Making sense of non Hermitian Hamiltonians. Crab Lender Practised Nymphets Washing Nervy Tuitions

Size: px
Start display at page:

Download "Making sense of non Hermitian Hamiltonians. Crab Lender Practised Nymphets Washing Nervy Tuitions"

Transcription

1 Making sense of non Hermitian Hamiltonians Crab Lender Practised Nymphets Washing Nervy Tuitions

2 Making sense of non Hermitian Hamiltonians Carl Bender Physics Department Washington University

3 Quantum Mechanics Anyone who thinks he can contemplate quantum mechanics without getting dizzy hasn t properly understood it. Niels Bohr Anyone who thinks they know quantum mechanics doesn t. Richard Feynman I don t like it, and I m sorry I ever had anything to do with it. Erwin Schrödinger

4 Axioms of Quantum Mechanics Causality Locality Stability of the vacuum Relativity Probabilistic interpretation

5 Dirac Hermiticity guarantees real energy and conserved probability but is mathematical and not physical

6 2 3 H = p + ix

7 2 3 H = p + ix Wait a minute This model has PT symmetry

8

9 Some references CMB and S. Boettcher, PRL 80, 5243 (1998) CMB, D. Brody, H. Jones, PRL 89, (2002) CMB, D. Brody, and H. Jones, PRL 93, (2004) CMB, D. Brody, H. Jones, B. Meister, PRL 98, (2007) CMB and P. Mannheim, PRL 100, (2008) CMB, Reports on Progress in Physics 70, 947 (2007) P. Dorey, C. Dunning, and R. Tateo, JPA 34, 5679 (2001) P. Dorey, C. Dunning, and R. Tateo, JPA 40, R205 (2007)

10 The original discoverers of PT symmetry:

11

12

13

14

15

16

17

18

19 MY TALK

20 Outline of Talk Beginning Middle End (applause)

21 How to prove that the eigenvalues are real

22 PT Boundary

23 How to prove that the eigenvalues are real The proof is really hard! You need to use (3)Bethe ansatz (4)Monodromy group (5)Baxter T Q relation (6)Functional Determinants

24 PT Boundary Greatest murder mystery of all time Extinction of over 90% of species! Permian era Triassic era PT Boundary

25 OK, so the eigenvalues are real But is this quantum mechanics?? Probabilistic interpretation?? Hilbert space with a positive metric?? Unitarity??

26 Dirac, Bakerian Lecture 1941, Proceedings of the Royal Society A

27 The Hamiltonian determines its own adjoint

28 Unitarity With respect to the CPT adjoint the theory has UNITARY time evolution. Norms are strictly positive! Probability is conserved!

29 OK, we have unitarity But is PT quantum mechanics useful?? It revives quantum theories that were thought to be dead It is beginning to be observed experimentally

30 The Lee Model

31 The problem:

32

33 A non Hermitian Hamiltonian is unacceptable partly because it may lead to complex energy eigenvalues, but chiefly because it implies a non unitary S matrix, which fails to conserve probability and makes a hash of the physical interpretation.

34 PT quantum mechanics to the rescue PT Meep! Meep!

35 GHOSTBUSTING: Reviving quantum theories that were thought to be dead

36 Pais Uhlenbeck action Gives a fourth order field equation: CMB and P. Mannheim, Phys. Rev. Lett. 100, (2008) CMB and P. Mannheim, Phys. Rev. D 78, (2008)

37 The problem: A fourth order field equation gives a propagator like GHOST!

38 There are now two possible realizations

39 There can be many realizations! Equivalent Dirac Hermitian Hamiltonian:

40 No ghost theorem for the fourth order derivative Pais Uhlenbeck model, CMB and P. Mannheim, PRL 100, (2008)

41 TOTALITARIAN PRINCIPLE Everything which is not forbidden is compulsory. M. Gell Mann

42 And there are now observations in table top optics experiments! Observing PT symmetry using wave guides: Z. Musslimani, K. Makris, R. El Ganainy, and D. Christodoulides, PRL 100, (2008) K. Makris, R. El Ganainy, D. Christodoulides, and Z. Musslimani, PRL 100, (2008)

43 Date: Thu, 13 Mar :04: From: Demetrios Christodoulides To: Carl M. Bender Subject: Re: Benasque workshop on non Hermitian Hamiltonians Dear Carl, I have some good news from Greg Salamo (U. of Arkansas). His students (who are now visiting us here in Florida) have just observed a PT phase transition in a passive AlGaAs waveguide system. We will be submitting soon these results as a post deadline paper to CLEO/QELS and subsequently to a regular journal. We are still fighting against the Kramers Kronig relations, but the phase transition effect is definitely there. We expect even better results under TE polarization conditions. I will bring them over to Israel. In close collaboration with us, more teams (also best friends!) are moving ahead in this direction. Moti Segev (from Technion) is planning an experiment in an active passive dual core optical fiber fabricated in Southampton, England. More experiments will be carried later in Germany by Detlef Kip. Christian (his post doc) just left from here with a possible design. If everything goes well, with a bit of luck we may have an experimental explosion in the PT area. I wish the funding situation was a bit better. So far everything is done on a shoe string budget (it is subsidized by other projects). Let us see... All the best Demetri

44

45

46

47

48

49 OK, but how do we interpret a non Hermitian Hamiltonian?? Solve the quantum brachistochrone problem

50 Classical Brachistochrone Newton Bernoulli Leibniz L'Hôpital

51 Classical Brachistochrone is a cycloid Gravitational field

52 Quantum Brachistochrone Constraint:

53 Hermitian case

54 becomes

55 Minimize t over all positive r while maintaining constraint Minimum evolution time: Looks like uncertainty principle but is merely rate times time = distance

56 Non Hermitian PT symmetric Hamiltonian where

57 Exponentiate H

58 Interpretation Finding the optimal PT symmetric Hamiltonian amounts to constructing a wormhole in Hilbert space!

59 The shortest path between two truths in the real domain passes through the complex domain. Jacques Hadamard [The Mathematical Intelligencer 13 (1991)]

60 Overview of talk:

61 Classical PT symmetry Provides an intuitive explanation of what is going on

62 Motion on the Real Axis Motion of particles is governed by Newton s Law: F=ma In freshman physics this motion is restricted to the REAL AXIS.

63 Harmonic Oscillator: Particle on a Spring Back and forth motion on the real axis: Turning point Turning point ( = 0)

64 Hamilton s equations

65 Harmonic Oscillator: Motion in the complex plane: Turning point Turning point ( = 0)

66 2 3 H = p + ix ( = 1)

67

68 Broken PT symmetry (ε < 0)

69 = 2 11 sheets

70

71

72

73

74

75

76 The Beast = 16/15

77 Lotka Volterra equations

78

79

80

81 Other PT symmetric classical systems KdV equation Camassa Holm equation Sine Gordon equation Boussinesq equation

82 Making sense of non Hermitian Hamiltonians Crab Lender Practised Nymphets Washing Nervy Tuitions 1

83 Making sense of non Hermitian Hamiltonians Carl Bender Physics Department Washington University 2

84 Quantum Mechanics Anyone who thinks he can contemplate quantum mechanics without getting dizzy hasn t properly understood it. Niels Bohr Anyone who thinks they know quantum mechanics doesn t. Richard Feynman I don t like it, and I m sorry I ever had anything to do with it. Erwin Schrödinger 3

85 Axioms of Quantum Mechanics Causality Locality Stability of the vacuum Relativity Probabilistic interpretation 4

86 Dirac Hermiticity guarantees real energy and conserved probability but is mathematical and not physical 5

87 H = p2 + ix3 6

88 H = p2 + ix3 Wait a minute This model has PT symmetry 7

89 8

90 Some references CMB and S. Boettcher, PRL 80, 5243 (1998) CMB, D. Brody, H. Jones, PRL 89, (2002) CMB, D. Brody, and H. Jones, PRL 93, (2004) CMB, D. Brody, H. Jones, B. Meister, PRL 98, (2007) CMB and P. Mannheim, PRL 100, (2008) CMB, Reports on Progress in Physics 70, 947 (2007) P. Dorey, C. Dunning, and R. Tateo, JPA 34, 5679 (2001) P. Dorey, C. Dunning, and R. Tateo, JPA 40, R205 (2007) 9

91 The original discoverers of PT symmetry: 10

92 11

93 12

94 13

95 14

96 15

97 16

98 17

99 18

100 MY TALK 19

101 Outline of Talk Beginning Middle End (applause) 20

102 How to prove that the eigenvalues are real 21

103 PT Boundary 22

104 How to prove that the eigenvalues are real The proof is really hard! You need to use (3)Bethe ansatz (4)Monodromy group (5)Baxter T Q relation (6)Functional Determinants 23

105 PT Boundary Greatest murder mystery of all time Extinction of over 90% of species! Permian era Triassic era PT Boundary 24

106 OK, so the eigenvalues are real But is this quantum mechanics?? Probabilistic interpretation?? Hilbert space with a positive metric?? Unitarity?? 25

107 Dirac, Bakerian Lecture 1941, Proceedings of the Royal Society A 26

108 The Hamiltonian determines its own adjoint 27

109 Unitarity With respect to the CPT adjoint the theory has UNITARY time evolution. Norms are strictly positive! Probability is conserved! 28

110 OK, we have unitarity But is PT quantum mechanics useful?? It revives quantum theories that were thought to be dead It is beginning to be observed experimentally 29

111 The Lee Model 30

112 The problem: 31

113 32

114 A non Hermitian Hamiltonian is unacceptable partly because it may lead to complex energy eigenvalues, but chiefly because it implies a non unitary S matrix, which fails to conserve probability and makes a hash of the physical interpretation. 33

115 PT quantum mechanics to the rescue PT Meep! Meep! 34

116 GHOSTBUSTING: Reviving quantum theories that were thought to be dead 35

117 Pais Uhlenbeck action Gives a fourth order field equation: CMB and P. Mannheim, Phys. Rev. Lett. 100, (2008) CMB and P. Mannheim, Phys. Rev. D 78, (2008) 36

118 The problem: A fourth order field equation gives a propagator like GHOST! 37

119 There are now two possible realizations 38

120 There can be many realizations! Equivalent Dirac Hermitian Hamiltonian: 39

121 No ghost theorem for the fourth order derivative Pais Uhlenbeck model, CMB and P. Mannheim, PRL 100, (2008) 40

122 TOTALITARIAN PRINCIPLE Everything which is not forbidden is compulsory. M. Gell Mann 41

123 And there are now observations in table top optics experiments! Observing PT symmetry using wave guides: Z. Musslimani, K. Makris, R. El Ganainy, and D. Christodoulides, PRL 100, (2008) K. Makris, R. El Ganainy, D. Christodoulides, and Z. Musslimani, PRL 100, (2008) 42

124 Date: Thu, 13 Mar :04: From: Demetrios Christodoulides To: Carl M. Bender Subject: Re: Benasque workshop on non Hermitian Hamiltonians Dear Carl, I have some good news from Greg Salamo (U. of Arkansas). His students (who are now visiting us here in Florida) have just observed a PT phase transition in a passive AlGaAs waveguide system. We will be submitting soon these results as a post deadline paper to CLEO/QELS and subsequently to a regular journal. We are still fighting against the Kramers Kronig relations, but the phase transition effect is definitely there. We expect even better results under TE polarization conditions. I will bring them over to Israel. In close collaboration with us, more teams (also best friends!) are moving ahead in this direction. Moti Segev (from Technion) is planning an experiment in an active passive dual core optical fiber fabricated in Southampton, England. More experiments will be carried later in Germany by Detlef Kip. Christian (his post doc) just left from here with a possible design. If everything goes well, with a bit of luck we may have an experimental explosion in the PT area. I wish the funding situation was a bit better. So far everything is done on a shoe string budget (it is subsidized by other projects). Let us see... All the best Demetri 43

125 44

126 45

127 46

128 47

129 48

130 OK, but how do we interpret a non Hermitian Hamiltonian?? Solve the quantum brachistochrone problem 49

131 Classical Brachistochrone Newton Bernoulli Leibniz L'Hôpital 50

132 Classical Brachistochrone is a cycloid Gravitational 51 field

133 Quantum Brachistochrone Constraint: 52

134 Hermitian case 53

135 becomes 54

136 Minimize t over all positive r while maintaining constraint Minimum evolution time: Looks like uncertainty principle but is merely rate times time = distance 55

137 Non Hermitian PT symmetric Hamiltonian where 56

138 Exponentiate H 57

139 Interpretation Finding the optimal PT symmetric Hamiltonian amounts to constructing a wormhole in Hilbert space! 58

140 The shortest path between two truths in the real domain passes through the complex domain. Jacques Hadamard [The Mathematical Intelligencer 13 (1991)] 59

141 Overview of talk: 60

142 Classical PT symmetry Provides an intuitive explanation of what is going on 61

143 Motion on the Real Axis Motion of particles is governed by Newton s Law: F=ma In freshman physics this motion is restricted to the REAL AXIS. 62

144 Harmonic Oscillator: Particle on a Spring Back and forth motion on the real axis: Turning point Turning point ( = 0) 63

145 Hamilton s equations 64

146 Harmonic Oscillator: Motion in the complex plane: Turning point Turning point ( = 0) 65

147 H = p2 + ix3 ( = 1) 66

148 67

149 Broken PT symmetry (ε < 0) 68

150 = 2 11 sheets 69

151 70

152 71

153 72

154 73

155 74

156 75

157 The Beast = 16/15 76

158 Lotka Volterra equations 77

159 78

160 79

161 80

162 Other PT symmetric classical systems KdV equation Camassa Holm equation Sine Gordon equation Boussinesq equation 81

Calmest Quixotic Henchman: Pandemonium! Car Blender

Calmest Quixotic Henchman: Pandemonium! Car Blender Calmest Quixotic Henchman: Pandemonium! Car Blender Quantum Mechanics in the Complex Domain Carl Bender Quantum Mechanics is complicated! Anyone who thinks he can contemplate quantum mechanics without

More information

Latest results on PT quantum theory. Carl Bender Washington University

Latest results on PT quantum theory. Carl Bender Washington University Latest results on PT quantum theory Carl Bender Washington University Paris 2011 Assumptions of quantum mechanics: causality locality relativistic invariance existence of a ground state conservation of

More information

Tunneling in classical mechanics

Tunneling in classical mechanics Tunneling in classical mechanics Carl M. Bender, Washington University and Daniel W. Hook, Imperial College London To be discussed arxiv: hep-th/1011.0121 The point of this talk: Quantum mechanics is a

More information

PT-symmetric quantum mechanics

PT-symmetric quantum mechanics PT-symmetric quantum mechanics Crab Lender Washing Nervy Tuitions Tokyo, Bed crème 2012 PT-symmetric quantum mechanics Carl Bender Washington University Kyoto, December 2012 Dirac Hermiticity H = H ( means

More information

PT-symmetric quantum systems

PT-symmetric quantum systems PT-symmetric quantum systems Carl Bender Washington University ICNAAM, 2012 PT in Paris Dirac Hermiticity H = H ( means transpose + complex conjugate) guarantees real energy and probability-conserving

More information

PT-symmetric interpretation of double scaling in QFT

PT-symmetric interpretation of double scaling in QFT PT-symmetric interpretation of double scaling in QFT Carl Bender Washington University 12 th Workshop on Nonperturbative QCD Paris, June 2013 Dirac Hermiticity H = H ( means transpose + complex conjugate)

More information

arxiv:quant-ph/ v1 29 Mar 2003

arxiv:quant-ph/ v1 29 Mar 2003 Finite-Dimensional PT -Symmetric Hamiltonians arxiv:quant-ph/0303174v1 29 Mar 2003 Carl M. Bender, Peter N. Meisinger, and Qinghai Wang Department of Physics, Washington University, St. Louis, MO 63130,

More information

Department of Physics, Washington University, St. Louis, MO 63130, USA (Dated: November 27, 2005)

Department of Physics, Washington University, St. Louis, MO 63130, USA (Dated: November 27, 2005) PT -Symmetric Versus Hermitian Formulations of Quantum Mechanics Carl M. Bender, Jun-Hua Chen, and Kimball A. Milton Department of Physics, Washington University, St. Louis, MO 6330, USA (Dated: November

More information

Heuristic Explanation of the Reality of Energy in PT -Symmetric Quantum Field Theory

Heuristic Explanation of the Reality of Energy in PT -Symmetric Quantum Field Theory Heuristic Explanation of the Reality of Energy in PT -Symmetric Quantum Field Theory Carl M. Bender Department of Physics Washington University St. Louis, MO 6330, USA Introduction A PT -symmetric quantum

More information

Carl M. Bender. Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2BZ, UK

Carl M. Bender. Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2BZ, UK PT -Symmetric Quantum Electrodynamics Carl M. Bender Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2BZ, UK Ines Cavero-Pelaez, Kimball A. Milton, and K. V. Shajesh Oklahoma Center

More information

Parity Time (PT) Optics

Parity Time (PT) Optics PT-Quantum Mechanics In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-hermitian, can still exhibit entirely real spectra if they obey parity-time requirements or PT

More information

PT-symmetric quantum theory, nonlinear eigenvalue problems, and the Painlevé transcendents

PT-symmetric quantum theory, nonlinear eigenvalue problems, and the Painlevé transcendents PT-symmetric quantum theory, nonlinear eigenvalue problems, and the Painlevé transcendents Carl M. Bender Washington University RIMS-iTHEMS International Workshop on Resurgence Theory Kobe, September 2017

More information

arxiv: v1 [quant-ph] 22 Jun 2012

arxiv: v1 [quant-ph] 22 Jun 2012 PT phase transition in multidimensional quantum systems Carl M. Bender 1 and David J. Weir 2 1 Department of Physics, Kings College London, Strand, London WC2R 1LS, UK 2 Blackett Laboratory, Imperial College,

More information

PT -symmetric quantum electrodynamics

PT -symmetric quantum electrodynamics Physics Letters B 613 (2005) 97 104 www.elsevier.com/locate/physletb PT -symmetric quantum electrodynamics Carl M. Bender a,b, Ines Cavero-Pelaez c, Kimball A. Milton c,k.v.shajesh c a Theoretical Physics,

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

arxiv: v1 [hep-th] 5 Jun 2015

arxiv: v1 [hep-th] 5 Jun 2015 PT -symmetric interpretation of unstable effective potentials Carl M. Bender a,b, Daniel W. Hook a,c, Nick E. Mavromatos b,d, and Sarben Sarkar b arxiv:1506.01970v1 [hep-th] 5 Jun 2015 a Department of

More information

Ramy El- Ganainy. Curriculum Vitae

Ramy El- Ganainy. Curriculum Vitae University of Toronto Department of physics 60 St George St. Toronto, ON. M5S 1A7 ganainy@physics.utoronto.ca Education: Ramy El- Ganainy Curriculum Vitae Cell : (647) 995-5280 Work: (416) 978-5444 PhD

More information

arxiv: v5 [quant-ph] 24 Mar 2016

arxiv: v5 [quant-ph] 24 Mar 2016 USTC-ICTS-1-16 Investigation of non-hermitian Hamiltonians in the Heisenberg picture arxiv:11.6705v5 [quant-ph] 4 Mar 016 Yan-Gang Miao 1,, and Zhen-Ming Xu 1 1 School of Physics, Nankai University, Tianjin

More information

Classical Particles Having Complex Energy Exhibit Quantum-Like Behavior

Classical Particles Having Complex Energy Exhibit Quantum-Like Behavior Classical Particles Having Complex Energy Exhibit Quantum-Like Behavior Carl M. Bender Department of Physics Washington University St. Louis MO 63130, USA Email: cmb@wustl.edu 1 Introduction Because the

More information

Non-Hermitian systems with PT symmetry

Non-Hermitian systems with PT symmetry Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Oleg Bulashenko Abstract: We discuss the possibility to build the formalism of quantum mechanics based

More information

Generalized PT symmetry and real spectra

Generalized PT symmetry and real spectra INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICSA: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) L467 L471 PII: S0305-4470(02)36702-7 LETTER TO THE EDITOR Generalized PT symmetry and real spectra

More information

Geometric Aspects of Space-Time Reflection Symmetry in Quantum Mechanics

Geometric Aspects of Space-Time Reflection Symmetry in Quantum Mechanics Geometric Aspects of Space-Time Reflection Symmetry in Quantum Mechanics Carl M. Bender, Dorje C. Brody, Lane P. Hughston, and Bernhard K. Meister Abstract For nearly two decades, much research has been

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

arxiv: v1 [hep-th] 28 May 2009

arxiv: v1 [hep-th] 28 May 2009 Nonunique C operator in PT Quantum Mechanics Carl M. Bender a and S. P. Klevansky b a Physics Department, Washington University, St. Louis, MO 63130, USA and arxiv:0905.4673v1 [hep-th] 8 May 009 b Institut

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

arxiv:math-ph/ v1 10 May 2000

arxiv:math-ph/ v1 10 May 2000 HEP-00-13 Conjecture on the Interlacing of Zeros in Complex Sturm-Liouville Problems arxiv:math-ph/0005012v1 10 May 2000 Carl M. Bender 1, Stefan Boettcher 2, and Van M. Savage 1 1 Department of Physics,

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Brief Review of Signals and Systems My subject for today s discussion

More information

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Sendy Phang 1, Ana Vukovic 1, Hadi Susanto 2, Trevor M. Benson 1, and Phillip Sewell 1 1 School of Electrical and Electronic

More information

Units, limits, and symmetries

Units, limits, and symmetries Units, limits, and symmetries When solving physics problems it s easy to get overwhelmed by the complexity of some of the concepts and equations. It s important to have ways to navigate through these complexities

More information

The C operator in PT -symmetric quantum field theory transforms as a Lorentz scalar

The C operator in PT -symmetric quantum field theory transforms as a Lorentz scalar PHYSICAL REVIEW D 71, 065010 (2005) The C operator in PT -symmetric quantum field theory transforms as a Lorentz scalar Carl M. Bender, Sebastian F. Brandt, Jun-Hua Chen, and Qinghai Wang Department of

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Physics 430IA Quantum Mechanics Spring 2011

Physics 430IA Quantum Mechanics Spring 2011 Physics 430IA Quantum Mechanics Spring 2011 Meeting Times: MWF 10:00-10:50 Classroom: SCI 361 Instructor: Dr. Todd Timberlake Office: SCI 338A Email: ttimberlake@berry.edu Phone: (706) 368-5622 Office

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

arxiv: v1 [physics.optics] 8 Nov 2011

arxiv: v1 [physics.optics] 8 Nov 2011 Analytic Results for a P T-symmetric Optical Structure H. F. Jones Physics Department, Imperial College, London SW7 2BZ, UK arxiv:1111.2041v1 [physics.optics] 8 Nov 2011 Propagation of light through media

More information

š þfnø ez K Döf HmŒÆÔnÆ 2012c11 20F

š þfnø ez K Döf HmŒÆÔnÆ 2012c11 20F š þfnø ez K Döf HmŒÆÔnÆ 01c110F K8¹Â 1 Dڹ 3DÚþfnØ š M îéaññxú"dum î¹kjü UþŠÏ~ Eê AÇØÅð" #¹Â š M  ãguþfnx E,3DÚþf nø Ä5Ÿ =µ 1 Š ê ke =3 ½Ä SÈ ½ 3AÇ)º 3 ±žmüzn5 =AÇÅð" 1 â» 5 #nøg Ônþ Š ê ŽÎ 5 7 ^ "

More information

Lecture 6: Vector Spaces II - Matrix Representations

Lecture 6: Vector Spaces II - Matrix Representations 1 Key points Lecture 6: Vector Spaces II - Matrix Representations Linear Operators Matrix representation of vectors and operators Hermite conjugate (adjoint) operator Hermitian operator (self-adjoint)

More information

arxiv: v1 [quant-ph] 12 Feb 2014

arxiv: v1 [quant-ph] 12 Feb 2014 PT Symmetric Aubry-Andre Model C. Yuce Department of Physics, Anadolu University, Eskisehir, Turkey. cyuce@anadolu.edu.tr (Dated: March 4, 4) PT Symmetric Aubry-Andre Model describes an array of N coupled

More information

2 Quantum Mechanics. 2.1 The Strange Lives of Electrons

2 Quantum Mechanics. 2.1 The Strange Lives of Electrons 2 Quantum Mechanics A philosopher once said, It is necessary for the very existence of science that the same conditions always produce the same results. Well, they don t! Richard Feynman Today, we re going

More information

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES

OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 3, Number /, pp. 46 54 OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES Li CHEN, Rujiang LI, Na

More information

Quantum Gravity Phenomenology

Quantum Gravity Phenomenology Quantum Gravity Phenomenology Sabine Hossenfelder Sabine Hossenfelder, Quantum Gravity Phenomenology 1/16 Why do we need quantum gravity? Because We don t know what is the gravitational field of a quantum

More information

Gennady Shipov. Uvitor, Bangkok, Thailand May 8, 2009

Gennady Shipov. Uvitor, Bangkok, Thailand May 8, 2009 Gennady Shipov Uvitor, Bangkok, Thailand May 8, 2009 OVERVIEW Beginning from Buddha until Present times The Concept of Vacuum in Ancient times Levels of the Reality Void, Fire, Air, Water, and Earth. The

More information

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule Lecture: March 27, 2019 Classical Mechanics Particle is described by position & velocity Quantum Mechanics Particle is described by wave function Probabilistic description Newton s equation non-relativistic

More information

Modern Physics for Frommies V Gravitation Lecture 8

Modern Physics for Frommies V Gravitation Lecture 8 /6/017 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies V Gravitation Lecture 8 Administrative Matters Suggested reading Agenda What do we mean by Quantum Gravity

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Physics 162a Quantum Mechanics

Physics 162a Quantum Mechanics Physics 162a Quantum Mechanics 1 Introduction Syllabus for Fall 2009 This is essentially a standard first-year course in quantum mechanics, the basic language for describing physics at the atomic and subatomic

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

The act of measuring a particle fundamentally disturbs its state.

The act of measuring a particle fundamentally disturbs its state. Chapter 1 Introduction Nature at the sub-atomic scale behaves totally differently from anything that our experience with the physical world prepares us for. Quantum mechanics is the name of the branch

More information

Quantum dynamics with non-hermitian PT -symmetric operators: Models

Quantum dynamics with non-hermitian PT -symmetric operators: Models Hauptseminar Theoretische Physik 01 Quantum dynamics with non-hermitian PT -symmetric operators: Models Mario Schwartz 13.06.01 Mario Schwartz PT -Symmetric Operators: Models 1 / 36 Overview Hauptseminar

More information

Recursive calculation of effective potential and variational resummation

Recursive calculation of effective potential and variational resummation JOURNAL OF MATHEMATICAL PHYSICS 46, 032101 2005 Recursive calculation of effective potential and variational resummation Sebastian F. Brandt and Hagen Kleinert Freie Universität Berlin, Institut für Theoretische

More information

arxiv: v1 [physics.optics] 21 Dec 2015

arxiv: v1 [physics.optics] 21 Dec 2015 Meta-PT Symmetry in Asymmetric Directional Couplers arxiv:1512.6875v1 [physics.optics] 21 Dec 215 Chicheng Ma, 1 Wiktor Walasik, 1 and Natalia M. Litchinitser 1 1 Department of Electrical Engineering,

More information

arxiv: v2 [math-ph] 13 Dec 2012

arxiv: v2 [math-ph] 13 Dec 2012 On the metric operator for the imaginary cubic oscillator P. Siegl 1,2 and D. Krejčiřík 2 1 Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, Av. Prof. Gama Pinto 2,

More information

HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes

HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes Outline: 1. Homework 4 (discuss reading assignment) 2. The Measurement Problem 3. GRW theory Handouts: None Homework: Yes Vocabulary/Equations:

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

On the origin of probability in quantum mechanics

On the origin of probability in quantum mechanics On the origin of probability in quantum mechanics Steve Hsu Benasque, September 2010 Outline 1. No Collapse quantum mechanics 2. Does the Born rule (probabilities) emerge? 3. Possible resolutions R. Buniy,

More information

Great Ideas in Theoretical Computer Science. Lecture 28: A Gentle Introduction to Quantum Computation

Great Ideas in Theoretical Computer Science. Lecture 28: A Gentle Introduction to Quantum Computation 5-25 Great Ideas in Theoretical Computer Science Lecture 28: A Gentle Introduction to Quantum Computation May st, 208 Announcements Please fill out the Faculty Course Evaluations (FCEs). https://cmu.smartevals.com

More information

Quantum Complexity Theory and Adiabatic Computation

Quantum Complexity Theory and Adiabatic Computation Chapter 9 Quantum Complexity Theory and Adiabatic Computation 9.1 Defining Quantum Complexity We are familiar with complexity theory in classical computer science: how quickly can a computer (or Turing

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

PT-SYMMETRIC INTERPRETATION of OPEN QUANTUM and CLASSICAL SYSTEMS

PT-SYMMETRIC INTERPRETATION of OPEN QUANTUM and CLASSICAL SYSTEMS PT-SYMMETRIC INTERPRETATION of OPEN QUANTUM and CLASSICAL SYSTEMS overview and examples Mariagiovanna Gianfreda Centro Fermi (Roma) and CNR-IFAC (Sesto Fiorentino, FI) - Open Quantum Systems: From atomic

More information

Episode 1: Phis wants to be a physicist

Episode 1: Phis wants to be a physicist Illustration: Xia Hong Script: Xia Hong 12/2012 Phis is 14 years old. Like most kids of her age, she s a bit anxious about finding the person inside her She tried singing. Hmm You are very talented, Phis!

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Box Normalization and The SCTE Land J Harri T Tiainen PO Box 5066 Chatswood West NSW 1515 Australia harri@healingearth.com.au The SCTE Land constant of 0 A constant of 1 constant

More information

Lecture III : Jan 30, 2017

Lecture III : Jan 30, 2017 Lecture III : Jan 30, 2017 Prequantum Era Particles & Waves Reading Assignment: Chapter 2 and 3 from Quantum Physics for Poets. Summarize your thoughts with some questions/comments. ( One page writeup

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

1. INTRODUCTION 2. THE MODEL

1. INTRODUCTION 2. THE MODEL Perturbative Dynamics of Stationary States in Nonlinear Parity-Time Symmetric Coupler Jyoti Prasad Deka and Amarendra K. Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781

More information

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries arxiv:math-ph/0209018v3 28 Nov 2002 Ali Mostafazadeh Department of Mathematics, Koç University, umelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

arxiv: v2 [quant-ph] 18 May 2018

arxiv: v2 [quant-ph] 18 May 2018 Using mixed many-body particle states to generate exact PT -symmetry in a time-dependent four-well system arxiv:1802.01323v2 [quant-ph] 18 May 2018 1. Introduction Tina Mathea 1, Dennis Dast 1, Daniel

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

Quantum Mechanics for Mathematicians: The Heisenberg group and the Schrödinger Representation

Quantum Mechanics for Mathematicians: The Heisenberg group and the Schrödinger Representation Quantum Mechanics for Mathematicians: The Heisenberg group and the Schrödinger Representation Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 30, 2012 In our discussion

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

+E v(t) H(t) = v(t) E where v(t) is real and where v 0 for t ±.

+E v(t) H(t) = v(t) E where v(t) is real and where v 0 for t ±. . Brick in a Square Well REMEMBER: THIS PROBLEM AND THOSE BELOW SHOULD NOT BE HANDED IN. THEY WILL NOT BE GRADED. THEY ARE INTENDED AS A STUDY GUIDE TO HELP YOU UNDERSTAND TIME DEPENDENT PERTURBATION THEORY

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS HONG WANG 1,*, JING HUANG 1,2, XIAOPING REN 1, YUANGHANG WENG 1, DUMITRU MIHALACHE 3, YINGJI

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan. 29 Normal class on

More information

MITOCW watch?v=nxgobnabn7u

MITOCW watch?v=nxgobnabn7u MITOCW watch?v=nxgobnabn7u The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Entire functions, PT-symmetry and Voros s quantization scheme

Entire functions, PT-symmetry and Voros s quantization scheme Entire functions, PT-symmetry and Voros s quantization scheme Alexandre Eremenko January 19, 2017 Abstract In this paper, A. Avila s theorem on convergence of the exact quantization scheme of A. Voros

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Evans Field Theory of Neutrino Oscillations

Evans Field Theory of Neutrino Oscillations 22 Evans Field Theory of Neutrino Oscillations Summary. Neutrino oscillations are described with the generally covariant Evans field theory, showing that gravitation is able to influence the transmutation

More information

If quantum mechanics hasn t profoundly shocked you, you haven t understood it.

If quantum mechanics hasn t profoundly shocked you, you haven t understood it. Quantum Mechanics If quantum mechanics hasn t profoundly shocked you, you haven t understood it. Niels Bohr Today, I will tell you more about quantum mechanics what weird thing it is and why it is so weird.

More information

6.896 Quantum Complexity Theory September 9, Lecture 2

6.896 Quantum Complexity Theory September 9, Lecture 2 6.96 Quantum Complexity Theory September 9, 00 Lecturer: Scott Aaronson Lecture Quick Recap The central object of study in our class is BQP, which stands for Bounded error, Quantum, Polynomial time. Informally

More information

Pathways from Classical to Quantum Physics

Pathways from Classical to Quantum Physics Pathways from Classical to Quantum Physics Jürgen Renn Max Planck Institute for the History of Science, Berlin Seven Pines Symposium 2013 Outline Revolution or Transformation? The fate of the knowledge

More information

Bell s Theorem. Ben Dribus. June 8, Louisiana State University

Bell s Theorem. Ben Dribus. June 8, Louisiana State University Bell s Theorem Ben Dribus Louisiana State University June 8, 2012 Introduction. Quantum Theory makes predictions that challenge intuitive notions of physical reality. Einstein and others were sufficiently

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

Lesson Plan. 1) Students will be aware of some key experimental findings and theoretical

Lesson Plan. 1) Students will be aware of some key experimental findings and theoretical Aleksey Kocherzhenko Lesson Plan Physical Chemistry I: Quantum Mechanics (this is a sophomore/junior-level course) Prerequisites: General Chemistry, Introductory Physics, Calculus, Differential Equations

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 7 The Uncertainty Principle

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 7 The Uncertainty Principle Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 7 The Uncertainty Principle (Refer Slide Time: 00:07) In the last lecture, I had spoken

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantum Mechanics for Scientists and Engineers Syllabus and Textbook references All the main lessons (e.g., 1.1) and units (e.g., 1.1.1) for this class are listed below. Mostly, there are three lessons

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Module No. # 07 Bra-Ket Algebra and Linear Harmonic Oscillator - II Lecture No. # 01 Dirac s Bra and

More information

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4 PROFESSOR: OK, this lecture, this day, is differential equations day. I just feel even though these are not on the BC exams, that we've got everything

More information

Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained

Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained Article type: Original Paper Experimental demonstration of PT-symmetric stripe lasers Zhiyuan Gu 1,, Nan Zhang 1,, Quan Lyu 1,, Meng Li 1, Ke Xu 1, Shumin Xiao 2 1, 3, *, Qinghai Song *Corresponding Author:

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS Academics 1 A R E Y O U R T E A C H E R S C E R T I F I E D? O u r C r u s a d e r t e a c h i n g s t a f f i s 1 0 0 % c e r t i f i e d t h r o u g h t h e s t a t e o f L o u i s i a n a. W e n o t

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

PT-symmetric quantum theory

PT-symmetric quantum theory Journal of Physics: Conference Series PAPER OPEN ACCESS PT-symmetric quantum theory To cite this article: Carl M Bender 2015 J. Phys.: Conf. Ser. 631 012002 View the article online for updates and enhancements.

More information

1 Notes and Directions on Dirac Notation

1 Notes and Directions on Dirac Notation 1 Notes and Directions on Dirac Notation A. M. Steane, Exeter College, Oxford University 1.1 Introduction These pages are intended to help you get a feel for the mathematics behind Quantum Mechanics. The

More information