On the entropic derivation of the r 2 Newtonian gravity force

Size: px
Start display at page:

Download "On the entropic derivation of the r 2 Newtonian gravity force"

Transcription

1 arxiv: v [gr-qc] 5 Apr 08 On the entropic derivation of the r Newtonian gravity force A. Plastino,3,4, M.C.Rocca,,3, Departamento de Física, Universidad Nacional de La Plata, Departamento de Matemática, Universidad Nacional de La Plata, 3 Consejo Nacional de Investigaciones Científicas y Tecnológicas (IFLP-CCT-CONICET)-C. C. 77, 900 La Plata - Argentina 4 SThAR - EPFL, Lausanne, Switzerland April 6, 08 Abstract Following Verlinde s conjecture, we show that Tsallis classical free particle distribution at temperature T can generate Newton s gravitational force s r distance s dependence. If we want to repeat the concomitant argument by appealing to either Boltzmann-Gibbs or Renyi s distributions, the attempt fails and one needs to modify the conjecture. Keywords: Tsallis, Boltzmann-Gibbs, and Renyi s distributions, classical partition function, entropic force.

2 Introduction Eight years ago, Verlinde [] advanced a conjecture that links gravity to an entropic force, so that gravity would result from information regarding the positions of material bodies. His model joins a thermal gravity-treatment to t Hooft s holographic principle. This would entail that gravitation should be viewed as an emergent phenomenon. Verlinde s notion received much attention, of course (just as an example, see []). For an excellent overview on the statistical mechanics of gravitation, the reader is directed to Padmanabhan s article [4], and references therein. Verlinde s work attracted efforts on cosmology, the dark energy hypothesis, cosmological acceleration, cosmological inflation, and loop quantum gravity. The literature is immense [3]. In particular, an important contribution to information theory is that of Guseo [5], who has proved that the local entropy function, related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlindes conjecture on the origin of gravity, as an effect of the entropic force. Guseo advances a novel interpretation of the local entropy in a system, as quantifying a hypothetical attraction force that the system would exert [5]. This paper deals with none of these issues, though. We just show that extremely simple classical reasoning based on the Tsallis, probability distributions straightforwardly proves the conjecture. In Boltzmann-Gibbs and Renyi s instance, one needs to modify the conjecture to achieve a similar result. Tsallis q-entropy of the free particle Tsallis q-partition function for a free particle of mass m in dimensions reads [6] [ ] Z = V +( q) p q d p, (.) m + with the particle probability distribution ξ(p) being ξ = [ ] +( q) p q, (.) Z m +

3 where V is the volume of an hypersphere in dimensions and we assume q >. (.) can be recast as Z = π Γ ( )V With the change of variables x = p m Z = (mπ) Γ ( ) V that after integration becomes The mean energy is or 0 ] [+( q) p q p dp. (.3) m + (q ) [ ] (mπ) Z = V (q ) 0 one has [+( q)x] q x dx, (.4) Γ ( Γ ( ) q q q q + < U >= V ] [+( q) p q Z m + < U >= V (mπ) Z Γ ( ) so that after integration we find and finally < U > = For the entropy one has [6] < U > = (q ) 0 (q ) ). (.5) p m d p, (.6) [+( q)x] q x dx, (.7) ( ) Γ + + q ( ), (.8) Γ + + q [q +(q )]. (.9) S = ln q Z +Z q < U >. (.0) 3

4 3 The Tsallis entropic force We specialize things now to = 3 and q = 4. Why do we select this special 3 value q = 4? There is a solid reason. This is because 3 S = ln q Z +Z q < U >. Since the entropic force is to be defined as proportional to the gradient of S, there is a unique q-value for which the dependence on r of the entropic force is r when = 3. Thus we obtain, for q = 4/3, ( 6mπ Z = )3 8π Γ ( Following Verlinde [] we define the entropic force as )r 3, (3.) < U >= 9. (3.) F e = λ(m,m) S, (3.3) where λ is a numerical parameter depending on the masses involved, m and a new one M that we place at the center of the sphere. Thus, F e = 4 [ ( Γ 8π ) ] 3 ( ) kb T λ(m,m) e 6mπ r r, (3.4) where e r is the radial unit vector. We see that F e acquires an appearance quite similar to that of Newton s gravitation, as conjectured by Verlinde en []. Note that entropic force vanishes at zero temperature, in agreement with Thermodynamics third law [7]. 4 An illustrative example Assume that we deal with a large mass M and a very small one m. One has F e = 4 [ ( Γ ) 8π ] 3 ( ) kb T 6mπ 4 λ(m,m) r e r = GmM r e r. (4.)

5 We obtain for λ(m,m) λ (m,m) = π 3G 5 m 3 M [ (. (4.) k B T 4 4 )] 4 Γ 3 Ifweselect M=Sunmassm=Jupiter mass, T=3 Kthenλ(m,M) = Kgmeters. When m=earth mass, then λ(m,m) = 3. 0 Kgmeters s 4. Energies involved s. In [8], different q-values have been associated to energies of CERN experiments [9, 0]. q-statistics is seen to be meaningful at very high energies (TeVs) for q =.5, high ones (GeVs) for q =.00, and at low energies (MeVs) for q = Then we see that q= 4/3 should be associated with n energy of (TeVs), an energy that can be expected to arise shortly after the Big Bang, where quantum gravity effects should be apparent. 5 The Boltzmann-Gibbs entropy of the free particle Now the classical partition function Z is p Z = V e m d p, (5.) with V V = π Γ ( ) r. (5.) Since ( ) p πm e m d p =, (5.3) we have ( πm Z = so that the mean energy < U > is < U > = V Z ) π p 5 Γ ( +)r, (5.4) p m e m d p. (5.5)

6 We appeal now to the well known relation: ( ) p p πm m e m d p =, (5.6) so that which leads to an entropy: < U > =, (5.7) S = lnz +. (5.8) 6 The Boltzmann-Gibbs entropic force Our hyper-sphere s area A is A = π Γ ( ).r (6.) The hyper-sphere s volume, as a function of its area reads [ ( Γ )] V = π ( ) The derivative of S with respect to A is S = A A. (6.). (6.3) A Specialize things now to = 3. Following Verlinde [], with a slight modification, we define the entropic force that arises out of forcing the particle of mass m to remain enclosed in a given volume as F e = λ(m,m) Replacing A 3 s value in (6.4) we find or S 3 A 3 = λ F e = λ(m,m)k B T 3 3, (6.4) A 3 Γ ( ) 3 r, (6.5) F e = 3λ(m,M)k BT. (6.6) 8π r WeseeagainthatF e acquiresanappearancequitesimilartothatofnewton s gravitation, as conjectured by Verline in []. 6 π 3

7 7 A second illustrative example Let us replace the enclosing effect of a spherical cavity by the gravitational one of a large mass M on a very small one m, that is, F e = 3λ(m,M)k bt 8π r = GmM, (7.) r and deduce λ(m,m) as λ(m,m) = 8πGmM 3Tk b. (7.) If we select M=Sun mass m=jupiter mass, T=3 K then λ(m,m) = 4,6 0 7 meters. When m=earth mass, then λ(m,m) =, meters. 8 The Renyi entropic force In Renyi s approach to our problem the entropy is []-[] [ ] (mπ) Γ ( ) α α Z = V (α ) Γ ( α + ) α >, (8.) α [ ] (mπ) Γ ( ) α Z = V ( α) Γ ( + ) α <, (8.) α that for = 3 becomes Z 3 = γ(α,m,)a 3 3 A 3 = 4πr, (8.3) while for the mean energy one has and for the entropy < U > = < U > = [α+(α )] [ ( +)( α)] α >, (8.4) α <, (8.5) S = lnz +ln[+( α) < U >] α +. (8.6) 7

8 The second term on the right hand of (8.6) is independent of r. Additionally, lnz 3 = 3 lna 3 +ln[γ(m,)]+ln(3 4π). (8.7) Slightly modifying, as in the BG case, Verlinde s entropic form we have F e = λ(m,m) S 3 A 3 = λ 3 8πr. (8.8) We see that(8.8) coincides with(6.6). Renyi s entropic force is just Boltzmann- Gibbs one. 9 Conclusions We have presented three very simple classical realizations of Verlinde s conjecture. The Tsallis one, for q = 4/3 seems to be cleaner, as the entropic force is directly associated to the gradient of Tsallis entropy S q, which acts asa potential, asverlinde prescribes. This isnot so intheclassical BGand Renyi instances, in which one has to modify Verlinde s F e definition. The Tsallis case also gives interesting indications regarding the energies involved. Remarkably enough, Boltzmann-Gibbs and Renyi s entropic forces coincide. Strictly speaking, Verlinde s conjecture can be unambiguously proved for the Tsallis entropy with q = 4/3. The Boltzmann-Gibbs and Renyi demonstrations correspond to a modified version of Verlinde s conjecture. Of course, ours is a very preliminary, if significant, effort. A much more elaborate model would be desired. 8

9 References [] E. Verlinde, arxiv: [hep-th]; JHEP 04 (0) 9. [] D. Overbye, A Scientist Takes On Gravity, The New York Times, July 00; M. Calmthout, New Scientist 05 (00) 6. [3] J. Makela, arxiv: v3; J. Lee, arxiv: ; V. V. Kiselev, S. A. Timofeev, Mod. Phys. Lett. A 5 (00) 3; T. Aaltonen et al; Mod. Phys. Lett. A 5 (00) 85. [4] T. Padmanabhan, arxiv 08.60v. [5] R. Guseo, Physica A 464 (06). [6] C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 009); M. Gell-Mann and C. Tsallis, Eds. Nonextensive Entropy: Interdisciplinary applications (Oxford University Press, Oxford, 004); See for a regularly updated bibliography on the subject; A. R. Plastino, A. Plastino, Phys. Lett. A 74 (993) 384. [7] F. Reif, Fundamentals of statistical and thermal physics ( McGraw-Hill, New York NY, 965). [8] A. Plastino, M. C. Rocca, EPL 8 (07) [9] A. Plastino, M. C. Rocca, Nuclear Physics A 948 (06) 9; Nucl. Phys. A, 955 (06) 6. [0] ALICE Collaboration (Barile F. et al.), EPJ Web of Conferences, 60 (03) 30; ALICE Collaboration (Abelev B. et al.), Phys. Rev. Lett., (03) 30; ALICE Collaboration (Kharlov Yu. V.), Phys. At. Nuclei, 76 (03) 497; ALICE Collaboration, Phys. Rev. C, 9 (05) 04609; ATLAS Collaboration, New J. Phys., 3 (0) ; CMS Collaboration, J. High Energy Phys., 05 (0) 064; CMS Collaboration, Eur. Phys. J. C, 74 (04) 847. [] C. Beck, F. Schlgl, Thermodynamics of chaotic systems: an introduction (Cambridge University Press, Cambridge, England, 993). 9

10 [] C. M. Herdman, Stephen Inglis, P.-N. Roy, R. G. Melko, and A. Del Maestro, Phys. Rev. E 90 (04) [3] Mohammad H. Ansari and Yuli V. Nazarov, Phys. Rev. B 9 (05) [4] Lei Wang and Matthias Troyer, Phys. Rev. Lett. 3 (04) 040. [5] Matthew B. Hastings, Ivn Gonzlez, Ann B. Kallin, and Roger G. Melko, Phys. Rev. Lett 04 (00) 570. [6] Richard Berkovits, Phys. Rev. Lett. 5 (05) [7] Nima Lashkari, Phys. Rev. Lett. 3 (04) [8] Gabor B. Halasz and Alioscia Hamma, Phys. Rev. Lett. 0 (03) [9] MB Hastings, I Gonzlez, AB Kallin, RG Melko, Phys. Rev. Lett. 04, 570 (00); A. De Gregorio, S.M. lacus, 79 (009) 79. [0] Leila Golshani, Einollah Pasha, Gholamhossein Yari, Information Sciences, 79, 46 (009); J.F. Bercher, Information Sciences 78 (008), 489. [] EK Lenzi, RS Mendes, LR da Silva, Physica A 80 (000), 337. [] A.Plastino, M. C. Rocca, F. Pennini, Phys. Rev. E 94 (06)

Relativistic treatment of Verlinde s emergent force in Tsallis statistics

Relativistic treatment of Verlinde s emergent force in Tsallis statistics arxiv:9.85v cond-mat.stat-mech] 9 Mar 9 Relativistic treatment of Verlinde s emergent force in Tsallis statistics L. Calderon,4, M. T. Martin,4, A. Plastino,4,5,6, M. C. Rocca,,4,5,V. Vampa Departamento

More information

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy arxiv:cond-mat/0304146v1 [cond-mat.stat-mech] 7 Apr 2003 Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy Qiuping A. Wang Institut Supérieur des Matériaux du Mans,

More information

arxiv: v1 [gr-qc] 17 Nov 2017

arxiv: v1 [gr-qc] 17 Nov 2017 Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law arxiv:1711.06513v1 [gr-qc] 17 Nov 2017 Everton M. C. Abreu, 1,2, Jorge Ananias Neto, 2, Albert C. R. Mendes,

More information

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy arxiv:cond-mat/030446v5 [cond-mat.stat-mech] 0 May 2003 Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy Qiuping A. Wang Institut Supérieur des Matériaux du Mans,

More information

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2007

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2007 A General Nonlinear Fokker-Planck Equation and its Associated Entropy Veit Schwämmle, Evaldo M. F. Curado, Fernando D. Nobre arxiv:0704.0465v1 [cond-mat.stat-mech] 3 Apr 2007 Centro Brasileiro de Pesquisas

More information

arxiv:cond-mat/ v1 8 Jan 2004

arxiv:cond-mat/ v1 8 Jan 2004 Multifractality and nonextensivity at the edge of chaos of unimodal maps E. Mayoral and A. Robledo arxiv:cond-mat/0401128 v1 8 Jan 2004 Instituto de Física, Universidad Nacional Autónoma de México, Apartado

More information

Emergent Gravity. Chih-Chieh Chen. December 13, 2010

Emergent Gravity. Chih-Chieh Chen. December 13, 2010 Emergent Gravity Chih-Chieh Chen December 13, 2010 Abstract The idea of the emergent gravity came from the study of black hole thermodynamics. Basically by inversion the logic in the derivation of the

More information

Gravity as Entropic Force?

Gravity as Entropic Force? Gravity as Entropic Force? Bo-Qiang Ma ( 马伯强 ) Peking University ( 北京大学 )? Wulanhaote Workshop July 20, 2010 In collaboration with Xiao-Gang He X.-G. He & B.-Q. Ma, Black Holes and Photons with Entropic

More information

A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B

A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B EJTP 9, No. 26 (2012) 87 92 Electronic Journal of Theoretical Physics A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B F. A R Navarro Universidad Nacional

More information

On the Origin of Gravity and the Laws of Newton

On the Origin of Gravity and the Laws of Newton S.N.Bose National Centre for Basic Sciences,India S.N. Bose National Centre for Basic Sciences, India Dept. of Theoretical Sciences 1 st April, 2010. E. Verlinde, arxiv:1001.0785 PLAN OF THE TALK (i) Why

More information

Synchronization of thermal Clocks and entropic Corrections of Gravity

Synchronization of thermal Clocks and entropic Corrections of Gravity Synchronization of thermal Clocks and entropic Corrections of Gravity Andreas Schlatter Burghaldeweg 2F, 5024 Küttigen, Switzerland schlatter.a@bluewin.ch Abstract There are so called MOND corrections

More information

Test of Nonextensive Statistical Mechanics by Solar Sound Speeds

Test of Nonextensive Statistical Mechanics by Solar Sound Speeds ArXiv: cond-mat/060111 5 Feb 006 Test of Nonextensive Statistical Mechanics by Solar Sound Speeds Du Jiulin * Department of Physics, School of Science, Tianjin University, Tianjin 30007, China To check

More information

arxiv: v3 [cond-mat.stat-mech] 19 Mar 2015

arxiv: v3 [cond-mat.stat-mech] 19 Mar 2015 Canonical Ensemble in Non-extensive Statistical Mechanics Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 2, LT-008 Vilnius, Lithuania arxiv:503.03778v3

More information

arxiv:cond-mat/ v1 10 Aug 2002

arxiv:cond-mat/ v1 10 Aug 2002 Model-free derivations of the Tsallis factor: constant heat capacity derivation arxiv:cond-mat/0208205 v1 10 Aug 2002 Abstract Wada Tatsuaki Department of Electrical and Electronic Engineering, Ibaraki

More information

A Model of Holographic Dark Energy

A Model of Holographic Dark Energy A Model of Holographic Dark Energy arxiv:hep-th/0403127v4 13 Aug 2004 Miao Li Institute of Theoretical Physics Academia Sinica, P.O. Box 2735 Beijing 100080, China and Interdisciplinary Center of Theoretical

More information

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College Miami 2015 Modified dark matter in galaxy clusters Douglas Edmonds Emory & Henry College Collaboration D. Edmonds Emory & Henry College D. Farrah Virginia Tech C.M. Ho Michigan State University D. Minic

More information

Scale-free network of earthquakes

Scale-free network of earthquakes Scale-free network of earthquakes Sumiyoshi Abe 1 and Norikazu Suzuki 2 1 Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan 2 College of Science and Technology, Nihon University, Chiba

More information

arxiv:astro-ph/ v1 15 Mar 2002

arxiv:astro-ph/ v1 15 Mar 2002 Fluxes of cosmic rays: A delicately balanced anomalous thermal equilibrium Constantino Tsallis, 1 Joao C. Anjos, 1 Ernesto P. Borges 1,2 1 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150

More information

arxiv: v1 [math-ph] 28 Jan 2009

arxiv: v1 [math-ph] 28 Jan 2009 Some properties of deformed q-numbers Thierry C. Petit Lobão Instituto de Matemática, Universidade Federal da Bahia Campus Universitário de Ondina, 4070-0 Salvador BA, Brazil Pedro G. S. Cardoso and Suani

More information

The Elliptic Solutions to the Friedmann equation and the Verlinde s Maps.

The Elliptic Solutions to the Friedmann equation and the Verlinde s Maps. . The Elliptic Solutions to the Friedmann equation and the Verlinde s Maps. Elcio Abdalla and L.Alejandro Correa-Borbonet 2 Instituto de Física, Universidade de São Paulo, C.P.66.38, CEP 0535-970, São

More information

Entropic Force between Two Distant Black Holes in a Background Temperature

Entropic Force between Two Distant Black Holes in a Background Temperature Entropic Force between Two Distant Black Holes in a Background Temperature Davoud Kamani Faculty of Physics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran Abstract: We use the Newton

More information

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions PHYSICAL REVIE E 66, 4634 22 Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for -exponential distributions Sumiyoshi Abe Institute of Physics, University

More information

arxiv: v1 [hep-ph] 6 Dec 2012

arxiv: v1 [hep-ph] 6 Dec 2012 Scaling behavior of transverse momenta distributions in hadronic and nuclear collisions arxiv:22.28v [hep-ph] 6 Dec 202 M. Rybczyński, Z. W lodarczyk Institute of Physics, Jan Kochanowski University, Świetokrzyska

More information

ISSN Article. Tsallis Entropy, Escort Probability and the Incomplete Information Theory

ISSN Article. Tsallis Entropy, Escort Probability and the Incomplete Information Theory Entropy 2010, 12, 2497-2503; doi:10.3390/e12122497 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Tsallis Entropy, Escort Probability and the Incomplete Information Theory Amir

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Stefan Thurner Constantino Tsallis SFI WORKING PAPER: 5-6-6 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Colegio de Morelos & IFUNAM, C3 UNAM PHD in Philosophy and Sciences: Complex systems S. Elena Tellez Flores Adviser: Dr.

Colegio de Morelos & IFUNAM, C3 UNAM PHD in Philosophy and Sciences: Complex systems S. Elena Tellez Flores Adviser: Dr. Colegio de Morelos & IFUNAM, C3 UNAM PHD in Philosophy and Sciences: Complex systems S. Elena Tellez Flores elesandy@gmail.com Adviser: Dr. Alberto Robledo Transitions to chaos in complex systems How much

More information

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014)

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014) Regular Article PHYSICAL CHEMISTRY RESEARCH Published by the Iranian Chemical Society www.physchemres.org info@physchemres.org Phys. Chem. Res., Vol. 2, No. 2, 37-45, December 204. How the Nonextensivity

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

Application of the Nonextensive Statistical Approach for High Energy Particle Collisions

Application of the Nonextensive Statistical Approach for High Energy Particle Collisions Application of the Nonextensive Statistical Approach for High Energy Particle Collisions Gábor Bíró Wigner RCP of the HAS, Heavy Ion Research Group Gergely Gábor Barnaföldi Tamás Sándor Biró Károly Ürmössy

More information

medium Airton Deppman Compsyst - Rio de Janeiro, October, 2013 Nonextensive thermodynamics of hadronic medium Airton Deppman

medium Airton Deppman Compsyst - Rio de Janeiro, October, 2013 Nonextensive thermodynamics of hadronic medium Airton Deppman of ic ic matter: of ic Compsyst - Rio de Janeiro, October, 2013 of ic ic matter: Hagedorn s A ic system is considered as an ideal gas of s a a T. The partition function is ln[1 + Z(V 0, T )] = V 0T 2π

More information

26 January 2014 BLACK HOLES AND GAP

26 January 2014 BLACK HOLES AND GAP 26 January 2014 BLACK HOLES AND GAP Antonino Zichichi INFN and University of Bologna, Italy CERN, Geneva, Switzerland Enrico Fermi Centre, Rome, Italy World Federation of Scientists, Beijing, Geneva, Moscow,

More information

arxiv: v2 [gr-qc] 21 Oct 2011

arxiv: v2 [gr-qc] 21 Oct 2011 hermodynamics of phase transition in higher dimensional AdS black holes Rabin Banerjee, Dibakar Roychowdhury S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata-700098,

More information

Feynman and Wheeler Scalar Field Propagators in the ADS/CFT Correspondence

Feynman and Wheeler Scalar Field Propagators in the ADS/CFT Correspondence arxiv:8.03473v [hep-th] 7 Nov 08 Feynman and Wheeler Scalar Field Propagators in the ADS/CFT Correspondence A. Plastino,3,4, M.C.Rocca,,3 Departamento de Física, Universidad Nacional de La Plata, Departamento

More information

Deformed Generalization of the Semiclassical Entropy

Deformed Generalization of the Semiclassical Entropy Entropy 2008, 10, 240-247; DOI: 10.3390/e10030240 Article OPEN ACCESS entropy ISSN 1424-8220 www.mdpi.org/entropy Deformed Generalization of the Semiclassical Entropy Gustavo Ferri 1, Fernando Olivares

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Holographic unification of dark matter and dark energy

Holographic unification of dark matter and dark energy Holographic unification of dark matter and dark energy arxiv:1101.5033v4 [hep-th] 2 Feb 2011 L.N. Granda Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali, Colombia Departamento de Fisica,

More information

The Generalized Uncertainty Principle and Black Hole Remnants* Ronald J. Adler

The Generalized Uncertainty Principle and Black Hole Remnants* Ronald J. Adler The Generalized Uncertainty Principle and Black Hole Remnants* Ronald J. Adler Gravity Probe B, W. W. Hansen Experimental Physics Laboratory Stanford University, Stanford CA 94035 Pisin Chen Stanford Linear

More information

Investigation of high energy nuclear collisions using Q-entropy

Investigation of high energy nuclear collisions using Q-entropy Investigation of high energy nuclear collisions using Q-entropy Gábor Bíró Wigner RCP of the HAS, Heavy Ion Research Group Gergely Gábor Barnaföldi Ta m á s S á n d o r B i r ó Á d á m Ta k á c s International

More information

g ij = diag[(1 r 0 r ) 1, r 2, r 2 sin 2 θ] (1)

g ij = diag[(1 r 0 r ) 1, r 2, r 2 sin 2 θ] (1) Units of a metric tensor and physical interpretation of the gravitational constant. Boris Hikin E-mail: blhikin@gmail.com Tel: 30-922-4752, or 30-826-0209, USA It is shown that writing the metric tensor

More information

Entropy measures of physics via complexity

Entropy measures of physics via complexity Entropy measures of physics via complexity Giorgio Kaniadakis and Flemming Topsøe Politecnico of Torino, Department of Physics and University of Copenhagen, Department of Mathematics 1 Introduction, Background

More information

Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula

Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula The goal of this paper is to highlight the deep connection between Einstein's relativistic kinetic energy formula and two quantum gravity

More information

Holographic Gas as Dark Energy

Holographic Gas as Dark Energy Commun. heor. Phys. (Beijing, China 51 (2009 pp. 181 186 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 1, January 15, 2009 Holographic Gas as Dark Energy LI Miao, 1,2 LI Xiao-Dong, 1 LIN

More information

Is There a World Behind Shannon? Entropies for Complex Systems

Is There a World Behind Shannon? Entropies for Complex Systems Is There a World Behind Shannon? Entropies for Complex Systems Stefan Thurner and Rudolf Hanel Abstract In their seminal works, Shannon and Khinchin showed that assuming four information theoretic axioms

More information

arxiv: v3 [nucl-th] 29 Nov 2016

arxiv: v3 [nucl-th] 29 Nov 2016 EPJ manuscript No. will be inserted by the editor Comparison of sallis statistics with the sallisfactorized statistics in the ultrarelativistic pp collisions A.S. Parvan arxiv:608.0888v nuclth] 9 Nov 06

More information

arxiv: v2 [hep-th] 31 Aug 2012

arxiv: v2 [hep-th] 31 Aug 2012 Γ-sign in entropic cosmology Samuel Lepe Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile. arxiv:1201.5343v2 [hep-th] 31

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

Nonextensivity of hadronic systems

Nonextensivity of hadronic systems PHYSICAL REVIEW D 87, 114022 (2013) Nonextensivity of hadronic systems L. Marques, E. Andrade-II, and A. Deppman Instituto de Física, Universidade de São Paulo IFUSP, Rua do Matão, ravessa R 187, 05508-900

More information

arxiv: v1 [physics.gen-ph] 5 Nov 2018

arxiv: v1 [physics.gen-ph] 5 Nov 2018 q-deformed Einstein equations from entropic force Mustafa Şenay 1a and Salih Kibaroğlu 1b arxiv:1811.02891v1 [physics.gen-ph] 5 Nov 2018 1 Department of Basic Sciences, Naval Academy, National Defence

More information

Ahmed Farag Ali. Department of Physics, Benha University, EGYPT. Erice, June 29 th, 2012

Ahmed Farag Ali. Department of Physics, Benha University, EGYPT. Erice, June 29 th, 2012 Ahmed Farag Ali Department of Physics, Benha University, EGYPT Erice, June 29 th, 2012 Generalized Uncertainty Principle (GUP) from String theory and Black hole physics. Testing quantum gravity effects.

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Black holes and the renormalisation group 1

Black holes and the renormalisation group 1 Black holes and the renormalisation group 1 Kevin Falls, University of Sussex September 16, 2010 1 based on KF, D. F. Litim and A. Raghuraman, arxiv:1002.0260 [hep-th] also KF, D. F. Litim; KF, G. Hiller,

More information

Victoria University of Wellington. Te Whare Wānanga o te Ūpoko o te Ika a Maui VUW. Conservative entropic forces. Matt Visser

Victoria University of Wellington. Te Whare Wānanga o te Ūpoko o te Ika a Maui VUW. Conservative entropic forces. Matt Visser Victoria University of Wellington Te Whare Wānanga o te Ūpoko o te Ika a Maui VUW Conservative entropic forces Matt Visser Gravity as Thermodynamics: Towards the microscopic origin of geometry ESF Exploratory

More information

arxiv:hep-th/ v2 29 Nov 2002

arxiv:hep-th/ v2 29 Nov 2002 Preferred Frame in Brane World Merab GOGBERASHVILI Andronikashvili Institute of Physics 6 Tamarashvili Str., Tbilisi 380077, Georgia (E-mail: gogber@hotmail.com) arxiv:hep-th/0207042v2 29 Nov 2002 Abstract

More information

arxiv:quant-ph/ v1 22 Jul 2002

arxiv:quant-ph/ v1 22 Jul 2002 Conditional q-entropies and Quantum Separability: A Numerical Exploration J. Batle 1, A. R. Plastino 1,2, M. Casas 1, and A. Plastino 2 1 Departament de Física, Universitat de les Illes Balears, 07071

More information

The Equivalence Principle and the bending of light

The Equivalence Principle and the bending of light The Equivalence Principle and the bending of light Rafael Ferraro Instituto de Astronomía y Física del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina Departamento de Física, Facultad

More information

arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016

arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016 Canonical ensemble in non-extensive statistical mechanics when > Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 2, LT-008 Vilnius, Lithuania arxiv:602.0622v

More information

arxiv: v1 [gr-qc] 10 Nov 2018

arxiv: v1 [gr-qc] 10 Nov 2018 Thermal fluctuations to thermodynamics of non-rotating BTZ black hole Nadeem-ul-islam a, Prince A. Ganai a, and Sudhaker Upadhyay c,d a Department of Physics, National Institute of Technology, Srinagar,

More information

Property of Tsallis entropy and principle of entropy increase

Property of Tsallis entropy and principle of entropy increase Bull. Astr. Soc. India (2007) 35, 691 696 Property of Tsallis entropy and principle of entropy increase Du Jiulin Department of Physics, School of Science, Tianjin University, Tianjin 300072, China Abstract.

More information

Neutrino Spin Oscillations in a Black Hole Background in Noncommutative Spaces

Neutrino Spin Oscillations in a Black Hole Background in Noncommutative Spaces 1 Neutrino Spin Oscillations in a Black Hole Background in Noncommutative Spaces S. A. Alavi; S. Nodeh Department of Physics, Hakim Sabzevari University, P. O. Box 397, Sabzevar, Iran. s.alavi@hsu.ac.ir;

More information

arxiv: v2 [hep-th] 22 Apr 2018

arxiv: v2 [hep-th] 22 Apr 2018 Why do Things Fall? arxiv:1802.01198v2 [hep-th] 22 Apr 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA Abstract

More information

Vacuum Energy and. Cosmological constant puzzle:

Vacuum Energy and. Cosmological constant puzzle: Vacuum Energy and the cosmological constant puzzle Steven Bass Cosmological constant puzzle: (arxiv:1503.05483 [hep-ph], MPLA in press) Accelerating Universe: believed to be driven by energy of nothing

More information

arxiv: v1 [cond-mat.stat-mech] 20 Dec 2007

arxiv: v1 [cond-mat.stat-mech] 20 Dec 2007 Semiclassical statistical mechanics tools for deformed algebras F. Olivares 1, F. Pennini 1,2, A. Plastino 2, and G.L. Ferri 3 1 Departamento de Física, Universidad Católica del Norte, Av. Angamos 0610,

More information

arxiv: v1 [cond-mat.stat-mech] 27 Nov 2017

arxiv: v1 [cond-mat.stat-mech] 27 Nov 2017 Growing interfaces: A brief review on the tilt method M. F. Torres and R. C. Buceta arxiv:1711.09652v1 [cond-mat.stat-mech] 27 Nov 2017 Instituto de Investigaciones Físicas de Mar del Plata (UNMdP and

More information

Strangeness in Quark Matter

Strangeness in Quark Matter Mass hierarchy and energy scaling of the Tsallis Pareto parameters in hadron productions at RHIC and LHC energies Gábor Bíró Wigner RCP of the HAS, Heavy Ion Research Group Gergely Gábor Barnaföldi Ta

More information

Information, Deformed κ-wehrl Entropies and Semiclassical Delocalization

Information, Deformed κ-wehrl Entropies and Semiclassical Delocalization Entropy 2009,, 32-4; doi:0.3390/e00032 OPEN ACCESS entropy ISSN 099-4300 www.mdpi.com/journal/entropy Article Information, Deformed κ-wehrl Entropies and Semiclassical Delocalization Flavia Pennini,2,

More information

Some properties of deformed q-numbers

Some properties of deformed q-numbers 402 Thierry C. Petit Lobão et al. Some properties of deformed q-numbers Thierry C. Petit Lobão Instituto de Matemática, Universidade Federal da Bahia Campus Universitário de Ondina, 4070-0 Salvador BA,

More information

Entropic Corrections to Coulomb s Law. Abstract

Entropic Corrections to Coulomb s Law. Abstract Entropic Corrections to Coulomb s Law S. H. Hendi 1,2 and A. Sheykhi 2,3 1 Physics Department, College of Sciences, Yasouj University, Yasouj 75914, Iran 2 Research Institute for Astronomy and Astrophysics

More information

Holographic Cosmological Constant and Dark Energy arxiv: v1 [hep-th] 16 Sep 2007

Holographic Cosmological Constant and Dark Energy arxiv: v1 [hep-th] 16 Sep 2007 Holographic Cosmological Constant and Dark Energy arxiv:0709.2456v1 [hep-th] 16 Sep 2007 Chao-Jun Feng Institute of Theoretical Physics, Academia Sinica Beijing 100080, China fengcj@itp.ac.cn A general

More information

Dark Energy and the Entropy of the Observable Universe

Dark Energy and the Entropy of the Observable Universe Dark Energy and the Entropy of the Observable Universe Charles H. Lineweaver a and Chas A. Egan b a Planetary Scinece Institute, Research School of Astronomy and Astrophysics, and Research School of Earth

More information

arxiv: v1 [astro-ph.sr] 30 Mar 2019

arxiv: v1 [astro-ph.sr] 30 Mar 2019 epl draft arxiv:1904.00253v1 [astro-ph.sr] 30 Mar 2019 D. B. de Freitas 1, R. T. Eufrásio 2,3, M. M. F. Nepomuceno 4,5 and J. R. P. da Silva 5 1 Departamento de Física, Universidade Federal do Ceará, Caixa

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Classical analogue of the statistical operator

Classical analogue of the statistical operator Classical analogue of the statistical operator Angelo Plastino 1, Angel R. Plastino 2,3, Claudia Zander 4 1 Universidad Nacional de La Plata UNLP-CONICET,C.C. 727, 1900 La Plata, Argentina 2 CeBio y Secretaria

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 20 Dec 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 20 Dec 1996 Sensitivity to initial conditions and nonextensivity in biological arxiv:cond-mat/9612196v1 [cond-mat.stat-mech] 20 Dec 1996 evolution Francisco A. Tamarit, Sergio A. Cannas Facultad de Matemática, Astronomía

More information

Stability of Thick Spherical Shells

Stability of Thick Spherical Shells Continuum Mech. Thermodyn. (1995) 7: 249-258 Stability of Thick Spherical Shells I-Shih Liu 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro Caixa Postal 68530, Rio de Janeiro 21945-970,

More information

On the Anomalous Oscillation of Newton's Gravitational Constant

On the Anomalous Oscillation of Newton's Gravitational Constant PHYSICS On the Anomalous Oscillation of Newton's Gravitational Constant BRENT JARVIS Periodic oscillations are observed in Newton's gravitational constant G that are contemporaneous with length of day

More information

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 The Holographic Principal and its Interplay with Cosmology T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 What is the temperature of a Black Hole? for simplicity, use the

More information

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity

BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity La Plata-Th 97/18 BPS Solitons and Killing Spinors in Three Dimensional N =2Supergravity José D. Edelstein Departamento de Física, Universidad Nacional de La Plata C.C. 67, (1900) La Plata, Argentina Short

More information

THE SIMPLEST DETERMINATION OF THE THERMODYNAMICAL CHARACTERISTICS OF KERR-NEWMAN BLACK HOLE

THE SIMPLEST DETERMINATION OF THE THERMODYNAMICAL CHARACTERISTICS OF KERR-NEWMAN BLACK HOLE THE SIMPLEST DETERMINATION OF THE THERMODYNAMICAL CHARACTERISTICS OF KERR-NEWMAN BLACK HOLE arxiv:0804.2327v1 [gr-qc] 15 Apr 2008 Vladan Panković,, Simo Ciganović, Rade Glavatović Department of Physics,

More information

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] HORIBA INTERNATIONAL CONFERENCE COSMO/CosPA 2010 Hongo campus (Koshiba Hall), The University

More information

Cosmology holography the brain and the quantum vacuum. Antonio Alfonso-Faus. Departamento de Aerotécnia. Madrid Technical University (UPM), Spain

Cosmology holography the brain and the quantum vacuum. Antonio Alfonso-Faus. Departamento de Aerotécnia. Madrid Technical University (UPM), Spain Cosmology holography the brain and the quantum vacuum Antonio Alfonso-Faus Departamento de Aerotécnia Madrid Technical University (UPM), Spain February, 2011. E-mail: aalfonsofaus@yahoo.es Abstract: Cosmology,

More information

Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics

Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics EJTP 7, No. 24 (2010) 131 138 Electronic Journal of Theoretical Physics Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics Felipe A. Reyes

More information

Corrections to black hole entropy and the GUP

Corrections to black hole entropy and the GUP Corrections to black hole entropy and the GUP Elias C. Vagenas Kuwait University Department of Physics > work in collaboration with Pedro Bargueño > Phys. Lett. B742 (2015) 15 [arxiv:1501.03256 [hep-th]]

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Collaborators Duncan Farrah Chiu Man Ho Djordje Minic Y. Jack Ng Tatsu Takeuchi Outline

More information

The fitting of q-laws as replacement for power-law fit: A social science tutorial. Douglas R. White 2006

The fitting of q-laws as replacement for power-law fit: A social science tutorial. Douglas R. White 2006 The fitting of q-laws as replacement for power-law fit: A social science tutorial Douglas R. White 2006 Social scientists (Pareto 1896, Zipf 1949) have long been enamored with power laws, but rarely have

More information

arxiv: v1 [hep-ph] 4 Feb 2013

arxiv: v1 [hep-ph] 4 Feb 2013 arxiv:132.663v1 [hep-ph] 4 Feb 213 Non-perturbative approach to the problem of anomalous FB asymmetry in top pair production at TEVATRON Boris A. Arbuzov Skobeltsyn Institute of Nuclear Physics of MSU,

More information

One of the fundamental problems in differential geometry is to find metrics of constant curvature

One of the fundamental problems in differential geometry is to find metrics of constant curvature Chapter 2 REVIEW OF RICCI FLOW 2.1 THE RICCI FLOW One of the fundamental problems in differential geometry is to find metrics of constant curvature on Riemannian manifolds. The existence of such a metric

More information

144 Brazilian Journal of Physics, vol. 29, no. 1, March, Systems and Generalized Entropy. Departamento de Fsica,

144 Brazilian Journal of Physics, vol. 29, no. 1, March, Systems and Generalized Entropy. Departamento de Fsica, 144 Brazilian Journal of Physics, vol. 29, no. 1, March, 1999 Low-Dimensional Non-Linear Dynamical Systems and Generalized Entropy Crisogono R. da Silva, Heber R. da Cruz and Marcelo L. Lyra Departamento

More information

arxiv: v1 [physics.gen-ph] 17 Apr 2016

arxiv: v1 [physics.gen-ph] 17 Apr 2016 String coupling constant seems to be 1 arxiv:1604.05924v1 [physics.gen-ph] 17 Apr 2016 Youngsub Yoon Dunsan-ro 201, Seo-gu Daejeon 35242, South Korea April 21, 2016 Abstract We present a reasoning that

More information

An Entropy depending only on the Probability (or the Density Matrix)

An Entropy depending only on the Probability (or the Density Matrix) An Entropy depending only on the Probability (or the Density Matrix) December, 2016 The Entropy and Superstatistics The Entropy and Superstatistics Boltzman-Gibbs (BG) statistics works perfectly well for

More information

arxiv:hep-th/ v1 7 Apr 2003

arxiv:hep-th/ v1 7 Apr 2003 UB-ECM-PF-03/10 Cardy-Verlinde Formula and Achúcarro-Ortiz Black Hole Mohammad R. Setare 1 and Elias C. Vagenas arxiv:hep-th/0304060v1 7 Apr 003 1 Department of Physics, Sharif University of Technology,

More information

Ensemble equivalence for non-extensive thermostatistics

Ensemble equivalence for non-extensive thermostatistics Physica A 305 (2002) 52 57 www.elsevier.com/locate/physa Ensemble equivalence for non-extensive thermostatistics Raul Toral a;, Rafael Salazar b a Instituto Mediterraneo de Estudios Avanzados (IMEDEA),

More information

arxiv: v3 [hep-th] 23 Apr 2011

arxiv: v3 [hep-th] 23 Apr 2011 March 2011 Entropic Gravity, Phase-Space Noncommutativity and the Equivalence Principle Catarina Bastos arxiv:1010.4729v3 [hep-th] 23 Apr 2011 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico

More information

arxiv: v1 [gr-qc] 6 Jan 2009

arxiv: v1 [gr-qc] 6 Jan 2009 Black hole thermodynamics with generalized uncertainty principle Li Xiang and X. Q. Wen arxiv:0901.0603v1 [gr-qc] 6 Jan 2009 Center for Relativistic Astrophysics and High Energy Physics, Department of

More information

arxiv: v1 [cond-mat.stat-mech] 17 Jul 2015

arxiv: v1 [cond-mat.stat-mech] 17 Jul 2015 A new entropy based on a group-theoretical structure Evaldo M. F. Curado arxiv:1507.05058v1 [cond-mat.stat-mech] 17 Jul 2015 Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and

More information

A. Larrañaga 1,2 1 Universidad Nacional de Colombia. Observatorio Astronomico Nacional. 1 Introduction

A. Larrañaga 1,2 1 Universidad Nacional de Colombia. Observatorio Astronomico Nacional. 1 Introduction Bulg. J. Phys. 37 (2010) 10 15 Thermodynamics of the (2 + 1)-dimensional Black Hole with non linear Electrodynamics and without Cosmological Constant from the Generalized Uncertainty Principle A. Larrañaga

More information

A link of information entropy and kinetic energy for quantum many-body systems.

A link of information entropy and kinetic energy for quantum many-body systems. arxiv:nucl-th/0101040v1 19 Jan 2001 A link of information entropy and kinetic energy for quantum many-body systems. S.E. Massen and C.P. Panos Department of Theoretical Physics Aristotle University of

More information

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach 56 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 Generalized Classical and Quantum Dynamics Within a Nonextensive Approach A. Lavagno Dipartimento di Fisica, Politecnico di Torino, I-029 Torino,

More information

arxiv: v1 [gr-qc] 9 May 2017

arxiv: v1 [gr-qc] 9 May 2017 Locus model for space-time fabric and quantum indeterminacies Alberto C. de la Torre Universidad Nacional de Mar del Plata Argentina arxiv:1705.03490v1 [gr-qc] 9 May 017 A simple locus model for the space-time

More information