

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u Problem Set 7 Solutions 8.4 Spring 13 April 9, 13 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators (a) (3 points) Suppose φ u is an eigenfunction of U with eigenvalue u,

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Time-Independent Perturbation Theory

Time-Independent Perturbation Theory 4 Phys46.nb Time-Independent Perturbation Theory.. Overview... General question Assuming that we have a Hamiltonian, H = H + λ H (.) where λ is a very small real number. The eigenstates of the Hamiltonian

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling Chemistry 460 all 07 Dr Jean M Standard September 8, 07 Quantum Mechanical Tunneling Definition of Tunneling Tunneling is defined to be penetration of the wavefunction into a classically forbidden region

More information

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates.

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates. Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates. We have now seen that the wavefunction for a free electron changes with time according to the Schrödinger Equation

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

1 Multiplicity of the ideal gas

1 Multiplicity of the ideal gas Reading assignment. Schroeder, section.6. 1 Multiplicity of the ideal gas Our evaluation of the numbers of microstates corresponding to each macrostate of the two-state paramagnet and the Einstein model

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 14 Exercises on Quantum Expectation Values (Refer Slide Time: 00:07) In the last couple

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

-state problems and an application to the free particle

-state problems and an application to the free particle -state problems and an application to the free particle Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 September, 2013 Outline 1 Outline 2 The Hilbert space 3 A free particle 4 Keywords

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I Physics 342 Lecture 22 The Hydrogen Atom Lecture 22 Physics 342 Quantum Mechanics I Friday, March 28th, 2008 We now begin our discussion of the Hydrogen atom. Operationally, this is just another choice

More information

PHYS-454 The position and momentum representations

PHYS-454 The position and momentum representations PHYS-454 The position and momentum representations 1 Τhe continuous spectrum-a n So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.! n

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0) Phys46.nb 89 on the same quantum state. i.e., if we have initial condition ψ(t ) χ n (t ) (5.41) then at later time ψ(t) e i ϕ(t) χ n (t) (5.4) This phase ϕ contains two parts ϕ(t) - E n(t) t + ϕ B (t)

More information

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current Prolem Set 5 Solutions 8.04 Spring 03 March, 03 Prolem. (0 points) The Proaility Current We wish to prove that dp a = J(a, t) J(, t). () dt Since P a (t) is the proaility of finding the particle in the

More information

Postulates of quantum mechanics

Postulates of quantum mechanics Postulates of quantum mechanics Armin Scrinzi November 22, 2012 1 Postulates of QM... and of classical mechanics 1.1 An analogy Quantum Classical State Vector Ψ from H Prob. distr. ρ(x, p) on phase space

More information

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =... Physics 606, Quantum Mechanics, Final Exam NAME Please show all your work. (You are graded on your work, with partial credit where it is deserved.) All problems are, of course, nonrelativistic. 1. Consider

More information

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory Physics 202 Laboratory 5 Linear Algebra Laboratory 5 Physics 202 Laboratory We close our whirlwind tour of numerical methods by advertising some elements of (numerical) linear algebra. There are three

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L "

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L Chem 352/452 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 26 Christopher J. Cramer Lecture 8, February 3, 26 Solved Homework (Homework for grading is also due today) Evaluate

More information

Why quantum field theory?

Why quantum field theory? Why quantum field theory? It is often said that quantum field theory is the natural marriage of Einstein s special theory of relativity and the quantum theory. The point of this section will be to motivate

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 4 Postulates of Quantum Mechanics I In today s lecture I will essentially be talking

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

Section 9 Variational Method. Page 492

Section 9 Variational Method. Page 492 Section 9 Variational Method Page 492 Page 493 Lecture 27: The Variational Method Date Given: 2008/12/03 Date Revised: 2008/12/03 Derivation Section 9.1 Variational Method: Derivation Page 494 Motivation

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer Lecture 5, January 27, 2006 Solved Homework (Homework for grading is also due today) We are told

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/23//2017 Physics 5701 Lecture Outline 1 General Formulation of Quantum Mechanics 2 Measurement of physical quantities and observables 3 Representations

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

Quantum Mechanics C (130C) Winter 2014 Final exam

Quantum Mechanics C (130C) Winter 2014 Final exam University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C Winter 014 Final exam Please remember to put your name on your exam booklet. This is a closed-book

More information

Lecture 2: simple QM problems

Lecture 2: simple QM problems Reminder: http://www.star.le.ac.uk/nrt3/qm/ Lecture : simple QM problems Quantum mechanics describes physical particles as waves of probability. We shall see how this works in some simple applications,

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Under evolution for a small time δt the area A(t) = q p evolves into an area

Under evolution for a small time δt the area A(t) = q p evolves into an area Physics 106a, Caltech 6 November, 2018 Lecture 11: Hamiltonian Mechanics II Towards statistical mechanics Phase space volumes are conserved by Hamiltonian dynamics We can use many nearby initial conditions

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006 Chem 350/450 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 006 Christopher J. Cramer ecture 7, February 1, 006 Solved Homework We are given that A is a Hermitian operator such that

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

= X = X ( ~) } ( ) ( ) On the other hand, when the Hamiltonian acts on ( ) one finds that

= X = X ( ~) } ( ) ( ) On the other hand, when the Hamiltonian acts on ( ) one finds that 6. A general normalized solution to Schrödinger s equation of motion for a particle moving in a time-independent potential is of the form ( ) = P } where the and () are, respectively, eigenvalues and normalized

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 16 The Quantum Beam Splitter (Refer Slide Time: 00:07) In an earlier lecture, I had

More information

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates Quantum Mechanics: Postulates 25th March 2008 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

Scattering in one dimension

Scattering in one dimension Scattering in one dimension Oleg Tchernyshyov Department of Physics and Astronomy, Johns Hopkins University I INTRODUCTION This writeup accompanies a numerical simulation of particle scattering in one

More information

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Thursday April 4 Problem Set 7 Due Tuesday April 9 at 11.00AM Assigned Reading: E&R 6 all Li. 7 1 9, 8 1 Ga. 4 all, 6

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information

Section 11: Review. µ1 x < 0

Section 11: Review. µ1 x < 0 Physics 14a: Quantum Mechanics I Section 11: Review Spring 015, Harvard Below are some sample problems to help study for the final. The practice final handed out is a better estimate for the actual length

More information

Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition

Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition Steven Kenneth Kauffmann Abstract The quantum mechanics status of the probability vector current

More information

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing International Journal of Engineering and Advanced Research Technology (IJEART) Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing N. B. Okelo Abstract In this paper

More information

1 Planck-Einstein Relation E = hν

1 Planck-Einstein Relation E = hν C/CS/Phys C191 Representations and Wavefunctions 09/30/08 Fall 2008 Lecture 8 1 Planck-Einstein Relation E = hν This is the equation relating energy to frequency. It was the earliest equation of quantum

More information

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System Appendix A The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System Real quantum mechanical systems have the tendency to become mathematically

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well

Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well 22.101 Applied Nuclear Physics (Fall 2006) Lecture 3 (9/13/06) Bound States in One Dimensional Systems Particle in a Square Well References - R. L. Liboff, Introductory Quantum Mechanics (Holden Day, New

More information

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

PLEASE LET ME KNOW IF YOU FIND TYPOS (send  to Teoretisk Fysik KTH Advanced QM (SI2380), Lecture 2 (Summary of concepts) 1 PLEASE LET ME KNOW IF YOU FIND TYPOS (send email to langmann@kth.se) The laws of QM 1. I now discuss the laws of QM and their

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 9 Introducing Quantum Optics

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 9 Introducing Quantum Optics Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 9 Introducing Quantum Optics (Refer Slide Time: 00:07) In the last lecture I gave

More information

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 Page 757 Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 The Eigenvector-Eigenvalue Problem of L z and L 2 Section

More information

Lecture 4 (Sep. 18, 2017)

Lecture 4 (Sep. 18, 2017) Lecture 4 8.3 Quantum Theory I, Fall 07 Lecture 4 (Sep. 8, 07) 4. Measurement 4.. Spin- Systems Last time, we said that a general state in a spin- system can be written as ψ = c + + + c, (4.) where +,

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II:

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II: Quantum Mechanics and Atomic Physics Lecture 8: Scattering & Operators and Expectation Values http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Summary of Last Time Barrier Potential/Tunneling Case

More information