Chapter 10 3/7/2017. Avogadro s Number and the Mole. Why don t we count other things by the mole?

Size: px
Start display at page:

Download "Chapter 10 3/7/2017. Avogadro s Number and the Mole. Why don t we count other things by the mole?"

Transcription

1 Avogadro s Number and the Mole Chapter 10 Many words represent a quantity Chemical Quantities Atoms are so tiny, that counting them by the dozen would be ridiculous! Chemists count by the mole. 1 mole = 6.02 x particles (called Avogadro s # ) Defined as the # of atoms in 12 g of 12 C. Why don t we count other things by the mole? According to the Federal Reserve Bank of NY, as of July 2013, the amount of cash in the form of U.S. currency (paper & coins) was 1.2 trillion. 1,200,000,000,000 dollars Is that a mole? Water Each of these beakers contains one mole of the substance. In other words, each beaker has 602,000,000,000,000,000,000,000 particles in it!! How long would it take you to count to a mole of dollars? (assume you can say one # every second) What would happen if you were to gather a mole (unit of measurement) of moles (the small furry critter) in one place? What If? Things get a big gruesome. "One mole" is close to the number of atoms in a gram of hydrogen. It s also, by chance, a decent ballpark guess for the number of grains of sand on Earth. 1

2 A mole is also a type of burrowing mammal. There are a handful of types of moles, and some of them are truly horrifying. So what would a mole of moles 602,214,129,000,000,000,000,000 animals look like? An eastern mole (Scalopusaquaticus) weighs about 75 grams, which means a mole of moles weighs ( ) 75g kg That s a little over half the mass of our moon. Mammals are largely water. A kilogram of water takes up a liter of volume, so if the moles weigh kilograms, they take up about liters of volume. (You might notice that we re ignoring the pockets of space between the moles. In a moment, you ll see why.) If these moles were released onto the Earth s surface, they d fill it up to 80 kilometers deep just about to the (former) edge of space: The cube root of liters is 3,562 kilometers, which means we re talking about a sphere with a radius of 2,210 kilometers, or a cube 2,213 miles on each edge. This smothering ocean of high-pressure meat would wipe out most life on the planet. Instead, let s gather the moles in interplanetary space. Gravitational attraction would pull them into a sphere. Meat doesn t compress very well, so it would only undergo a little bit of gravitational contraction, and we d end up with a mole planet a bit larger than the moon. The moles would have a surface gravity about one-sixteenth as strong as Earth s similar to that of Pluto. The planet would start off uniformly lukewarm probably a bit over room temperature and the gravitational contraction would heat the deep interior by a handful of degrees. But this is where it gets weird. 2

3 The mole planet is now a giant sphere of meat. It has a lot of latent energy (there are enough calories in the mole planet to support the Earth s current population for 30 billion years). Normally, when organic matter decomposes, it releases much of that energy as heat. But throughout the majority of the planet s interior, the pressure is over a hundred megapascals, which is enough to kill all bacteria and sterilize the mole remains leaving no microorganisms to break down the mole tissues. Closer to the surface, where the pressure is lower, there s another obstacle to decomposition the interior of a mole planet is low in oxygen. Without oxygen, the usual decomposition doesn t happen, and the only bacteria that can break down the moles are those which don t require oxygen. While inefficient, this anaerobic decomposition can unlock quite a bit of heat. If continued unchecked, it would heat the planet to a boil. But the decomposition is self-limiting. Few bacteria can survive at temperatures above about 60 C, so as the temperature goes up, the bacteria die off, and the decomposition slows. Throughout the planet, the mole bodies gradually break down into kerogen, a mush of organic matter which would if the planet were hotter eventually form oil. The outer surface of the planet radiates heat into space and freezes. Because the moles form a literal fur coat, when frozen it insulates the interior of the planet and slows the loss of heat to space. However, the flow of heat in the liquid interior is dominated by convection. Plumes of hot meat and bubbles of trapped gases like methane along with the air from the lungs of the deceased moles periodically rise through the mole crust and erupt volcanically from the surface, a geyser of death blasting mole bodies free of the planet. Eventually, after centuries or millennia of turmoil, the planet calms and cools enough that it begins to freeze all the way through. The deep interior is under such high pressure that as it cools, the water crystallizes out intoexotic forms of ice Molar Mass The mass in grams of one mole of a compound. The mass of one mole of any element on the periodic table is equal to its mass in grams: (He = g/mol) Example: Calculate the molar mass of NH 3 3

4 Calculate the molar mass of the following: NiCl 2 The Mole is the Central Unit in Chemistry The Molar Highway CaCO 3 (NH 4 ) 2 SO 4 Make Your Own Molar Highway Converting Between Mass & Moles Use dimensional analysis. Use molar mass of substance as the conversion factor. MOLES TO MASS MASS TO MOLES grams 1mole moles x = grams grams x = moles 1mole grams Example: Convert 5.0 g of Fe to moles. Example: Convert 5.0 moles of water to grams grams Sr(OH) 2 to moles 2.50 moles of Na 2 S to grams. Converting Between Particles & Moles Use dimensional analysis. Use Avogadro s Number as the conversion factor. MOLES TO PARTICLES Particle can be atoms, molecules, or formula units. PARTICLES TO MOLES X10 particles 1mole moles x = particles particles x = moles 23 1mole 6.022x10 particles Example: Convert 5.5 x atoms of C to moles. Example: Convert 7.5 moles of CH 4 to molecules. 4

5 3.20 x molecules of water to moles 92.3 moles of C to atoms. Converting Between Volume & Moles Use molar volume as the conversion factor. At standard temperature and pressure (STP) 0 o C & 1 atm, 1 mole of any gas occupies 22.4 L. MOLES TO VOLUME VOLUME TO MOLES 22.4L 1mole moles x = liters liters x = liters 1mole 22.4L Example: Convert 82 moles of CO 2 to volume. Example: Convert 9.3 liters of H 2 O to moles. 925 L of He (at STP) to moles Multi-step Conversions Mass particles Volume mass 6.67 moles of CO 2 (at STP) to L Particles volume Follow the molar highway & use dimensional analysis to solve. 487 L of CH 4 (at STP) to molecules 2.5 x particles Na 2 CO 3 to grams Percent Composition % by mass of each element in a compound. How to calculate: totalmass of element incompound % of element = x100% mass of compound Example: Calculate the percent composition of C and O in carbon monoxide and carbon dioxide. 5

6 Calculate the percentage composition of hydrogen and oxygen in: H 2 O H 2 O 2 Empirical Formulas The mole allows us to calculate the empirical formula for a substance given the mass % of its elements. Here s how 1. Base calculation on 100 grams of compound. 2. Determine moles of each element in 100 grams of compound. 3. Divide each value of moles by the smallest of the values. 4. Multiply each number by an integer to obtain all whole numbers. (General rule: If it is close to a whole #, just round it. If it looks like a fraction, like ¼, ½, etc, then multiply until they become a whole #) Empirical Formulas Percent to mass, mass to mole, divide by small, multiply til whole. Example Percent to mass, mass to mole, divide by small, multiply til whole. One of the most commonly used white pigments in paint is a compound of titanium and oxygen that contains 59.9% Ti by mass. Determine the empirical formula of this compound. Vitamin C (ascorbic acid) contains 40.92% C, 4.58% H, and 54.50% O by mass. What is the empirical formula of vitamin C? Determining Molecular Formulas Follow the same steps in determining the empirical formula Compare empirical formula s mass to molar mass given in the problem (How many times bigger is it?) Multiply empirical formula by the appropriate integer 6

7 Example A compound that contains only nitrogen and oxygen is 30.4% N by mass; the molar mass of the compound is 92 g/mol. What is the molecular formula of the compound? Ethylene glycol, the substance used in automobile antifreeze, is composed of 38.7% C, 9.7% H, and 51.6% O by mass. Its molar mass is 62.1 g/mol. What is the empirical formula? What is the molecular formula? 7

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

What is a Mole? An Animal or What?

What is a Mole? An Animal or What? Unit 7: (Chapter 9) Chemical Quantities What is a Mole? An Animal or What? Section 9.1 The Mole: A Measurement of Matter Describe how Avogadro s number is related to a mole of any substance. Calculate

More information

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or Chapter 10 Chemical Quantities or 1 2 How you measure how much? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters. We count pieces in MOLES.

More information

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Videos 1. Crash course Partial pressures:   YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: Videos 1. Crash course Partial pressures: https://youtu.be/jbqtqcunyza?list=pl8dpuualjxtphzz YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: https://youtu.be/tlrzafu_9kg?list=pl8dpuualjxtph zzyuwy6fyeax9mqq8ogr

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

Chapter 5. Mole Concept. Table of Contents

Chapter 5. Mole Concept. Table of Contents Mole Concept Table of Contents 1. Mole 2. Avagadro s Number 3. Molar Mass 4. Molar Volume of Gases 5. The Mole Concept Calculations 6. Several Types of Problems Mole Concept Warm up List common units used

More information

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9 Chapter 9 Chemical Calculations: The Mole concept and Chemical Formula This material is not included in Midterm 1 1 Law of Definite Proportions (John Dalton) Chapter 9 A given compound always contains

More information

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways: Chapter 10 Notes CHAPTER 10 10.1 The Mole: A Measurement of Matter Matter is measured in one of three ways: Chemical Quantities Mole SI unit that measures the amount of a substance A mole of a substance

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities 101 The Mole: A Measurement Chapter 10 Chemical Quantities 101 The Mole: A Measurement 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 Copyright Pearson Education,

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 101 The Mole: A Measurement 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 CHEMISTRY & YOU How can you quantify the amount of

More information

Unit 6: Chemical Quantities. Understanding The Mole

Unit 6: Chemical Quantities. Understanding The Mole Unit 6: Chemical Quantities Understanding The Mole 1 How do We Typically Measure Matter? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters.

More information

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter Chapter 10 Chemical Quantities 101 The Mole: A Measurement of Matter 102 Mole-Mass and Mole- 103 Percent Composition and Chemical Formulas 1 http://wwwbrightstormcom/science/chem istry/chemical-reactions/molar-mass/

More information

CHAPTER 9 AVOGADRO S NUMBER

CHAPTER 9 AVOGADRO S NUMBER CHAPTER 9 AVOGADRO S NUMBER Just like we count in dozens, gross or ream, we count atoms in groups because of their minute sizes. Like in finding the number of atoms in12.01g of C, Experiments have shown

More information

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol) Avogadro s Number and the Mole Molecular weight: The sum of atomic weights of all atoms in a molecule. Formula weight: The sum of atomic weights of all atoms in one formula unit of any compound. Mole:

More information

Unit 5 COUNTING PARTICLES

Unit 5 COUNTING PARTICLES Unit 5 COUNTING PARTICLES Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number of the objects. EXAMPLE:

More information

CHEMISTRY MOLES PACKET 2017 NAME: PER:

CHEMISTRY MOLES PACKET 2017 NAME: PER: CHEMISTRY MOLES PACKET 2017 NAME: PER: We have learned that a mole can be a certain mass of a substance and a certain number of particles. A mole can also be a measure of volume when we are talking about

More information

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction Page 1 of 9 Page 2 of 9 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. c. Notice how the number

More information

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH Chapter Outline Section 10.1 Measuring Matter Key Concepts The mole is a unit used to count particles of matter indirectly.

More information

Lecture Notes Chapter 6

Lecture Notes Chapter 6 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. à c. Notice how the number of oxygen atoms on left

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

What is a Representative Particle

What is a Representative Particle Chapter 7 Moles What is a Representative Particle The smallest unit into which a substance can be broken down without changing the composition of the substance. Atoms, molecules, and formula units What

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

Molar Conversions & Calculations

Molar Conversions & Calculations Molar Conversions & Calculations Ch. 11 The Mole 1 A. What is the Mole? A counting number (like a dozen) Avogadro s number (n) 1 mol = 6.02 x 10 23 items A VERY large amount!!!! 2 A. What is the Mole?

More information

All Roads Lead to the Mole

All Roads Lead to the Mole CHEMICAL QUANTITIES Chemical Quantities Dozen: Baker as Mole: Chemist Measuring doughnuts: o 1 dozen = 1 doughnuts (count) o 1 dozen = 500 g doughnuts (mass) o 1 dozen = 1 box doughnuts (volume) All Roads

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages ) Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1 1. Mole Definition & Background The mole was developed

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 142 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. Volume of a 10'x10'x8' room 1) First, find the MOLES of gas using the ideal gas equation and the information given. 2) Convert

More information

1/7/14. Measuring Matter. How can you convert among the count, mass, and volume of something? Apples can be measured in three different ways.

1/7/14. Measuring Matter. How can you convert among the count, mass, and volume of something? Apples can be measured in three different ways. Chapter 10 Chemical Quantities 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 Measuring Matter Measuring Matter How can you convert among the count, mass, and

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1. Mole Definition & Background The mole was developed

More information

Chapter 8. The Mole Concept

Chapter 8. The Mole Concept Chapter 8 The Mole Concept Chapter 9 2 Avogadro s Number Avogadro s number (symbol N) is the number of atoms in 12.01 grams of carbon. Its numerical value is 6.02 10 23. Therefore, a 12.01 g sample of

More information

TOPIC 4: THE MOLE CONCEPTS

TOPIC 4: THE MOLE CONCEPTS TOPIC 4: THE MOLE CONCEPTS INTRODUCTION The mass is gram (g) of 1 mole of substances is called its.. 1 mole of substances has.. particles of a substances The mass of 1 mole of substances is always equal

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated?

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated? How can homogeneous and heterogeneous mixtures be 1. classified? 2. separated? 1. HETEROGENEOUS MIXTURE 2. COLLOID 3. EMULSION 4. SUSPENSION 5. FILTRATION 6. TYNDALL EFFECT 7. HOMOGENEOUS MIXTURE 8. SOLUTION

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

7 Quantitative Composition of Compounds. Chapter Outline. The Mole. Slide 1. Slide 2. Slide 3

7 Quantitative Composition of Compounds. Chapter Outline. The Mole. Slide 1. Slide 2. Slide 3 1 7 Quantitative Composition of Compounds Black pearls are composed of calcium carbonate, CaCO 3. The pearls can be measured by either weighing or counting. Foundations of College Chemistry, 14 th Ed.

More information

3/22/2017. Chapter 8. Chemical Composition. Counting by Weighing. Section 8.1

3/22/2017. Chapter 8. Chemical Composition. Counting by Weighing. Section 8.1 Chapter 8 Chemical Composition Section 8.1 Counting by Weighing 2 1 Section 8.1 Counting by Weighing A pile of marbles weigh 394.80 g. 10 marbles weigh 37.60 g. How many marbles are in the pile? 37.60

More information

Unit III: Quantitative Composition of Compounds

Unit III: Quantitative Composition of Compounds Unit III: Quantitative Composition of Compounds A. Atoms and Isotopes B. Atomic Composition of Chemical Compounds C. Formula and Molecular Mass D. Calculations using Moles of Atoms E. Calculations using

More information

Name Class Date = + 1 S atom 32.1 amu +

Name Class Date = + 1 S atom 32.1 amu + Molar Mass 10. What is the atomic mass of an element? 11. Circle the letter of the phrase that completes this sentence correctly. The atomic masses of all elements a. are the same. b. are based on the

More information

The Mole. Chemical Quantities

The Mole. Chemical Quantities The Mole Chemical Quantities How Much vs What Is It? Quantitative Analysis -gives answers in a numerical form tells exactly how much Qualitative Analysisgives answers about a compounds without using numbers

More information

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter)

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter) Chemistry Chapter 3 Stoichiometry (three sections for this chapter) Chemistry Chapter 3 Stoichiometry Section 1 3.1-3.4 Average Atomic Mass The Mole Molar Mass Average Atomic Mass Average mass of objects

More information

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections)

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) Unit 5 Notepack: Chapters 10 Chemical Quantities NAME Unit 5 Chemical Names, and Formulas & Moles Unit Goals- As you work through this unit, you should be able to: 1. Distinguish between ionic and molecular

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Lecture Outline 3.1 Chemical Equations The quantitative nature of chemical formulas and reactions is called stoichiometry. Lavoisier

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g The Mole Concept Counting by weighing The size of molecule is so small that it is physically difficult if not impossible to directly count out molecules. this problem is solved using a common trick. Atoms

More information

THE MOLE. number it really is!

THE MOLE. number it really is! THE MOLE We often use terms to describe a number of an item, like a dozen doughnuts or eggs. In the case of atoms, we do the same, but instead of 12 = 1 dozen, we need a much bigger number because atoms

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms Topic 7: The Mole Concept Relating Mass to Numbers of Atoms (Chapter 3 in Modern Chemistry beginning on p.82) In order to understand the quantitative parts of chemistry, there are three very important

More information

Chapter 3. Stoichiometry:

Chapter 3. Stoichiometry: Chapter 3. Stoichiometry: Watch Bozeman Videos & other videos on my website for additional help: Big Idea 1: Chemical Analysis Conservation of Atoms Balancing Equations Symbolic Representation Mole Big

More information

NOTES: 10.3 Empirical and Molecular Formulas

NOTES: 10.3 Empirical and Molecular Formulas NOTES: 10.3 Empirical and Molecular Formulas What Could It Be? Empirical Formulas Indicate the lowest whole number ratio of the atoms in a compound: 1) Determine moles of each element present in the compound

More information

12.1. The Combined Gas Law. The Combined Gas Law SECTION. Key Terms

12.1. The Combined Gas Law. The Combined Gas Law SECTION. Key Terms SECTION 12.1 The Combined Gas Law Key Terms combined gas law law of combining volumes Avogadro s law (hypothesis) molar volume standard temperature and pressure (STP) standard ambient temperature and pressure

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information

Multiple Choices: Choose the best (one) answer. Show in bold. Questions break-down: Chapter 8: Q1-8; Chapter 9: Q9-16: Chapter 10:

Multiple Choices: Choose the best (one) answer. Show in bold. Questions break-down: Chapter 8: Q1-8; Chapter 9: Q9-16: Chapter 10: HCCS CHEM 1405 textbook PRACTICE EXAM III (Ch. 8-10) 5 th and 6 th edition of Corwin s The contents of these chapters are more calculation-oriented and are the beginning of learning of the chemical language.

More information

Chemical Reactions. Chapter 17

Chemical Reactions. Chapter 17 Chemical Reactions Chapter 17 Chemical Equations C+O 2 CO 2 C (s) +O 2 (g) CO 2 (g) Reactants on left, products on right Each are balanced because same number of atoms of reactants as products Some equations

More information

Chemical Quantities: Stoichiometry. UNIT 4: Ch. 10 & 11 Ms. Kiely, Coral Gables Senior High

Chemical Quantities: Stoichiometry. UNIT 4: Ch. 10 & 11 Ms. Kiely, Coral Gables Senior High Chemical Quantities: Stoichiometry UNIT 4: Ch. 10 & 11 Ms. Kiely, Coral Gables Senior High 1 Bell Ringer 1. What is the molar mass of MgCl₂? 2. How heavy is a 2.6 mol sample of MgCl₂? 2 10.2: Volume conversions!

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules

Lesson 01: Atomic Masses and Avogadro s Hypothesis. 01 Counting Atoms and Molecules Chemistry 11, Mole Concept, Unit 04 1 Lesson 01: Atomic Masses and Avogadro s Hypothesis 01 Counting Atoms and Molecules The chemical changes we observe always involve a certain number of atoms that rearrange

More information

How do you measure matter?

How do you measure matter? How do you measure matter? You may count how many you have. Determine a substances mass and weight. Determine a substances volume. But how can you relate these three types of measurements to one another?

More information

The Mole: A Measurement of Matter

The Mole: A Measurement of Matter The Mole: A Measurement of Matter Vocabulary mole, Avogadro's number, representative particle, molar mass Every year contestants from all over the world travel to Harrison Hot Springs in British Columbia,

More information

Name Date Period. Rock Cycle Webquest

Name Date Period. Rock Cycle Webquest Rock Cycle Webquest Activity # 1 Rock and the Rock Cycle a) Open Rock and the Rock Cycle. Read and fill in the blanks. All rock (except for meteorites) that is on Earth today is made of the stuff as the

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

The properties of water in all phases are determined by its structure.

The properties of water in all phases are determined by its structure. Section 5 Water Water is a familiar substance in all three physical states: solid, liquid, and gas. On Earth, water is by far the most abundant liquid. Oceans, rivers, and lakes cover about 75% of Earth

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq)

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq) 1) Write the reaction for Calcium and nitrogen reacting 3) What element on the periodic table is the largest? 3)Name these a) H2S (aq) b) HNO 3 (aq) Stoichiometry: mathematical relationships in formulas

More information

THE MOLE (a counting unit)

THE MOLE (a counting unit) MOLE AND MATH THE MOLE (a counting unit) A mole represents a set or group, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mole eggs = 6.022 x 10 23 eggs 1 dozen

More information

Chapter No. 1 BASIC CONCEPTS Short Question With Answer Q.1 Calculate the grams atoms in 0.4 gm of potassium. Gram atoms of potassium = = = 0.01 grams atoms Q.2 23 grams of sodium and 238 gram of uranium

More information

Warm-up. If aluminum cans weigh 20.g each, how many cans are in a 150 kg truckload of cans? (solve using conversion factors)

Warm-up. If aluminum cans weigh 20.g each, how many cans are in a 150 kg truckload of cans? (solve using conversion factors) Warm-up If aluminum cans weigh 20.g each, how many cans are in a 150 kg truckload of cans? (solve using conversion factors) 1 THE MOLE 2 Measuring Matter How do chemists determine amounts of chemicals

More information

Composition and formulae. Of moles and men

Composition and formulae. Of moles and men Composition and formulae Of moles and men Learning objectives Count atoms in formula Define the mole Determine numbers of atoms or molecules in molar quantities Determine molar mass from chemical formula

More information

B. stoichiometry using balanced chemical equations to obtain info. C. mole-to-r.p. and r.p.-to-mole example problems:

B. stoichiometry using balanced chemical equations to obtain info. C. mole-to-r.p. and r.p.-to-mole example problems: Chem. Ch. 10 ~ THE MOLE NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 10.1 Notes I. Measuring Matter A. SI unit of chemical quantity = the mole (abbreviated

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

Part 01 - Notes: The Mole and Its Calculations

Part 01 - Notes: The Mole and Its Calculations Part 01 - Notes: The Mole and Its Calculations Objectives: Identify, define, and explain: mole, Avogadro s number, representative particle, gram atomic mass, gram molecular mass, gram formula mass, molar

More information

Properties and Structure of Matter

Properties and Structure of Matter Properties and Structure of Matter Chapter 10 You can use a spider map to organize the main ideas and supporting details of a topic such as properties of matter. Look at the example shown below. The central

More information

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass TOPICS 1. Intermolecular Forces 2. Properties of Gases 3. Pressure 4. Gas Laws Boyle, Charles, Lussac 5. Ideal Gas Law 6. Gas Stoichiometry 7. Partial Pressure 8. Kinetic Molecular Theory 9. Effusion &

More information

Measuring matter 11.1

Measuring matter 11.1 The Mole Ch 11 Measuring matter 11.1 Review 11.1 Vocabulary o molecule: two or more atoms that covalently bond together to form a unit New mole Avogadro s number Main Idea - Chemists use the mole to count

More information

UNIT 3 Quantities in Chemical Reactions THE MOLE!

UNIT 3 Quantities in Chemical Reactions THE MOLE! UNIT 3 Quantities in Chemical Reactions THE MOLE! In chemistry as in other aspects of life it is sometimes more convenient to count in groups of items rather than count items individually. Quantity Amount

More information

1. Mole Definition & Background

1. Mole Definition & Background Unit 5: THE MOLE 1. Mole Definition & Background 2. Molar Mass 3. Mole Calculations 4. Percent Composition 5. Empirical Formulas 6. Molecular Formulas 1 1. Mole Definition & Background The mole was developed

More information

Chapter 5. Stoichiometry

Chapter 5. Stoichiometry Chapter 5 Stoichiometry Chapter 5 Table of Contents (5-1) Counting by weighing (5-2) Atomic masses (5-3) Learning to solve problems (5-4) The mole (5-5) Molar mass (5-6) Percent composition of compounds

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information

7 Quan'ta've Composi'on of Compounds. Chapter Outline. The Mole. The Mole. The Mole. The Mole. Advanced Chemistry

7 Quan'ta've Composi'on of Compounds. Chapter Outline. The Mole. The Mole. The Mole. The Mole. Advanced Chemistry 7 Quan'ta've Composi'on of Compounds Chapter Outline 7.1 The Mole 7.2 7.3 Percent Composition of Compounds 7.4 Calculating Empirical Formulas 7.5 Calculating the Molecular Formula from Black pearls are

More information

Math of Formulas. Chapter 10

Math of Formulas. Chapter 10 Math of Formulas Chapter 10 Macro vs. Micro Chemistry has two worlds: The macroscopic world = what a scien>st can see and weigh The microscopic world = the atomic level, filled with >ny molecules Chemists

More information

Right Side NOTES ONLY

Right Side NOTES ONLY Ch 5.11 & Ch 6 Title and Highlight Right Side NOTES ONLY TN Ch 5.11 Topic: EQ: Date Write Question out (left side of red line) and answer it (Highlight answer) based on from what you read. Write out the

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages ) 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

Percent Composition and Empirical Formulas

Percent Composition and Empirical Formulas Percent Composition and Empirical Formulas Content Objectives SWBAT calculate the percent composition by mass of each element in a compound. SWBAT calculate the empirical formula of a compound based on

More information

Chapter 8. Chemical Composition

Chapter 8. Chemical Composition Chapter 8 Chemical Composition Section 8.1 Counting by Weighing Objects do not need to have identical masses to be counted by weighing. All we need to know is the average mass of the objects. To count

More information

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 = Summary of Gas Laws Boyle s Law (T and n constant) p 1 V 1 = p 2 V 2 Charles Law (p and n constant) V 1 = T 1 V T 2 2 Combined Gas Law (n constant) pv 1 T 1 1 = pv 2 T 2 2 1 Ideal Gas Equation pv = nrt

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Stoichiometry Dr. M. E. Bridge

Stoichiometry Dr. M. E. Bridge Preliminary Chemistry Course Stoichiometry Dr. M. E. Bridge What is stoichiometry? The meaning of the word: The word stoichiometry comes from two Greek words: stoichon(meaning element ) and metron(meaning

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information