Magnetic force and magnetic fields

Size: px
Start display at page:

Download "Magnetic force and magnetic fields"

Transcription

1 magnetar Magnetic force and magnetic fields Feb 28, 2012

2 Magnetic field Iron filings may be used to show the pattern of the magnetic field lines. A compass can be used to trace the field lines. The lines outside the magnet point from the North pole to the South pole.

3 Source of magnetic field Magnetic fields are associated with charge in motion and with elementary charged particle spin. If charge moves in a conductor, for example, a magnetic field is found to circulate around the direction of the moving charge.details in Chapter 30 Magnetic fields superpose like electric fields.

4 The Earth s magnetic field The source of the Earth s magnetic field is likely convection induced electrical currents in the Earth s core. The direction of the Earth s magnetic field wanders and reverses. The north-seeking pole of a compass points to the north geographic pole. This would correspond to the Earth s south magnetic pole. The south-seeking pole points to the south geographic pole. This would correspond to the Earth s north magnetic pole. The field shields the Earth from charged particles emitted by the Sun.

5 Pole shifts File:Earth_Magnetic_Field_Declinat ion_from_1590_to_1990.gif During a pole reversal, the field is reduced by a factor of ten. The shielding of the Earth from solar radiation is reduced.

6 Ferromagnetism The magnetic field of a permanent magnet is associated with alignment of the spins of charged electrons in atoms. The electrons behave like a collection of tiny permanent magnets. When these tiny magnets are aligned, not randomly oriented, a net macroscopic magnetization and magnetic field is observed.

7 Magnetic force The magnetic field B can be defined by the magnetic force on charged particles. The force on a charge q with velocity v in a magnetic field B is given by the cross product of velocity and field FB = q v x B The magnitude of the magnetic force on a charged particle is F B = q v B sin!. Unit T = Wb m -2 = N C -1 m -1 s.

8 Strength of magnetic fields 1 T = 10,000 gauss ~duncan/magnetar.html

9 Motion in a uniform magnetic field Consider a particle moving in an external magnetic field with its velocity v perpendicular to the field B. The force is always directed toward the center of the circular path and does no work so the KE and speed are constant. The magnetic force causes a centripetal acceleration, changing the direction of the velocity of the particle. Equate the magnetic and centripetal forces: F B = qvb=ma = mv 2 /r Solve for r=mv/(qb) = p/(qb)

10 Example Electrons are observed bending clockwise in a magnetic field perpendicular to the page with radius of curvature r= p/eb. From the radius and field, the momentum p may be determined. Given the momentum per unit charge created by a known electric field, the quantity q/m may be determined. Does B point into or out of the page?

11 Example An electron moves in a circle of radius r=1 mm in a magnetic field B= 1 T. What is its speed? Assume m =9e-31 kg and q=-e = -1.6e-19 C.

12 Example An electron moves in a circle of radius r=1 mm in a magnetic field B= 1 T. r What is its speed? Assume m =9e-31 kg and q=-e = -1.6e-19 C. (For v~c, there are relativistic corrections to our formulae.)

13 Example (cont) What constant electric field strength E would be required to accelerate an electron from rest over a distance d=1 m to a speed c/2 where c is light speed? (Again, for v~c, there are corrections to this result.)

14 -V Volts Example (cont) 0 Volts d E v For a constant electric field strength E required to accelerate an electron from rest over a distance d=1 m to a speed c/2 where c is light speed If the accelerating field is achieved with equal and opposite charges on two parallel plates separated by d=1 m, a) what is the voltage between the plates and b) what is the surface charge density on the plates?

15 Charge and mass of the electron Thomson s e/m experiment Electrons are accelerated from the cathode. They are deflected by electric and magnetic fields.the beam of electrons strikes a fluorescent screen. e/m was measured. The electric field required to levitate singly charged oil drops was used by Millikan to determine e. Together, m is determined.

16 General motion in a uniform magnetic field The component of velocity along the field is constant so the general motion is a helix. The angular frequency qb/m is called the cyclotron frequency.

17 Combined E and B fields Motion in combined electric and magnetic fields is governed the total force F = qe +qvxb If E and B are uniform and at right angles as shown, the total force vanishes for v =E/B. Only particles with this speed pass straight through such a velocity selector.

18 Mass spectrometer A mass spectrometer separates ions according to their mass-to-charge ratio. In one design, a beam of ions passes through a velocity selector and enters a second magnetic field. After entering the second magnetic field, the ions move in a semicircle of radius r before striking a detector at P. If the ions are positively charged, they deflect to the left. If the ions are negatively charged, they deflect to the right.

19 Sector mass spectrometer In a simple spectrometer, ions are created in a gas plasma and accelerated. The deflection by the magnetic field for fixed energy depends on q/m. Different isotopes (nuclear masses) are separated. More sophisticated high resolution spectrometers use high speed beams.

20 Cyclotron In a cyclotron, an alternating voltage is applied between two cup-shaped dees accelerating ions in the gap. The ions then travel in a circular orbit in a uniform constant magnetic field. The voltage alternates at the cyclotron frequency so that with each gap crossing, the energy is increased.

21 Sector focused cyclotron Advanced cyclotrons use multiple magnets and multiple acceleration gaps to achieve improved beam stability and higher energy (520 MeV at TRIUMPH). 520,000,000 Volts equivalent

22 Large hadron collider Two proton beams counter circulate and collide. During acceleration, protons are given repeated kicks at a fixed location while B-field increases to kept beams in the tunnel. r= 4.3 km, B(max)- 8 T, E = 7 TeV = 7,000,000,000,000 Volts equivalent

23 Magnetic force on a wire When an electric current flows in a conducting wire in a magnetic field, the magnetic force acts of the electrons. The electrons are bound electrically to the conductor so the force is transferred to the wire.

24 Force on a wire The total force is the product of the force on one charge and the number of charges. For electron drift speed vd = v d and density n, the total force on a length L of wire of cross sectional area A is F=nLA(-e)v d xb=ilnxb

25 Generalization For a vector element of length ds, df= I dsxb. The total force on the current carrying wire is obtained by integrating over elements of the wire.

26 Torque on a current loop There is a force on sides 2 & 4 since they are perpendicular to the field: F 2 = F 4 = I a B The direction of F2 is out of the page. The direction of F 4 is into the page. The forces are equal and in opposite directions, but not along the same line of action. The forces produce a torque around point O.

27 Torque on a current loop Assume the magnetic field makes an angle of "! < 90 o with a line perpendicular to the plane of the loop. The net torque about point O will be # = IAB sin!. The vector torque may be written in terms of a vector A perpendicular to the loop of magnitude equal to the area and direction given by the right hand rule.

28 Magnetic dipole moment The product m= IA is defined as the magnetic dipole moment of the loop, often called the simply the magnetic moment and denoted by Greek mu.. SI units: A m2 Torque N (or Greek tau ) in terms of magnetic moment: N = mxb Valid for a loop of any shape

29 Magnetic energy The magnetic moment of this loop is up. The torque is trying to align the moment with the field. The magnetic potential energy is U = -m. B

30 Hall effect When a current carrying conductor is placed in a magnetic field, a potential difference is generated in a direction perpendicular to both the current and the magnetic field. This phenomena is known as the Hall effect. It arises from the deflection of charge carriers to one side of the conductor as a result of the magnetic forces they experience. The Hall effect gives information regarding the sign of the charge carriers and their density. It can also be used to measure magnetic fields.

31 Hall voltage $V H = E H d = v d B d d is the width of the conductor v d is the drift velocity If B and d are known, v d can be found. R H = 1 / nq is called the Hall coefficient. A properly calibrated conductor can be used to measure the magnitude of an unknown magnetic field.

32 The magnetic field around a current carrying wire Pick form of current Current comes out of the page

33 The magnetic field around a current carrying wire loop Current circulates in the center.

34

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law. Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

Brief history of Magnetism 3/5/ Magnetic force on a current carrying wire. 1. Magnetic field history: applications:

Brief history of Magnetism 3/5/ Magnetic force on a current carrying wire. 1. Magnetic field history: applications: 1. Magnetic field history: applications: PHY 114 A General Physics II 11 AM 12:15 PM Olin 101 George Holzwarth gholz@wfu.edu Main topics today (Chapt 29): B 2. Lorentz force law for charged particles moving

More information

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Magnetic Field Lecture 13 Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 28 Magnetic Fields In this chapter we will cover the following topics:

More information

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path Cyclotron, final The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path K 1 qbr 2 2m 2 = mv = 2 2 2 When the energy of the ions

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

Magnetic Field Lines for a Loop

Magnetic Field Lines for a Loop Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of

More information

Chapter 29 The Magnetic Field

Chapter 29 The Magnetic Field Chapter 9 The Magnetic Field y analogy with electrostatics, why don t we study magnetostatics first? Due to complicated mathematics (lack of magnetic monopole). In 80, Oersted established the link between

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B

More information

Chapter 27 Magnetic Fields and Magnetic Forces

Chapter 27 Magnetic Fields and Magnetic Forces Chapter 27 Magnetic Fields and Magnetic Forces In this chapter we investigate forces exerted by magnetic fields. In the next chapter we will study the sources of magnetic fields. The force produced by

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

Physics Tutorial MF1 Magnetic Forces

Physics Tutorial MF1 Magnetic Forces Physics Tutorial MF1 Magnetic Forces 1 Magnetic Forces The force F on a charge q moving with velocity v in a magnetic field is: F = qv The force F on a straight conductor of length L carrying a current

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-2 What Produces a Magnetic Field? 1. Moving electrically charged particles ex: current in a wire makes an electromagnet. The current produces a magnetic field that

More information

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 29 Lecture RANDALL D. KNIGHT Chapter 29 The Magnetic Field IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

Physics 202, Lecture 11

Physics 202, Lecture 11 Physics 202, Lecture 11 Today s Topics Magnetic Fields and Forces (Ch. 27) Magnetic materials Magnetic forces on moving point charges Magnetic forces on currents, current loops Motion of charge in uniform

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa

Magnetism II. Physics 2415 Lecture 15. Michael Fowler, UVa Magnetism II Physics 2415 Lecture 15 Michael Fowler, UVa Today s Topics Force on a charged particle moving in a magnetic field Path of a charged particle moving in a magnetic field Torque on a current

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Chapter 27: Magnetic Field and Magnetic Forces

Chapter 27: Magnetic Field and Magnetic Forces Chapter 27: Magnetic Field and Magnetic Forces Iron ore found near Magnesia Compass needles align N-S: magnetic Poles North (South) Poles attracted to geographic North (South) Like Poles repel, Opposites

More information

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

Consider a magnetic field perpendicular to a flat, currentcarrying

Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-1 Magnetic Fields and the Definition of B The Definition of B The Field. We can define a magnetic field B to be a vector quantity that exists when it exerts a force

More information

where the magnetic field is directed from south to north. It will be deflected:

where the magnetic field is directed from south to north. It will be deflected: Section: Magnetic Field Take Home Test Due Tues. Apr. 2----all work should be shown on test---you will hand in the scantron for scoring 1. A hydrogen atom that has lost its electron is moving east in a

More information

Problem Fig

Problem Fig Problem 27.15 An electron at point A has a speed of 1.41 x 10 6 m/s. Find (a) the magnitude and direction of the magnetic field that will cause the electron to follow the semicircular path from A to B,

More information

Certain iron containing materials have been known to attract or repel each other. Compasses align to the magnetic field of earth.

Certain iron containing materials have been known to attract or repel each other. Compasses align to the magnetic field of earth. Certain iron containing materials hae been known to attract or repel each other. Compasses align to the magnetic field of earth. Analogous to positie and negatie charges, eery magnet has a north and a

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The behavior of magnetic poles is similar to that of like and unlike electric charges. 21.1 Magnetic Fields The needle of a compass is permanent

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter Magnetism

More information

University Physics Volume II Unit 2: Electricity and Magnetism Chapter 11: Magnetic Forces and Fields

University Physics Volume II Unit 2: Electricity and Magnetism Chapter 11: Magnetic Forces and Fields University Physics Volume II 1. Discuss the similarities and differences between the electrical force on a charge and the magnetic force on a charge. Both are field dependent. Electrical force is dependent

More information

Lecture 8 Magnetic Fields Chp. 29

Lecture 8 Magnetic Fields Chp. 29 Lecture 8 Magnetic Fields Chp. 29 Cartoon Magnesia, Bar Magnet with N/S Poles, Right Hand Rule Topics Magnetism is likable, Compass and diclinometer, Permanent magnets Magnetic field lines, Force on a

More information

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Forces and Fields What creates a magnetic field? Answer: MOVING CHARGES What is affected by a magnetic field? Answer: MOVING CHARGES We have a formula for magnetic force on a moving

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

Transmission line demo to illustrate why voltage along transmission lines is high

Transmission line demo to illustrate why voltage along transmission lines is high Transmission line demo to illustrate why voltage along transmission lines is high Connect to step down transformer 120V to 12V to lightbulb 12 V 6.5 A Lights up brightly Connect it to long fat wires Lights

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

Ch 29 - Magnetic Fields & Sources

Ch 29 - Magnetic Fields & Sources Ch 29 - Magnetic Fields & Sources Magnets......are made of ferromagnetic elements: iron, cobalt, nickel, gadolinium... Magnets have a north pole and a south pole. Magnetic Fields 1. The magnetic field

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

Lorentz Force. Velocity Selector

Lorentz Force. Velocity Selector Lecture 9-1 Lorentz Force Let E and denote the electric and magnetic vector fields. The force F acting on a point charge q, moving with velocity v in the superimosed E fields is: F qe v This is called

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 6.1 Magnetic Field Stationary charges experienced an electric force in an electric field Moving charges experienced a magnetic force in a magnetic

More information

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 Name: Date: 1. A loop of current-carrying wire has a magnetic dipole moment of 5 10 4 A m 2. The moment initially is aligned

More information

review Problem 23.83

review Problem 23.83 review Problem 23.83 A metal sphere with radius R 1 has a charge Q 1. (a) What are the electric field and electric potential at the surface of the sphere? Take the potential to be zero at an infinite distance

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

PHYS Fields and Waves

PHYS Fields and Waves PHYS 41 - Fields and Waves Consider a charge moving in a magnetic field B field into plane F=ma acceleration change of direction of velocity Take F as centripetal force: 0 F qvb cos90 qvb F Centripetal

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES.

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES. !! www.clutchprep.com CONCEPT: HOW MAGNETS WORK Forever ago we found metals that would attract each other. First found in island of Magnesia named. - Most common are iron (Fe), cobalt (Co), nickel (Ni),

More information

MAGNETIC EFFECTS OF CURRENT-3

MAGNETIC EFFECTS OF CURRENT-3 MAGNETIC EFFECTS OF CURRENT-3 [Motion of a charged particle in Magnetic field] Force On a Charged Particle in Magnetic Field If a particle carrying a positie charge q and moing with elocity enters a magnetic

More information

Lecture 28. PHYC 161 Fall 2016

Lecture 28. PHYC 161 Fall 2016 Lecture 28 PHYC 161 Fall 2016 CPS 27-1 At which point is the magnitude of the magnetic field the largest? A. B. C. D E. Yes, back to flux, which means back to surface integrals. Magnetic Flux We can define

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM PHY294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 handwritten problem per week) Help-room hours: 12:40-2:40 Monday

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 21 The force that a magnetic field exerts on a charge moving with velocity v is given by! F B = q v!! B! The magnitude of the force

More information

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek.

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. 1900 Maxwell combine the theory of electric and magnetic to

More information

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13 Chapter I Electromagnetism Day 1 Magnetism Sections 20-1, 20-13 An investigation of permanent magnets shows that they only attract certain metals specifically those containing iron, or a few other materials,

More information

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62

Homework (lecture 11): 3, 5, 9, 13, 21, 25, 29, 31, 40, 45, 49, 51, 57, 62 Homework (lecture ): 3, 5, 9, 3,, 5, 9, 3, 4, 45, 49, 5, 57, 6 3. An electron that has velocity: moves through the uniform magnetic field (a) Find the force on the electron. (b) Repeat your calculation

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

CPS lesson Magnetism ANSWER KEY

CPS lesson Magnetism ANSWER KEY CPS lesson Magnetism ANSWER KEY 1. Two wire strips carry currents from P to Q and from R to S. If the current directions in both wires are reversed, the net magnetic force of strip 1 on strip 2: * A. remains

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 12. Magnetic Field I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

3/7/2019 N S N S. Magnetism. Magnetism

3/7/2019 N S N S. Magnetism. Magnetism Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) Magnetism Magnetic poles Found

More information

Magnets. Magnetic vs. Electric

Magnets. Magnetic vs. Electric Magnets A force is applied to the iron filings causing them to align themselves to the direction of the magnetic field. A compass needle will tell you the direction of the field. Show Fields of little

More information

Chapter 22 Magnetism

Chapter 22 Magnetism Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 15 Magnetic Fields and Forces June 28, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We are here.

More information

Lecture #4.4 Magnetic Field

Lecture #4.4 Magnetic Field Lecture #4.4 Magnetic Field During last several lectures we have been discussing electromagnetic phenomena. However, we only considered examples of electric forces and fields. We first talked about electrostatics

More information

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current LJPS Gurgaon 1. An electron beam projected along +X axis, experiences a force due to a magnetic field along +Y axis. What is the direction of the magnetic field? Class XII- Physics - Assignment Topic:

More information

Three particles, a, b, and c, enter a magnetic field as shown in the figure. What can you say about the charge on each particle?

Three particles, a, b, and c, enter a magnetic field as shown in the figure. What can you say about the charge on each particle? 1 Three particles, a, b, and c, enter a magnetic field as shown in the figure. What can you say about the charge on each particle? 6 Determine the magnitude and direction of the force on an electron traveling

More information

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0 Communication includes statement of the physics concept used and how it is applied in the situation along with diagrams, word explanations and calculations in a well laid out formula, substitution, answer

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

Physics 11b Lecture #10

Physics 11b Lecture #10 Physics 11b Lecture #10 Magnetic Fields S&J Chapter 29 What We Did Last Time Electromotive forces (emfs) atteries are made of an emf and an internal resistance Resistor arithmetic R = R + R + R + + R series

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

Charge to mass Ratio. Nature of the Atom: Dalton's Contributions to Science. 6) qm ratio notes.notebook. December 13, 2018

Charge to mass Ratio. Nature of the Atom: Dalton's Contributions to Science. 6) qm ratio notes.notebook. December 13, 2018 Nature of the Atom: Charge to mass Ratio Studies of atoms from John Dalton's atmospheric studies indicated that properties were cyclic moving from group to group. This suggested some unit of atomic structure

More information

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Other Formulae for Electromagnetism. Biot's Law Force on moving charges Other Formulae for Electromagnetism Biot's Law Force on moving charges 1 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor,

More information

Chapter 22: Magnetism

Chapter 22: Magnetism Chapter 22: Magnetism Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles repel, opposites attract. Brent Royuk

More information

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location.

Earth as a Magnet. The strength and orientation of the earth s magnetic field varies over time and location. Magnetism Magnetic charges Called poles Two types, North and South Like poles repel each other Opposite poles attract each other Found only in North/South pairs (Dipoles) N S Magnetism Magnetic poles Found

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 20 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University Chapter 22: Magnetism Brent Royuk Phys-112 Concordia University Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles

More information

The Cyclotron I. 1. Motion of the charges occurs in two semicircular containers, D 1. and D 2

The Cyclotron I. 1. Motion of the charges occurs in two semicircular containers, D 1. and D 2 1. Motion of the charges occurs in two semicircular containers, D 1 and D 2 referred to as the Dees 2. The Dees are evacuated in order to minimize energy loss from collisions 3. A high frrequency alternating

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

( (Chapter 5)(Magnetism and Matter)

(  (Chapter 5)(Magnetism and Matter) Additional Exercises Question 5.16: Answer the following questions: (a) Why does a paramagnetic sample display greater magnetisation (for the same magnetising field) when cooled? (b) Why is diamagnetism,

More information

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment Biot-Savart law Ampere s law The magnetic dipole field What is a

More information

Question Bank 4-Magnetic effects of current

Question Bank 4-Magnetic effects of current Question Bank 4-Magnetic effects of current LEVEL A 1 Mark Questions 1) State Biot-Savart s law in vector form. 2) What is the SI unit of magnetic flux density? 3) Define Tesla. 4) A compass placed near

More information

P ROBL E M S. 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11.

P ROBL E M S. 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11. 918 C HAPTER 29 Magnetic Fields 10. A current-carrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11. s it possible to orient a current

More information

Cyclotron Motion. We can also work-out the frequency of the cyclotron motion. f cyc =

Cyclotron Motion. We can also work-out the frequency of the cyclotron motion. f cyc = Cyclotron Motion We can also work-out the frequency of the cyclotron motion f cyc = qb 2πm Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Cyclotron Motion We

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force

Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force Magnetism Magnets Source of magnetism Magnetic field Magnetic force Magnets and magnetic force Historical First magnets were pieces of iron-bearing rock called loadstone (magnetite, Fe 3 O 4 ) found originally

More information