The Photon Counting Histogram: Statistical Analysis of Single Molecule Populations

Size: px
Start display at page:

Download "The Photon Counting Histogram: Statistical Analysis of Single Molecule Populations"

Transcription

1 The Photon Counting Histogram: Statistical Analysis of Single Molecule Populations E. Gratton Laboratory for Fluorescence Dynamics University of California, Irvine

2 Transition from FCS The Autocorrelation function only depends on fluctuation duration and fluctuation density independent of excitation power PCH: distribution of intensities independent of time

3 Fluorescence Trajectories counts Time sec Fluorescent Monomer: Intensity = 115, cps counts Time sec Aggregate: Intensity = 111, cps

4 Photon Count Histogram PCH 1.E+5 1.E+5 1.E+5 logoccurences 1.E+4 1.E+3 1.E+ 1.E+1 logoccurences 1.E+4 1.E+3 1.E+ 1.E+1 logoccurences 1.E+4 1.E+3 1.E+ 1.E+1 1.E counts 1.E counts 1.E counts Can we quantitate this? What contributes to the distribution of intensities?

5 Contribution from the detector noise Fixed Particle Noise Shot Noise Counts Time logoccurances counts Noise is Poisson Poi, exp!

6 The Point Spread Function PSF 3 exp, z z r z r I DG 4 exp 4, 4 4 z r z z r I GL 1 z R z z z R One Photon Confocal: Two Photon: Contribution from the profile of illumination

7 Single Particle PCH LogProbability Counts LogProbability Counts LogProbability Counts Have to sum up the poissonian distributions for all possible positions of the particle within the PSF p 1 1 V V Poi, PSF r dr

8 What if I have two particles in the PSF? Have to calculate every possible position of the second particle for each possible position of the first!

9 Contribution from several particles of same brightness Combining Distributions Particle 1 Particle Together Time + = Time Time logoccurences + logoccurences = logoccurences counts counts counts

10 Combining Distributions Particle 1 Particle Together Time + = Time Time logoccurences logoccurences = logoccurences counts counts counts

11 Convolution Sum up all combinations of two probability distributions joint probability distribution Distributions particles must be independent 1 1 Log Probability Log Probability Intensity Intensity p 1 r r p 1 r p r

12 More Particles r r n n n r p r p p p p p p p p p p Contribution from particles of different brightness

13 How Many Particles Do We Have in the PSF? P n, N Poi n, N logoccurances particles in PSF Particle occupation fluctuates around average, N with a poissonian distribution Calculate poisson weighted average of n particle distributions PCH, N n p P n, N n

14 Multiple Species Species are independent so just convolute! 1 um Fluorescein 1 um R11 1 um Fl & 1uM R11 logoccurances logoccurances = logoccurances counts counts counts

15 Recap: Factors that contribute to the final broadening of the PCH initial distribution Fixed Particle Shot Noise Sum over PSF 1 ParticleConvolve PCH w/ Self Particle PCH Conv. with 3 Particle 1 particle PCH PCH Average weighted by number probability Species 1 PCH Species PCH convolution total broadening Final PCH

16 Method Sum up Poisson distributions from all possible arrangements and number of fluorophores in excitation volume PSF Intensity weighted sum of all possible single particle histograms Poisson functions Convolution to get multiple particle histograms Number probability weighted sum of multiple particle histograms Convolution to get multi species histograms Chen et al., Biophys. J., 1999, 77, 553.

17 Fitting PCH model PCH observed M M PCH observed 1 PCH observed d max M is number of observations d is number of fitting parameters Chen et al., Biophys. J., 1999, 77, 553.

18 Model Test 1.E+ 1.E+ 1.E-1 1.E-1 logoccurences 1.E- 1.E-3 1.E-4 logoccurences 1.E- 1.E-3 1.E-4 1.E-5 1.E-5 1.E E counts counts = 9,3 cpsm N = 1.8 = 91,33 cpsm N =.1

19 Hypothetical situation: Protein Interactions proteins are labeled with a fluorophore Proteins are soluble How do we assess interactions between these proteins?

20 Dimer has double the brightness + = monomer = x monomer All three species are present in equilibrium mixture Typical one photon monomer = 1, cpsm

21 Photon Count Histogram PCH E+5 1.E+5 1.E+5 logoccurances 1.E+4 1.E+3 1.E+ 1.E+1 logoccurances 1.E+4 1.E+3 1.E+ 1.E+1 logoccurances 1.E+4 1.E+3 1.E+ 1.E+1 1.E counts 1.E counts 1.E counts

22 Simulation Solution E+ 1.E+ 1.E-1 1.E-1 logoccurences 1.E- 1.E-3 1.E-4 1.E-5 logoccurences 1.E- 1.E-3 1.E-4 1.E-5 1.E E counts counts = 9, cpsm = 16, cpsm N = 1.3 N =.73

23 Global Fitting: Fit Data Sets Simultaneously E+ 1.E+ 1.E-1 1.E-1 logoccurences 1.E- 1.E-3 1.E-4 logoccurences 1.E- 1.E-3 1.E-4 1.E-5 1.E-5 1.E counts = 9, cpsm N = 1.3 Lin 1.E counts = 9, cpsm N 1 =.9 = 18,1 cpsm N =.5 or

24 What we measure is the number of particles in the PSF. How Do We Get Concentrations? N is defined relative to PSF volume One photon: V DG w / 3/ 3 z Two photon: w 4 V GL Definition is same as for FCS V PSF Can use FCS to determine w and maybe z w =.1 um, z = 1.1 um, V PSF =.91 um 3, C = 3 nm PSF r dr

25 How to Improve Accuracy Minimize sources of instrument noise PSF heterogeneity Shot noise Maximize particle burst amplitudes

26 Effect of Brightness Probability E-5 1E-6 1E-7 1E-8 PCH 1E-9 1E-1 Poisson 1E-11 1E Counts Probability PCH Poisson Counts = 1, cpsm = 1, cpsm

27 Saturation Effect Rhodamine 11 on the Zeiss Confocor 3 6 uw laser 1 uw laser 1.1 logoccurences weighted residuals counts Multi Species Fit logoccurences.1 weighted residuals counts Laser power is not an infinite source of brightness!

28 Concentration Effect Brightness increases by 1% Brightness increases by 1% Probability E-5 1E-6 1E-7 1E-8 PCH 1E-9 1E-1 Poisson 1E-11 1E N=1 N=1 Probability Counts Counts Poisson PCH Note: if N is too low, experiment becomes photon limited

29 Sampling Time Effect Gtau E-5 1.E-3 1.E-1 tau s Brightness cpsm E-5 1.E-3 1.E-1 Bin Size s Number E-5 1.E-3 1.E-1 Bin Size s Again, shorter sampling leads to photon limited acquisition In general sample as long as possible without diffusion averaging Wu and Mueller, Biophys. J., 5, 89, 71.

30 PSF X,Y, and Z Dimensions Don t Matter V PSF =.8 fl 1.E+ 1.E-1 Z V PSF =.8 fl logoccurences 1.E- 1.E-3 1.E-4 1.E-5 1.E counts X

31 Functional Form DOES Matter 1.E+ 1.E-1 logoccurences 1.E- 1.E-3 1.E-4 1.E-5 1.E counts poisson 3DG GL

32 Functional Form Matters for PCH PSF z Profile 1.E+ 9.E-1 8.E-1 PCH 7.E-1 Intensity Intensity Log 6.E-1 5.E-1 4.E-1 3.E-1.E-1 1.E- 1.E E+ 1.E-1 1.E- 1.E-3 1.E-4 1.E-5 1.E-6 1.E-7 1.E-8 1.E-9 1.E-1 3D Gaussian GL Squared z um GL Squared 3D Gaussian 4 6 Probability Gauss- Lorentz Squared 3D Gaussian counts per time bin z um

33 Point Spread Function Effects p 1 1 V V Poi, PSF r dr This equation will wor for ANY PSF shape.

34 Alternative Methods Fluorescence Cumulant Analysis FCA Mueller Biophys. J. 4, 86, Similar to method of moments Any distribution can be described by a sum of moments Simple algebraic formulas for cumulants Fluorescence Intensity Distribution Analysis FIDA Kas et al. PNAS 1999, 96, Fits PSF in fourier transformed space Fits to non physical parameterized PSF

35 D PCH Red Channel Counts Green Channel Counts Red Channel Counts Green Channel Counts

36 Calculating the D PCH Function ;, / 1 /, ;,, N PCH N PCH A A A A A B A B A N x x N N x P 1,, the binomial distribution: We can find the D PCH function from the single channel PCH function! Chen et al., Biophys. J., 5, 88,

37 Summary The photon count histogram can be modeled by integration of component noise sources Heterogeneous samples can be resolved through global analysis Accuracy is related to magnitude of particle fluctuations relative to instrument fluctuations

Introduction to FCS PCH analysis Cross-correlation

Introduction to FCS PCH analysis Cross-correlation Introduction to FCS PCH analysis Cross-correlation Enrico Gratton Laboratory for Fluorescence Dynamics University of California, Irvine From cuvette to the microscope 1. Excitation & Emission Spectra Local

More information

The Photon Counting Histogram (PCH)

The Photon Counting Histogram (PCH) The Photon Counting Histogram (PCH) While Fluorescence Correlation Spectroscopy (FCS) can measure the diffusion coefficient and concentration of fluorophores, a complementary method, a photon counting

More information

Introduction to FCS. Enrico Gratton. Laboratory for Fluorescence Dynamics Department of Biomedical Engineering University of California, Irvine

Introduction to FCS. Enrico Gratton. Laboratory for Fluorescence Dynamics Department of Biomedical Engineering University of California, Irvine Introduction to FCS Enrico Gratton Laboratory for Fluorescence Dynamics Department of Biomedical Engineering University of California, Irvine Outline What is diffusion? Diffusion of molecules Diffusion

More information

Lecture 7 FCS, Autocorrelation, PCH, Cross-correlation

Lecture 7 FCS, Autocorrelation, PCH, Cross-correlation Lecture 7 FCS, Autocorrelation, PCH, Cross-correlation Joachim Mueller Principles of Fluorescence Techniques Laboratory for Fluorescence Dynamics Figure and slide acknowledgements: Enrico Gratton Historic

More information

Measuring Colocalization within Fluorescence Microscopy Images

Measuring Colocalization within Fluorescence Microscopy Images from photonics.com: 03/01/2007 http://www.photonics.com/article.aspx?aid=39341 Measuring Colocalization within Fluorescence Microscopy Images Two-color fluorescence-based methods are uncovering molecular

More information

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08 Increasing your confidence Proving that data is single molecule Chem 184 Lecture David Altman 5/27/08 Brief discussion/review of single molecule fluorescence Statistical analysis of your fluorescence data

More information

THE JOURNAL OF CHEMICAL PHYSICS 124,

THE JOURNAL OF CHEMICAL PHYSICS 124, THE JOURNAL OF CHEMICAL PHYSICS 124, 134704 2006 Quantitative determination of the single-molecule detection regime in fluorescence fluctuation microscopy by means of photon counting histogram analysis

More information

Cumulant Analysis in Fluorescence Fluctuation Spectroscopy

Cumulant Analysis in Fluorescence Fluctuation Spectroscopy Biophysical Journal Volume 86 June 2004 3981 3992 3981 Cumulant Analysis in Fluorescence Fluctuation Spectroscopy JoachimD.Müller School of Physics and Astronomy, University of Minnesota, Minneapolis,

More information

Supplementary Figures Supplementary Figure 1: Estimation of the error of the number and brightness of molecules in a single cluster; Simulation

Supplementary Figures Supplementary Figure 1: Estimation of the error of the number and brightness of molecules in a single cluster; Simulation Supplementary Figures Supplementary Figure 1: Estimation of the error of the number and brightness of molecules in a single cluster; Simulation (a,c) Relative estimated numbers of molecules ; (b,d) relative

More information

Fig. S5: Same as Fig. S3 for the combination Sample

Fig. S5: Same as Fig. S3 for the combination Sample Fig. S: Study of the histogram of the distribution of values { in; i N; N } represented in Fig... Logarithm of the posterior probability (LPP) of bin number N (as defined in ref. ). The maximum is obtained

More information

Supplemental Materials and Methods

Supplemental Materials and Methods Supplemental Materials and Methods Time-resolved FRET (trfret) to probe for changes in the Box A/A stem upon complex assembly U3 MINI was folded and the decay of Fl fluorescence was measured at 20 ºC (see

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Fluorescence fluctuation microscopy: FRAP and FCS

Fluorescence fluctuation microscopy: FRAP and FCS Fluorescence fluctuation microscopy: FRAP and FCS Confocal laser scanning fluorescence microscope for the mobility analysis in living cells Ensemble measurements of protein mobility and interactions pre

More information

FLUORESCENCE MICROSCOPY TECHNIQUES PRACTICAL MANUAL FOR

FLUORESCENCE MICROSCOPY TECHNIQUES PRACTICAL MANUAL FOR FLUORESCENCE PRACTICAL MANUAL FOR MICROSCOPY TECHNIQUES Sohail Ahmed Sudhaharan Thankiah Radek Machán Martin Hof Andrew H. A. Clayton Graham Wright Jean-Baptiste Sibarita Thomas Korte Andreas Herrmann

More information

Super Resolution Microscopy Structured Illumination

Super Resolution Microscopy Structured Illumination Super Resolution Microscopy Structured Illumination Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 10/31/2011 50 years to extend the resolution Confocal microscopy

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

(i.e. what you should be able to answer at end of lecture)

(i.e. what you should be able to answer at end of lecture) Today s Announcements 1. Test given back next Wednesday 2. HW assigned next Wednesday. 3. Next Monday 1 st discussion about Individual Projects. Today s take-home lessons (i.e. what you should be able

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Single-Molecule Methods I - in vitro

Single-Molecule Methods I - in vitro Single-Molecule Methods I - in vitro Bo Huang Macromolecules 2014.03.10 F 1 -ATPase: a case study Membrane ADP ATP Rotation of the axle when hydrolyzing ATP Kinosita group, 1997-2005 Single Molecule Methods

More information

I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically?

I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically? Name I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically? Internal standards are standards added intentionally to all samples, standards and blanks.

More information

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes Applied Probability and Stochastic Processes In Engineering and Physical Sciences MICHEL K. OCHI University of Florida A Wiley-Interscience Publication JOHN WILEY & SONS New York - Chichester Brisbane

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Fluorescence Intensity and Lifetime Distribution Analysis: Toward Higher Accuracy in Fluorescence Fluctuation Spectroscopy

Fluorescence Intensity and Lifetime Distribution Analysis: Toward Higher Accuracy in Fluorescence Fluctuation Spectroscopy Biophysical Journal Volume 83 August 2002 605 618 605 Fluorescence Intensity and Lifetime Distribution Analysis: Toward Higher Accuracy in Fluorescence Fluctuation Spectroscopy Kaupo Palo,* Leif Brand,*

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

FROM LOCALIZATION TO INTERACTION

FROM LOCALIZATION TO INTERACTION EPFL SV PTBIOP FROM LOCALIZATION TO INTERACTION BIOP COURSE 2015 COLOCALIZATION TYPICAL EXAMPLE EPFL SV PTBIOP Vinculin Alexa568 Actin Alexa488 http://www.olympusconfocal.com/applications/colocalization.html

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 The need for statistical mechanics 2 How to describe large systems In

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2215 Figure S1 Number of egfp-vps4a bursts versus cellular expression levels. The total number of egfp-vps4a bursts, counted at the end of each movie (frame 2000, after 1h 28 min) are plotted

More information

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton Lecture 5. Anisotropy decay/data analysis Enrico Gratton Anisotropy decay Energy-transfer distance distributions Time resolved spectra Excited-state reactions Basic physics concept in polarization The

More information

Focal Volume Optics and Experimental Artifacts in Confocal Fluorescence Correlation Spectroscopy

Focal Volume Optics and Experimental Artifacts in Confocal Fluorescence Correlation Spectroscopy 2300 Biophysical Journal Volume 83 October 2002 2300 2317 Focal Volume Optics and Experimental Artifacts in Confocal Fluorescence Correlation Spectroscopy Samuel T. Hess* and Watt W. Webb *Department of

More information

Photon Arrival-Time Interval Distribution (PAID): A Novel Tool for Analyzing Molecular Interactions

Photon Arrival-Time Interval Distribution (PAID): A Novel Tool for Analyzing Molecular Interactions J. Phys. Chem. B 2004, 108, 3051-3067 3051 Photon Arrival-Time Interval Distribution (PAID): A Novel Tool for Analyzing Molecular Interactions Ted A. Laurence,*,,, Achillefs N. Kapanidis, Xiangxu Kong,

More information

Use of the likelihood principle in physics. Statistics II

Use of the likelihood principle in physics. Statistics II Use of the likelihood principle in physics Statistics II 1 2 3 + Bayesians vs Frequentists 4 Why ML does work? hypothesis observation 5 6 7 8 9 10 11 ) 12 13 14 15 16 Fit of Histograms corresponds This

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging Rice/TCU REU on Computational Neuroscience Fundamentals of Molecular Imaging June 3, 2008 Neal Waxham 713-500-5621 m.n.waxham@uth.tmc.edu Objectives Brief discussion of optical resolution and lasers as

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 Reading check Main concept introduced in first half of this chapter A)Temperature

More information

Co-localization, FRET

Co-localization, FRET Co-localization, FRET Last class FRAP Diffusion This class Co-localization Correlation FRET Co-localization Can you infer function of protein from it s intracellular location How do you measure if two

More information

Chapter 2: Statistical Methods. 4. Total Measurement System and Errors. 2. Characterizing statistical distribution. 3. Interpretation of Results

Chapter 2: Statistical Methods. 4. Total Measurement System and Errors. 2. Characterizing statistical distribution. 3. Interpretation of Results 36 Chapter : Statistical Methods 1. Introduction. Characterizing statistical distribution 3. Interpretation of Results 4. Total Measurement System and Errors 5. Regression Analysis 37 1.Introduction The

More information

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging TECHNICAL NOTE Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging Shih-Chu Liao, Yuansheng Sun, Ulas Coskun ISS, Inc. Introduction The advantages of multiphoton excitation

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Signal and Noise Modeling in Confocal Laser Scanning Fluorescence Microscopy

Signal and Noise Modeling in Confocal Laser Scanning Fluorescence Microscopy Signal and Noise Modeling in Confocal Laser Scanning Fluorescence Microscopy Gerlind Herberich 1, Reinhard Windoffer 2, Rudolf E. Leube 2, and Til Aach 1 1 Institute of Imaging and Computer Vision, RWTH

More information

Self-calibrated, line-scan STED-FCS to quantify lipid dynamics in model and cell membranes

Self-calibrated, line-scan STED-FCS to quantify lipid dynamics in model and cell membranes Self-calibrated, line-scan STED-FCS to quantify lipid dynamics in model and cell membranes Aleš Benda, Yuanqing Ma and Katharina Gaus Centre for Vascular Research, Australian Centre for Nanomedicine and

More information

Charge carrier statistics/shot Noise

Charge carrier statistics/shot Noise Charge carrier statistics/shot Noise Sebastian Waltz Department of Physics 16. Juni 2010 S.Waltz (Biomolecular Dynamics) Charge carrier statistics/shot Noise 16. Juni 2010 1 / 36 Outline 1 Charge carrier

More information

Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins

Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins VILNIUS UNIVERSITY Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins L. Valkunas Department of Theoretical Physics, Faculty of Physics,

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

5.68J/10.652J Spring 2003 Exam Question 3 with Solution

5.68J/10.652J Spring 2003 Exam Question 3 with Solution 5.68J/10.652J Spring 2003 Exam Question 3 with Solution The literature values for the Arrhenius parameters for OH + C(CH 3 ) 4 H 2 O+ (CH 3 ) 3 CCH 2 (Rxn 1) A= 10 9 liter/mole-second E a =20 kj/mole You

More information

dn(t) dt where λ is the constant decay probability per unit time. The solution is N(t) = N 0 exp( λt)

dn(t) dt where λ is the constant decay probability per unit time. The solution is N(t) = N 0 exp( λt) (Aug. 2011 revision) Physics 307 Laboratory Experiment #3 Probability Distributions and the Decay of Excited Quantum States Motivation: The purpose of this experiment is to introduce the student to counting

More information

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Statistical regularity Properties of relative frequency

More information

FLCS Fluorescence Lifetime Correlation Spectroscopy

FLCS Fluorescence Lifetime Correlation Spectroscopy Application Note FLCS Fluorescence Lifetime Correlation Spectroscopy Peter Kapusta, Michael Wahl, PicoQuant GmbH Aleš Benda, Martin Hof, J. Heyrovsky Institute of Physical Chemistry, Prague, CZ Jörg Enderlein,

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Nature Protocols: doi: /nprot Supplementary Figure 1

Nature Protocols: doi: /nprot Supplementary Figure 1 Supplementary Figure 1 Photographs of the 3D-MTC device and the confocal fluorescence microscopy. I: The system consists of a Leica SP8-Confocal microscope (with an option of STED), a confocal PC, a 3D-MTC

More information

Imaging Barriers to Diffusion by Pair Correlation Functions

Imaging Barriers to Diffusion by Pair Correlation Functions Biophysical Journal Volume 97 July 2009 665 673 665 Imaging Barriers to Diffusion by Pair Correlation Functions Michelle A. Digman and Enrico Gratton * Laboratory for Fluorescence Dynamics, Department

More information

Challenges of Single Ion-Channel Biosensors

Challenges of Single Ion-Channel Biosensors Vanderbilt Institute for Integrative Biosystems Research and Education Instrumenting and Control the Single Cell Challenges of Single Ion-Channel Biosensors Fredrick Sachs (SUNY Buffalo) John P. Wikswo

More information

Correlation Spectroscopy in Polymer Physics Methodenseminar im Wahlpflichtfach Basics diffusion and brownian motion correlations functions

Correlation Spectroscopy in Polymer Physics Methodenseminar im Wahlpflichtfach Basics diffusion and brownian motion correlations functions Correlation Spectroscopy in Polymer Physics Methodenseminar im Wahlpflichtfach 3 1. Basics diffusion and brownian motion correlations functions 2. Dynamic light scattering (DLS) DLS on cellulose solutions

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Lecture 23. Lidar Error and Sensitivity Analysis (2)

Lecture 23. Lidar Error and Sensitivity Analysis (2) Lecture 3. Lidar Error and Sensitivity Analysis ) q Derivation of Errors q Background vs. Noise q Sensitivity Analysis q Summary 1 Accuracy vs. Precision in Lidar Measurements q The precision errors caused

More information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009 Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET David A. Case Rutgers, Spring 2009 Techniques based on rotational motion What we studied last time probed translational

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES

pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES Duncan May 7, 2012 1 Agenda Review of Methods Minimum-bias Jets in pp - the reference system Review 200, 62 GeV Au-Au Compare Cu-Cu to Au-Au

More information

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods Diagnostics of Filamentation in Laser Materials with Fluorescent Methods A.V. Kuznetsov, E.F. Martynovich Irkutsk Branch of Institute of Laser Physics SB RAS Lermontov st. 130a, Irkutsk, 664033, Russia

More information

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

CHEM Outline (Part 15) - Luminescence 2013

CHEM Outline (Part 15) - Luminescence 2013 CHEM 524 -- Outline (Part 15) - Luminescence 2013 XI. Molecular Luminescence Spectra (Chapter 15) Kinetic process, competing pathways fluorescence, phosphorescence, non-radiative decay Jablonski diagram

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Mongkol Moongweluwan 1 1 Department of Physics and Astronomy, University of

More information

The Dual-Color Photon Counting Histogram with Non-Ideal Photodetectors

The Dual-Color Photon Counting Histogram with Non-Ideal Photodetectors Biophysical Journal Volume 89 ovember 2005 3491 3507 3491 The Dual-Color Photon Counting Histogram with on-ideal Photodetectors Lindsey. Hillesheim and Joachim D. Müller School of Physics and Astronomy,

More information

Fully Bayesian Analysis of Low-Count Astronomical Images

Fully Bayesian Analysis of Low-Count Astronomical Images Fully Bayesian Analysis of Low-Count Astronomical Images 1 Alanna Connors 2 1 Department of Statistics University of California, Irvine 2 Eurika Scientific Thanks to James Chiang, Adam Roy, and The California

More information

In modern fluorescence correlation experiments, with a confocal

In modern fluorescence correlation experiments, with a confocal Fluorescence-intensity distribution analysis and its application in biomolecular detection technology Peet Kask*, Kaupo Palo*, Dirk Ullmann*, and Karsten Gall* *EVOTEC BioSystems AG, Schnackenburgallee

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence, Light, Absorption, Jablonski Diagram, and Beer-Law First stab at a definition: What is fluorescence?

More information

Numerical Methods in TEM Convolution and Deconvolution

Numerical Methods in TEM Convolution and Deconvolution Numerical Methods in TEM Convolution and Deconvolution Christoph T. Koch Max Planck Institut für Metallforschung http://hrem.mpi-stuttgart.mpg.de/koch/vorlesung Applications of Convolution in TEM Smoothing

More information

Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms

Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms nature methods Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms Jonas Ries, Shuizi Rachel Yu, Markus Burkhardt, Michael Brand & Petra Schwille Supplementary

More information

Determining Protein Structure BIBC 100

Determining Protein Structure BIBC 100 Determining Protein Structure BIBC 100 Determining Protein Structure X-Ray Diffraction Interactions of x-rays with electrons in molecules in a crystal NMR- Nuclear Magnetic Resonance Interactions of magnetic

More information

Selected measurements with FluoTime 300

Selected measurements with FluoTime 300 Selected measurements with FluoTime 300 Sebastian Tannert, Peter Kapusta, Felix Koberling, Manoel Veiga, Steffen Rüttinger Uwe Ortmann, Matthias Patting, Marcus Sackrow, Michael Wahl, Rainer Erdmann 12th

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

noise = function whose amplitude is is derived from a random or a stochastic process (i.e., not deterministic)

noise = function whose amplitude is is derived from a random or a stochastic process (i.e., not deterministic) SIMG-716 Linear Imaging Mathematics I, Handout 05 1 1-D STOCHASTIC FUCTIOS OISE noise = function whose amplitude is is derived from a random or a stochastic process (i.e., not deterministic) Deterministic:

More information

Basics of Photometry

Basics of Photometry Basics of Photometry Photometry: Basic Questions How do you identify objects in your image? How do you measure the flux from an object? What are the potential challenges? Does it matter what type of object

More information

FLUORESCENCE CORRELATION SPECTROSCOPY

FLUORESCENCE CORRELATION SPECTROSCOPY FLUORESCENCE CORRELATION SPECTROSCOPY ABSTRACT Fluorescence correlation spectroscopy (FCS) is a technique that detects diffusion of fluorescent species through a small focal volume. From FCS measurements,

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

ATTO 565 and ATTO 590

ATTO 565 and ATTO 590 ATTO 565 and ATTO 590 General Information ATTO 565 and ATTO 590 are fluorescent labels belonging to the well known rhodamine dyes. A common feature of all rhodamine dyes is a carboxyphenyl substituent

More information

PIV Basics: Correlation

PIV Basics: Correlation PIV Basics: Correlation Ken Kiger (UMD) SEDITRANS summer school on Measurement techniques for turbulent open-channel flows Lisbon, Portugal 2015 With some slides contributed by Christian Poelma and Jerry

More information

Application of Image Restoration Technique in Flow Scalar Imaging Experiments Guanghua Wang

Application of Image Restoration Technique in Flow Scalar Imaging Experiments Guanghua Wang Application of Image Restoration Technique in Flow Scalar Imaging Experiments Guanghua Wang Center for Aeromechanics Research Department of Aerospace Engineering and Engineering Mechanics The University

More information

Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions: supplementary material

Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions: supplementary material Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions: supplementary material KRZYSZTOF SOZANSKI 1,*, EVANGELOS SISAMAKIS 2, XUZHU

More information

Solutions for Exercise session I

Solutions for Exercise session I Solutions for Exercise session I 1. The maximally polarisation-entangled photon state can be written as Ψ = 1 ( H 1 V V 1 H ). Show that the state is invariant (i.e. still maximally entangled) after a

More information

Foundations of Modern Physics by Tipler, Theory: The dierential equation which describes the population N(t) is. dn(t) dt.

Foundations of Modern Physics by Tipler, Theory: The dierential equation which describes the population N(t) is. dn(t) dt. (Sept. 2007 revision) Physics 307 Laboratory Experiment #3 Probability Distributions and the Decay of Excited Quantum States Motivation: The purpose of this experiment is to introduce the student to counting

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

Use of SEC-MALS. (Size Exclusion Chromatography - Multi Angle. Light Scattering) for protein quality and characterization

Use of SEC-MALS. (Size Exclusion Chromatography - Multi Angle. Light Scattering) for protein quality and characterization Use of SEC-MALS (Size Exclusion Chromatography - Multi Angle Light Scattering) for protein quality and characterization Methods for protein characterization Analytical SEC is a common method to characterize

More information

Photometric Techniques II Data analysis, errors, completeness

Photometric Techniques II Data analysis, errors, completeness Photometric Techniques II Data analysis, errors, completeness Sergio Ortolani Dipartimento di Astronomia Universita di Padova, Italy. The fitting technique assumes the linearity of the intensity values

More information

Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments

Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments J. Phys. Chem. B 2006, 110, 22103-22124 22103 Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments Eyal Nir, Xavier Michalet, Kambiz M. Hamadani, Ted A. Laurence,

More information

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Introduction. The electromagnetic spectrum. visible 10-16 10-10 10-8 10-4 10-2 10 4 (l m) g-rays X-rays UV IR micro wave Long radio waves 400

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins. RAD229: Midterm Exam 2015/2016 October 19, 2015 ---- 75 Minutes Name: Student ID: General Instructions: 1. Write your name legibly on this page. 2. You may use notes including lectures, homework, solutions

More information

Fluorescence polarisation, anisotropy FRAP

Fluorescence polarisation, anisotropy FRAP Fluorescence polarisation, anisotropy FRAP Reminder: fluorescence spectra Definitions! a. Emission sp. b. Excitation sp. Stokes-shift The difference (measured in nm) between the peak of the excitation

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

Visualize and Measure Nanoparticle Size and Concentration

Visualize and Measure Nanoparticle Size and Concentration NTA : Nanoparticle Tracking Analysis Visualize and Measure Nanoparticle Size and Concentration 30 Apr 2015 NanoSight product range LM 10 series NS300 series NS500 series Dec 13 34 www.nanosight.com NanoSight

More information

A Parameterization of the Chandra Point Spread Function

A Parameterization of the Chandra Point Spread Function Christopher L. Allen, Diab Jerius, and Terry Gaetz SAO 27 Oct 2003 Overview The off-axis Chandra PSF is a complex function of source position and energy: It is roughly elliptical, more so as off-axis angle

More information