Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations

Size: px
Start display at page:

Download "Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations"

Transcription

1 Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut BYU Statistics Department Seminar 04 April 2013

2 Two Truths and a Lie 1. My childhood tetherball pole fell into a sinkhole in our backyard 2. I am the first person in Washington state to ever eat one dozen Krispy Kreme doughnuts in a store 3. I am a monthly contributor to Where we live on WNPR, the Connecticut public radio station

3 Outline This talk is presented in two parts, 1. Model Selection in Regime-switching Models of Various Types Joint work with Chris Groendyke, Robert Morris University Supported by the Actuarial Foundation 2. Prior specification in Multivariate Regime-switching Lognormal Models Joint work with David A. Engler, Brigham Young University

4 Candidate Models For both the simulation study and the application, we focus on nine candidate models 1. Gamma - Gamma 2. Gamma - Lognormal 3. Gamma - Weibull 4. Lognormal - Lognormal 5. Lognormal - Weibull 6. Weibull - Weibull 7. Gamma (iid) 8. Lognormal (iid) 9. Weibull (iid)

5 Regime-switching Models In a regime-switching model, the current state, x t, only depends upon the previous state, x t 1. Additionally, the observation, y t, depends only upon the current state, x t.

6 Motivation Currently, the work on regime-switching models assumes all regimes follow the same distribution but have different parameters. What if the regimes differ in kurtosis or skewness in addition to mean and variance? Ex: Stock Index Good economy: High mean, low variance, thin tails, symmetric Poor economy: Low mean, high variance, heavy tails, possibly left-skewed

7 Model Selection Methods - AIC/BIC We begin with two standard likelihood-based model selection criteria AIC (Akiake 1974) BIC (Schwartz 1978) AIC = 2k 2L BIC = k log n 2L Because e 2 < 8, for any reasonable sample size, BIC will be more penalizing.

8 Model Selection Methods - DIC (Spiegelhalter 2002) Often in hierarchical models, simply counting the number of parameters in the model will overstate the complexity. DIC uses the effective number of paramters, p D, to account for that problem p D = D(θ) D(θ) Where D(θ) is the Bayesian deviance, a measure of model fit D(θ) = 2 log(p(y θ)) + 2 log(p(y)) DIC is a measure of penalized model fit (like AIC/BIC) DIC = D(θ) + 2p D = D(θ) + p D DIC can be calculated from MCMC output

9 Model Selection Methods - Parallel Model Selection (Congdon 2006) AIC, BIC, and DIC will all define which model is best among the candidate set. From a Bayesian perspective, we can make the model a parameter and estimate it with the others in a chain. Examples: Saturation method (Carlin 1995) Reversible Jump MCMC (Green 1995)

10 Model Selection Methods - Parallel Model Selection (Congdon 2006) Parallel model selection is slightly different. It samples from all models simultaneously. Assuming p (θ j k M = k) 1 θ j θ k j k implies that p(m = k Y, θ) = p(y M = k, θ k) p(θ k M = k)p(m = k) j p(y M = j, θ j) p(θ j M = j)p(m = j) p(y M = k, θ) p(θ M = k)p(m = k), which can be approximated through MCMC samples.

11 Parameter Estimation - Prior Specification The model selection techniques (DIC/Parallel) are sensitive to the choice of prior. For a fair comparison, the possible models should have equally informative priors. That is most easily done through non-informative, proper priors.

12 Parameter Estimation - MCMC Sampler The MCMC algorithm includes the following steps: 1. Initialize all parameters. 2. Draw the state vector (x j ) one randomly selected observation at a time from the following equation: p(x i θ, y, x 1:i 1, x i+1:n ) which reduces through the Markov property to ν x1 π x1,x 2 p x1 (y 1 ) if i = 1 p(x i θ, y i, x i 1, x i+1 ) π xi 1,x i π xi,x i+1 p xi (y i ) if 1 < i < N π xn 1,x N p xn (y N ) if i = N

13 Parameter Estimation - MCMC Sampler 3. Draw each row of the transition probability matrix from π r Dir(1 + n r1, 1 + n r2 ) where n jk = N i=2 1{x i 1 = j, x i = k}. 4. Draw the regime-specific parameters using only the observations assigned to that regime. p(θ k x, y, θ j k ) = p(θ k y i[k] ) p(y i[k] θ k )p(θ k ) If no observations were assigned to the regime, draw the parameters using the entire sample. 5. Continue steps 2-4 until convergence. Discard those observations and then continue steps 2-4 until a strong picture of the posterior distributions emerges.

14 Simulation Study 1. Acquire total return data from the S&P 500 from January October Fit all nine models using an EM algorithm. 3. Generate many data sets of varying size (20, 50, 100, 200, 500, and 1000) from each of the fitted models. 4. Use the model selection techniques to choose the best model and measure the correct selections

15 Fitted Models Model 7 Model 8 Model 9 Model 1 Model 2 Model 3 Model 4 Model 5 Model Returns Returns

16 Fitted Parameter Estimates Model Regime 1 Regime 2 [ Transition ] GA(980.1,967.5) GA(267.8,268.6) [ ] GA(267.3,268.2) LN(0.013,0.001) [ ] GA(996.1,985.8) WB(19.1,1.03) [ ] LN(0.013,0.001) LN(-0.008,0.004) [ ] LN(0.001,0.001) WB(19.16,1.03) [ ] WB(32.66,1.02) WB(22.11,1.07) GA(544.5,539.9) 8 LN(0.008,0.002) 9 WB(19.12,1.03)

17 Correctly Identified Models/Posterior Model Probabilities

18 Correctly Identified Models/Posterior Model Probabilities

19 Tabulated Model Probabilities True Model Chosen Model

20 Model Selection on S&P 500 Data Parallel AIC BIC DIC 1: GA-GA : GA-LN : GA-WB : LN-LN : LN-WB : WB-WB : GA : LN : WB

21 Importance of Model Uncertainty 4 Discounted Value of Index Months

22 Multivariate Regime-switching Lognormal Models Multivariate RSLN model: y i N C (µ, Σ) (1) Covariance matrices are difficult to work with directly. Spectral decomposition of the matrix (e.g. Banfield 1993, Yang 1994, Bensmail 1997) Matrix logarithm (Leonard 1992, Chiu 1996) Cholesky decomposition of the inverse (Pourahmadi 1999, 2000) The separation strategy (Barnard 2000) where the covariance matrix is rewritten as Σ = SRS

23 Separation Strategy S is a C C matrix with standard deviations on the diagonal. σ S = 0 σ σ C R is a C C matrix of correlation coefficients. 1 r r 1C r r 2C R = r C1 r C2... 1

24 Correlation structures Similar to the suggestions in Liechty (2004), we examine three different prior specifications for the correlation matrix. 1. Common Correlations Model 2. Grouped Correlations Model 3. Grouped Variables Model

25 Priors Common to All Models The return means and variances are given normal and inverse gamma priors, respectively. µ N C (0, τ 2 I) σ 2 j IG(α σ, β σ ) The prior variance of µ, τ 2 I is chosen to be large and the hyperparameters of σj 2 are chosen to be relatively informative using results from previous studies.

26 Common Correlations Model In the common correlations model, all correlation elements come from the same prior distribution. r ab N(λ, γ 2 ) λ N(µ λ, σ 2 λ ) γ 2 IG(α γ, β γ )

27 Positive-definite Bounds Correlation matrices are constrained to be positive-definite. When updating the correlation matrix one element at a time, the bounds of ab value for which the entire matrix will remain positive-definite are the roots of the following quadratic equation. f ab (1) + f ab ( 1) 2f ab (0) 2 x 2 + f ab(1) f ab ( 1) x + f ab (0) 2 where f ab (s) is the determinant of the correlation matrix with the ab and ba elements replaced by s

28 Computational Issues Because of the positive-definite requirement, the chain may mix slowly. We work to reduce that impact two ways Shadow Priors Griddy Gibbs Sampling

29 Shadow Prior (Liechty 2009) Likelihood functions of both λ and γ 2 will include complicated normalization constants Insert a shadow prior for δ ab It has a small enough variance that the effect of the bound essentially cancels in the acceptance probability. Basic Formulation r ab N(λ, γ 2 ) λ N(µ λ, σλ 2 ) γ 2 IG(α γ, β γ ) With Shadow Prior r ab N(δ ab, 0.01) δ ab N(λ, γ 2 ) λ N(µ λ, σλ 2 ) γ 2 IG(α γ, β γ )

30 Griddy Gibbs When sampling from a bounded space, mixing can be improved through the use of a Griddy Gibbs sampler 1. Compute the bounds 2. Within the bounds find many (say 100) equally-spaced points 3. Calculate the posterior density of all the points 4. Using the densities as relative probabilities, draw a new value for the parameter

31 Grouped Correlations Model Under the grouped correlations model, the correlation elements come from a mixture prior. r ab N(δ ab, ν 2 ), ν 2 = 0.01 δ ab θ ab = k N(λ k, γ 2 k ) λ k N(µ λ, σ 2 λ ) γ 2 k IG(α γ, β γ ) θ ab MN(p 1,..., p k )

32 Grouped Variables Model Under the grouped variables model, the individual assets are clustered instead of the correlation elements. r ab N(δ ab, ν 2 ), ν 2 = 0.01 δ ab θ a = g, θ b = h N(λ gh, γ 2 gh ) λ gh N(µ λ, σ 2 λ ) γ 2 gh IG(α γ, β γ ) θ i MN(p 1,..., p L )

33 Common Correlations Model Results Regime 1 Regime 2 µ σ 2 µ σ 2 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

34 Common Correlations Results, Regime 1 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

35 Common Correlations Results, Regime 2 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

36 Grouped Correlations Model Results Regime 1 Regime 2 µ σ 2 µ σ 2 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

37 Grouped Correlations Results, Regime 1 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

38 Grouped Correlations Results, Regime 2 Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA Belgium France Germany Netherlands Switzerland Australia Canada Mexico USA

39 Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut BYU Statistics Department Seminar 04 April 2013

Assessing Regime Uncertainty Through Reversible Jump McMC

Assessing Regime Uncertainty Through Reversible Jump McMC Assessing Regime Uncertainty Through Reversible Jump McMC August 14, 2008 1 Introduction Background Research Question 2 The RJMcMC Method McMC RJMcMC Algorithm Dependent Proposals Independent Proposals

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

BAYESIAN MODEL CRITICISM

BAYESIAN MODEL CRITICISM Monte via Chib s BAYESIAN MODEL CRITICM Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Cross-sectional space-time modeling using ARNN(p, n) processes

Cross-sectional space-time modeling using ARNN(p, n) processes Cross-sectional space-time modeling using ARNN(p, n) processes W. Polasek K. Kakamu September, 006 Abstract We suggest a new class of cross-sectional space-time models based on local AR models and nearest

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Penalized Loss functions for Bayesian Model Choice

Penalized Loss functions for Bayesian Model Choice Penalized Loss functions for Bayesian Model Choice Martyn International Agency for Research on Cancer Lyon, France 13 November 2009 The pure approach For a Bayesian purist, all uncertainty is represented

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals Overall Measures of GOF Deviance: this measures the overall likelihood of the model given a parameter vector D( θ) = 2 log L( θ) This can be averaged

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Variability within multi-component systems. Bayesian inference in probabilistic risk assessment The current state of the art

Variability within multi-component systems. Bayesian inference in probabilistic risk assessment The current state of the art PhD seminar series Probabilistics in Engineering : g Bayesian networks and Bayesian hierarchical analysis in engeering g Conducted by Prof. Dr. Maes, Prof. Dr. Faber and Dr. Nishijima Variability within

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Recursive Deviance Information Criterion for the Hidden Markov Model

Recursive Deviance Information Criterion for the Hidden Markov Model International Journal of Statistics and Probability; Vol. 5, No. 1; 2016 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Recursive Deviance Information Criterion for

More information

Gibbs Sampling in Linear Models #1

Gibbs Sampling in Linear Models #1 Gibbs Sampling in Linear Models #1 Econ 690 Purdue University Justin L Tobias Gibbs Sampling #1 Outline 1 Conditional Posterior Distributions for Regression Parameters in the Linear Model [Lindley and

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Confidence Intervals. CAS Antitrust Notice. Bayesian Computation. General differences between Bayesian and Frequntist statistics 10/16/2014

Confidence Intervals. CAS Antitrust Notice. Bayesian Computation. General differences between Bayesian and Frequntist statistics 10/16/2014 CAS Antitrust Notice Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks (9) Model selection and goodness-of-fit checks Objectives In this module we will study methods for model comparisons and checking for model adequacy For model comparisons there are a finite number of candidate

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham NC 778-5 - Revised April,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic NPFL108 Bayesian inference Introduction Filip Jurčíček Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic Home page: http://ufal.mff.cuni.cz/~jurcicek Version: 21/02/2014

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

A Prior Distribution of Bayesian Nonparametrics Incorporating Multiple Distances

A Prior Distribution of Bayesian Nonparametrics Incorporating Multiple Distances A Prior Distribution of Bayesian Nonparametrics Incorporating Multiple Distances Brian M. Hartman 1 David B. Dahl 1 Debabrata Talukdar 2 Bani K. Mallick 1 1 Department of Statistics Texas A&M University

More information

Different points of view for selecting a latent structure model

Different points of view for selecting a latent structure model Different points of view for selecting a latent structure model Gilles Celeux Inria Saclay-Île-de-France, Université Paris-Sud Latent structure models: two different point of views Density estimation LSM

More information

Bayesian Computation

Bayesian Computation Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut CAS Antitrust

More information

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs Model-based cluster analysis: a Defence Gilles Celeux Inria Futurs Model-based cluster analysis Model-based clustering (MBC) consists of assuming that the data come from a source with several subpopulations.

More information

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Michael Anderson, PhD Hélène Carabin, DVM, PhD Department of Biostatistics and Epidemiology The University of Oklahoma

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Submitted to the Brazilian Journal of Probability and Statistics

Submitted to the Brazilian Journal of Probability and Statistics Submitted to the Brazilian Journal of Probability and Statistics A Bayesian sparse finite mixture model for clustering data from a heterogeneous population Erlandson F. Saraiva a, Adriano K. Suzuki b and

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa

pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa Aneta Siemiginowska Harvard-Smithsonian Center for Astrophysics Vinay Kashyap (CfA), David Van Dyk (UCI), Alanna Connors (Eureka), T.Park(Korea)+CHASC

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Kohta Aoki 1 and Hiroshi Nagahashi 2 1 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

More information

Module 11: Linear Regression. Rebecca C. Steorts

Module 11: Linear Regression. Rebecca C. Steorts Module 11: Linear Regression Rebecca C. Steorts Announcements Today is the last class Homework 7 has been extended to Thursday, April 20, 11 PM. There will be no lab tomorrow. There will be office hours

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Spatial Statistics Chapter 4 Basics of Bayesian Inference and Computation

Spatial Statistics Chapter 4 Basics of Bayesian Inference and Computation Spatial Statistics Chapter 4 Basics of Bayesian Inference and Computation So far we have discussed types of spatial data, some basic modeling frameworks and exploratory techniques. We have not discussed

More information

Introduc)on to Bayesian Methods

Introduc)on to Bayesian Methods Introduc)on to Bayesian Methods Bayes Rule py x)px) = px! y) = px y)py) py x) = px y)py) px) px) =! px! y) = px y)py) y py x) = py x) =! y "! y px y)py) px y)py) px y)py) px y)py)dy Bayes Rule py x) =

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006 ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION Slide 1 Faker Zouaoui Sabre Holdings James R. Wilson NC State University May, 006 Slide From American

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Online Appendix to: Crises and Recoveries in an Empirical Model of. Consumption Disasters

Online Appendix to: Crises and Recoveries in an Empirical Model of. Consumption Disasters Online Appendix to: Crises and Recoveries in an Empirical Model of Consumption Disasters Emi Nakamura Columbia University Robert Barro Harvard University Jón Steinsson Columbia University José Ursúa Harvard

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract Bayesian analysis of a vector autoregressive model with multiple structural breaks Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus Abstract This paper develops a Bayesian approach

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information