Phase Transitions. Phys112 (S2012) 8 Phase Transitions 1

Size: px
Start display at page:

Download "Phase Transitions. Phys112 (S2012) 8 Phase Transitions 1"

Transcription

1 Phase Transitions cf. Kittel and Krömer chap 10 Landau Free Energy/Enthalpy Second order phase transition Ferromagnetism First order phase transition Van der Waals Clausius Clapeyron coexistence curve Phys112 (S2012) 8 Phase Transitions 1

2 Landau Free Energy n particular Let us consider a system S exchanging energy with a large reservoir R. Constant volume σ tot ( U S ) = σ R U U S F L σ S σ R = σ R U ( ) + σ S ( U S ) ( U ) σ R U U S + σ S ( U S ) ( ) 1 ( U S ) U S + σ S = σ R ( U ) 1 F L ( U S ) with ( U S ) U S σ S ( U S ) Landau Free Energy ( U S ) = 1 U S σ S U S Most probable configuration maximizes σ tot i.e. minimizes F L e.g. for a perfect gas 3/2 MU S 3π 2 N + 5 N 2 V ( ) = N log U S = 3 2 N Phys112 (S2012) 8 Phase Transitions 2 F L R, U-U s S,U S (Sackur Tetrode with τ S = 2U s 3N ) ( U S ) U S

3 Landau Free Enthalpy Similarly, in situation where the system S exchanges both energy and volume with the reservoir, we can define a Landau Free Enthalpy Constant pressure σ tot ( U S, ) = σ R ( U U S,V ) + σ S ( U S, ) σ R ( U,V ) σ R U U σ R S V V + σ U S S (, S ) = σ R U,V ( ) 1 ( ) 1 U S + p R + σ S ( U S,V s ) ( ) with G L ( U S ) U S σ S ( U S, ) + p R = σ R U,V G L U S Most probable configuration maximizes σ Tot i.e. minimizes G L ( U S, ) σ in particular S ( U S, ) = 1 σ S ( U S, ) = p R G L U S e.g. for a perfect monoatomic spinless gas 3/2 MU S 3π σ S ( U S,V s ) 2 N = N log + 5 N (Sackur Tetrode with τ S = 2U s 2 3N ) U S U S = 3 2 N p R = N Phys112 (S2012) 8 Phase Transitions 3

4 More generally F L G L Order parameter We could define the configuration of the system S with order parameters ξ ι, in which case U S, are functions of ξ: U S ( ξ ), ( ξ ) Depending whether we are working at constant volume or constant pressure, the most likely configuration of the ensemble of the system and reservoir corresponds to the minimum of the Landau free energy or free entropy ( ξ ) U S ( ξ ) σ S ( ξ ) F L ξ i ξ ( ) ( ξ ) U S ( ξ ) σ S ( ξ ) + p R ξ = 0 at equilibrium (constant volume) ( ξ ) = 0 at equilibrium (constant pressure) ξ i ( ) G L Phys112 (S2012) 8 Phase Transitions 4

5 Second Order Phase Transitions Below a certain temperature some order appears τ < τ c F L τ = τ c τ goes down High Temperature ξ Does not happen for ideal gas For this to happen, we need interactions => correlation and non linearities Example: ferromagnetism Phys112 (S2012) 8 Phase Transitions 5

6 Ferromagnetism Ideal spin gas= paramagnetism In a magnetic field B, ε = mb if m is the magnetic moment. For 1 spin Z 1 = exp mb + exp mb = 2 cosh mb For N spins Z = Z N 1 since they are distinguishable mb Z = 2 N cosh N F = τ log( Z ) = Nτ log 2 cosh mb log Z U = τ 2 = NmB tanh mb τ Magnetization (moment/unit volume)m = U mb = nm tanh VB σ V = 1 ( τ log Z ) = n log 2cosh mb V τ mb mb tanh τ n log mb mb 3 Ferromagnets: The spins are producing a magnetic field which tends to orient the spins Mean field approximation B int = λm M. B int = λ 2 M 2 In absence of external field, energy per unit volume is u = 1 2 where the factor 1/2 accounts for the fact that we should not double count and only account for pair interactions Phys112 (S2012) 8 Phase Transitions 6

7 Landau Free Energy Ferromagnetism (2) Natural to use as the order parameter M: Replace in σ, mb int by tanh 1 M τ nm F L ( M ) σ = u( M ) V V = λ 2 M M 2 n log 2 cosh tanh 1 nm M M nm tanh 1 nm n log2 + λ 2 M 2 + τ n 2 R M 2 nm + no M 4 nm Critical temperature τ c = λnm 2 Curie temperature M No discontinuity! 2nd order T decreases Another point of view M = nm tanh mb int mλm = nm tanh if λnm 2 = τ c only one solution M = 0 if < τ c one non trivial solution M 0 Phys112 (S2012) 8 Phase Transitions 7 τ M nm tanh mλm M

8 First Order Transition So far F L (or G L ) was even in ξ No discontinuity in physical variables, no coexistence of 2 phases, no latent heat First order transition: e.g. Van der Waals gas Phys112 (S2012) 8 Phase Transitions 8

9 First Order Transition So far F L (or G L ) was even in ξ No discontinuity in physical variables, no coexistence of 2 phases, no latent heat First order transition: e.g. Van der Waals gas Ideal gas approximation is not good at high density ( ) φ r 1 r 2 hard core Van der Waals attraction 2 effects The volume available is not V: in the hard core approximation V V N 4πr 3 c V Nb 3 The energy of the molecules is decreased by Van der Waals attraction Mean field approximation U U N ( N 1) φ U N φ U N 2 a V φ( r) d 3 r r where φ = c 2a V V Phys112 (S2012) 8 Phase Transitions 9 r c r 1 r 2

10 G L Van der Waals phase transition Let us take as one order parameter (and kinetic energy U K ) Constant pressure Let us compute G L U S = U K N 2 a σ S ( U S,V s ) = N log ( U S, ) U S 3/2 MU K 3π 2 N N Nb Very different behavior liquid Coexistence p R < p C = a ( ) σ S ( U S, ) + p R 27b 2 τ goes down + 5 (Sackur Tetrode with τ S = 2U K 2 3N,V = Nb) or equivalently counting number of states G L p R p C = a 27b 2 τ goes down gas Metastability Super-heating/cooling gas Phys112 (S2012) 8 Phase Transitions 10

11 Van der Waals Equation of State G L = 0 = 1 3 U K 2 τ N 1 R U K = 3 U K 2 Nτ U = 3 R S 2 Nτ N 2 a R G L = 0 = N 2 a 1 τ 2 R N Nb + p R p R + N 2 a 2 ( Nb) = N Van der Waals equation of state Droping the R and S indices and defining V c = 3Nb p c = a 27b τ = 8a 2 c (they verify the equation of state) 27b the equation of state can be put in the form p p 3 + V 2 p c V 1 V c 3 = 8 p τ c 3 τ c V c τ=τ c Law of corresponding states p c (unified but not very good description) τ goes down It is easy to check that at p = p c V = V c τ = τ c liquid gas p V = 0! V V c V c Phys112 (S2012) 8 Phase Transitions 11

12 Van der Waals G L n Q ( τ c ) ( ) = 100 n V c Phys112 (S2012) 8 Phase Transitions 12 log

13 P-V Relationship ( ) Van der Waals equation of state G L U K, = 0 p R + N 2 a 2 ( ) = N = Nτ G L ( U K, ) V Nb U K = 0 Phys112 (S2012) 8 Phase Transitions 13

14 Recall At equilibirium G = Nµ ( p,τ ) Proof: Divide the system into two subsystems. The subsystems are in equilibrium G 1 = µ ( p,τ, N 1 ) = G 2 = µ ( p,τ, N 2 ) µ N 1 N 2 N = 0 When expressed as a fuction of p,τ, N G N = µ p,τ ( ) µ is not a function of N µ ( p,τ ) ( ) G = Nµ ( p,τ ) + f ( p,τ ) N = 0,G = 0 f ( p,τ ) 0 Phys112 (S2012) 8 Phase Transitions 14

15 G L liquid Coexistence Coexistence p R < p C = a 27b 2 p τ goes down p c critical point liquid gas gas τ For a given p R smaller than p c, there is a temperature c τ where the two minima are the same: coexistence of liquid and gas They are in equilibrium (same chemical potential) ( ) µ l p,τ G( V l ) = G V g ( ) = µ g ( p,τ ) since G( p,τ ) = µ ( p,τ ) N Latent heat The two phases have very different entropy. Gas has a much higher entropy than the liquid! This corresponds to a difference of enthalpy i.e. there is a latent heat involved in the transformation G l ( p,τ ) = G g ( p,τ ) using G( p,τ ) = F + pv τσ = H ( p,σ ) τσ H l τσ l = H g τσ g H l H g = τ ( σ g σ l ) = LN > 0 where L is the latent heat per particle released in thermal bath when going from gas to liquid needed from thermal bath to go from liquid to gas Phys112 (S2012) 8 Phase Transitions 15

16 Clausius Clapeyron ( ) = G V g ( ) µ l p,τ Coexistence (2) Phys112 (S2012) 8 Phase Transitions 16 ( ) = µ g ( p,τ ) since G( p,τ ) = µ ( p,τ ) N G V l G l ( p,τ ) = G g ( p,τ ) using G( p,τ ) = H ( p,σ ) τσ H l τσ l = H g τσ g ΔH = τδσ The shape of the coexistence curve p τ G l ( p( τ ),τ ) = G g ( p( τ ),τ ) G l p dp + G l τ dτ = G g p dp + G g τ G l dp dτ = ( ) can be obtained easily G τ, p, N dτ with ( ) τ = σ G ( τ, p, N ) p τ G g τ G g p G = σ g σ l = 1 LN 1 L l V g V l τ V g V l τ v g v l p where v g v l is the difference of volumes/particle If v g >> v l v g v l v g τ dp ( Ideal gas) p dτ = p τ L 2 In the case where L is weakly dependent on the temperature p τ ( ) = p o exp L τ = V

17 Conclusions Correlations between particles =>Non linear behavior=>phase transitions Mean field approximation as a first order 2 types of phase transitions First order coexistence of phases latent heat metastability (bulk, bubble/droplet) Second order continuous transformation (discontinuity in derivative) In 1st order, critical point Singularity! Large fluctuations Modern field of critical phenomena (Landau s approach is mathematically too regular) Phys112 (S2012) 8 Phase Transitions 17

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

4. Systems in contact with a thermal bath

4. Systems in contact with a thermal bath 4. Systems in contact with a thermal bath So far, isolated systems microcanonical methods 4.1 Constant number of particles:kittelkroemer Chap. 3 Boltzmann factor Partition function canonical methods Ideal

More information

Homework 8 Solutions Problem 1: Kittel 10-4 (a) The partition function of a single oscillator that can move in three dimensions is given by:

Homework 8 Solutions Problem 1: Kittel 10-4 (a) The partition function of a single oscillator that can move in three dimensions is given by: Homework 8 Solutions Problem : Kittel 0-4 a The partition function of a single oscillator that can move in three dimensions is given by: Z s e ɛ nx+ny+nz hω/τ e ɛτ e n hω/τ e ɛ/τ e hω/τ n x,n y,n z n where

More information

Lecture Phase transformations. Fys2160,

Lecture Phase transformations. Fys2160, Lecture 12 01.10.2018 Phase transformations Fys2160, 2018 1 A phase transformation Discontinuous change in the properties of substance when the environent is changed infinitesimaly. Change between phases

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4)

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4) Phase Transitions A homogeneous equilibrium state of matter is the most natural one, given the fact that the interparticle interactions are translationally invariant. Nevertheless there is no contradiction

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

Physics 119A Final Examination

Physics 119A Final Examination First letter of last name Name: Perm #: Email: Physics 119A Final Examination Thursday 10 December, 2009 Question 1 / 25 Question 2 / 25 Question 3 / 15 Question 4 / 20 Question 5 / 15 BONUS Total / 100

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Lectures 16: Phase Transitions

Lectures 16: Phase Transitions Lectures 16: Phase Transitions Continuous Phase transitions Aims: Mean-field theory: Order parameter. Order-disorder transitions. Examples: β-brass (CuZn), Ferromagnetic transition in zero field. Universality.

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

Physics Oct Reading. K&K chapter 6 and the first half of chapter 7 (the Fermi gas). The Ideal Gas Again

Physics Oct Reading. K&K chapter 6 and the first half of chapter 7 (the Fermi gas). The Ideal Gas Again Physics 301 11-Oct-004 14-1 Reading K&K chapter 6 and the first half of chapter 7 the Fermi gas) The Ideal Gas Again Using the grand partition function we ve discussed the Fermi-Dirac and Bose-Einstein

More information

9.1 System in contact with a heat reservoir

9.1 System in contact with a heat reservoir Chapter 9 Canonical ensemble 9. System in contact with a heat reservoir We consider a small system A characterized by E, V and N in thermal interaction with a heat reservoir A 2 characterized by E 2, V

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Physics Nov Phase Transitions

Physics Nov Phase Transitions Physics 301 11-Nov-1999 15-1 Phase Transitions Phase transitions occur throughout physics. We are all familiar with melting ice and boiling water. But other kinds of phase transitions occur as well. Some

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Lecture 9 Overview (Ch. 1-3)

Lecture 9 Overview (Ch. 1-3) Lecture 9 Overview (Ch. -) Format of the first midterm: four problems with multiple questions. he Ideal Gas Law, calculation of δw, δq and ds for various ideal gas processes. Einstein solid and two-state

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

Phenomenological Theories of Nucleation

Phenomenological Theories of Nucleation Chapter 1 Phenomenological Theories of Nucleation c 2012 by William Klein, Harvey Gould, and Jan Tobochnik 16 September 2012 1.1 Introduction These chapters discuss the problems of nucleation, spinodal

More information

Results of. Midterm 1. Points < Grade C D,F C B points.

Results of. Midterm 1. Points < Grade C D,F C B points. esults of Midterm 0 0 0 0 40 50 60 70 80 90 points Grade C D,F oints A 80-95 + 70-79 55-69 C + 45-54 0-44

More information

Chapter 5. Chemical potential and Gibbs distribution

Chapter 5. Chemical potential and Gibbs distribution Chapter 5 Chemical potential and Gibbs distribution 1 Chemical potential So far we have only considered systems in contact that are allowed to exchange heat, ie systems in thermal contact with one another

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

PHY331 Magnetism. Lecture 6

PHY331 Magnetism. Lecture 6 PHY331 Magnetism Lecture 6 Last week Learned how to calculate the magnetic dipole moment of an atom. Introduced the Landé g-factor. Saw that it compensates for the different contributions from the orbital

More information

Ginzburg-Landau Theory of Phase Transitions

Ginzburg-Landau Theory of Phase Transitions Subedi 1 Alaska Subedi Prof. Siopsis Physics 611 Dec 5, 008 Ginzburg-Landau Theory of Phase Transitions 1 Phase Transitions A phase transition is said to happen when a system changes its phase. The physical

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B. Sc. M. Sci. Physics 2B28: Statistical Thermodynamics and Condensed Matter Physics

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160,

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160, ! Summary Part 2 21.11.2018 Thermodynamic laws Thermodynamic processes Fys2160, 2018 1 1 U is fixed ) *,,, -(/,,), *,, -(/,,) N, 3 *,, - /,,, 2(3) Summary Part 1 Equilibrium statistical systems CONTINUE...

More information

University of Illinois at Chicago Department of Physics SOLUTIONS. Thermodynamics and Statistical Mechanics Qualifying Examination

University of Illinois at Chicago Department of Physics SOLUTIONS. Thermodynamics and Statistical Mechanics Qualifying Examination University of Illinois at Chicago Department of Physics SOLUTIONS Thermodynamics and Statistical Mechanics Qualifying Eamination January 7, 2 9: AM to 2: Noon Full credit can be achieved from completely

More information

Classical thermodynamics

Classical thermodynamics Classical thermodynamics More about irreversibility chap. 6 Isentropic expansion of an ideal gas Sudden expansion of a gas into vacuum cf Kittel and Kroemer end of Cyclic engines cf Kittel and Kroemer

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

Physics Oct The Sackur-Tetrode Entropy and Experiment

Physics Oct The Sackur-Tetrode Entropy and Experiment Physics 31 21-Oct-25 16-1 The Sackur-Tetrode Entropy and Experiment In this section we ll be quoting some numbers found in K&K which are quoted from the literature. You may recall that I ve several times

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Hari Dass, N.D. The principles of thermodynamics digitalisiert durch: IDS Basel Bern

Hari Dass, N.D. The principles of thermodynamics digitalisiert durch: IDS Basel Bern Hari Dass, N.D. The principles of thermodynamics 2014 digitalisiert durch: IDS Basel Bern Preface Guide for readers and teachers xiii xv Chapter 1 The Beginnings 1 1.1 Temperature and 2 1.1.1 Uniform temperature

More information

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Thermodynamics of solids 5. Unary systems Kwangheon ark Kyung Hee University Department of Nuclear Engineering 5.1. Unary heterogeneous system definition Unary system: one component system. Unary heterogeneous

More information

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet Physics 127b: Statistical Mechanics Second Order Phase ransitions he Ising Ferromagnet Consider a simple d-dimensional lattice of N classical spins that can point up or down, s i =±1. We suppose there

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

Nanoscale simulation lectures Statistical Mechanics

Nanoscale simulation lectures Statistical Mechanics Nanoscale simulation lectures 2008 Lectures: Thursdays 4 to 6 PM Course contents: - Thermodynamics and statistical mechanics - Structure and scattering - Mean-field approaches - Inhomogeneous systems -

More information

1 Phase Transitions. 1.1 Introductory Phenomenology

1 Phase Transitions. 1.1 Introductory Phenomenology 1 Phase Transitions 1.1 Introductory Phenomenology Consider a single-component system in thermodynamic equilibrium. Let us describe the system with the set of (independent) variables T, p, and N. The appropriate

More information

MCB100A/Chem130 MidTerm Exam 2 April 4, 2013

MCB100A/Chem130 MidTerm Exam 2 April 4, 2013 MCBA/Chem Miderm Exam 2 April 4, 2 Name Student ID rue/false (2 points each).. he Boltzmann constant, k b sets the energy scale for observing energy microstates 2. Atoms with favorable electronic configurations

More information

Internal Degrees of Freedom

Internal Degrees of Freedom Physics 301 16-Oct-2002 15-1 Internal Degrees of Freedom There are several corrections we might make to our treatment of the ideal gas If we go to high occupancies our treatment using the Maxwell-Boltzmann

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

ChE 503 A. Z. Panagiotopoulos 1

ChE 503 A. Z. Panagiotopoulos 1 ChE 503 A. Z. Panagiotopoulos 1 STATISTICAL MECHANICAL ENSEMLES 1 MICROSCOPIC AND MACROSCOPIC ARIALES The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, molecules,

More information

Statistical Physics. Solutions Sheet 11.

Statistical Physics. Solutions Sheet 11. Statistical Physics. Solutions Sheet. Exercise. HS 0 Prof. Manfred Sigrist Condensation and crystallization in the lattice gas model. The lattice gas model is obtained by dividing the volume V into microscopic

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland 7 Oct 2013, SF-MTPT Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions

More information

Removing the mystery of entropy and thermodynamics. Part 3

Removing the mystery of entropy and thermodynamics. Part 3 Removing the mystery of entropy and thermodynamics. Part 3 arvey S. Leff a,b Physics Department Reed College, Portland, Oregon USA August 3, 20 Introduction In Part 3 of this five-part article, [, 2] simple

More information

PH4211 Statistical Mechanics Brian Cowan

PH4211 Statistical Mechanics Brian Cowan PH4211 Statistical Mechanics Brian Cowan Contents 1 The Methodology of Statistical Mechanics 1.1 Terminology and Methodology 1.1.1 Approaches to the subject 1.1.2 Description of states 1.1.3 Extensivity

More information

Paramagnetism. Asaf Pe er Paramagnetic solid in a heat bath

Paramagnetism. Asaf Pe er Paramagnetic solid in a heat bath Paramagnetism Asaf Pe er 1 January 28, 2013 1. Paramagnetic solid in a heat bath Earlier, we discussed paramagnetic solid, which is a material in which each atom has a magnetic dipole moment; when placed

More information

Phase Change (State Change): A change in physical form but not the chemical identity of a substance.

Phase Change (State Change): A change in physical form but not the chemical identity of a substance. CHM 123 Chapter 11 11.1-11.2 Phase change, evaporation, vapor pressure, and boiling point Phase Change (State Change): A change in physical form but not the chemical identity of a substance. Heat (Enthalpy)

More information

Quasi-equilibrium transitions

Quasi-equilibrium transitions Quasi-equilibrium transitions We have defined a two important equilibrium conditions. he first is one in which there is no heating, or the system is adiabatic, and dh/ =0, where h is the total enthalpy

More information

Statistical Physics a second course

Statistical Physics a second course Statistical Physics a second course Finn Ravndal and Eirik Grude Flekkøy Department of Physics University of Oslo September 3, 2008 2 Contents 1 Summary of Thermodynamics 5 1.1 Equations of state..........................

More information

Overview of phase transition and critical phenomena

Overview of phase transition and critical phenomena Overview of phase transition and critical phenomena Aims: Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic

More information

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009 Print your name clearly: Signature: I agree to neither give nor receive aid during this exam Final Exam for Physics 76 Professor Greenside Wednesday, April 29, 2009 This exam is closed book and will last

More information

3.012 PS 7 3.012 Issued: 11.05.04 Fall 2004 Due: 11.12.04 THERMODYNAMICS 1. single-component phase diagrams. Shown below is a hypothetical phase diagram for a single-component closed system. Answer the

More information

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8 Statistical Thermodynamics Solution Exercise 8 HS 05 Solution Exercise 8 Problem : Paramagnetism - Brillouin function a According to the equation for the energy of a magnetic dipole in an external magnetic

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 Reading check Main concept introduced in first half of this chapter A)Temperature

More information

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman Thermodynamics (Lecture Notes Heat and Thermodynamics (7 th Edition by Mark W. Zemansky & Richard H. Dittman 2 Chapter 1 Temperature and the Zeroth Law of Thermodynamics 1.1 Macroscopic Point of View If

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Thermodynamics SCQF Level 9, PHYS Wednesday 9th May, :30-16:30

Thermodynamics SCQF Level 9, PHYS Wednesday 9th May, :30-16:30 College of Science and Engineering School of Physics & Astronomy H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics SCQF Level 9, PHYS09021 Wednesday 9th May, 2012 14:30-16:30 Chairman of Examiners

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

Chapter 17: One- Component Fluids

Chapter 17: One- Component Fluids Chapter 17: One- Component Fluids Chapter 17: One-Component Fluids...374 17.1 Introduction...374 17.2 he Fundamental Surface...375 17.2.1 he fundamental equation...375 17.2.2 Behavior at a stability limit...377

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is PHYSICS 21 : SISICL PHYSICS FINL EXMINION 1 Consider a lattice of noninteracting spin dimers where the dimer Hamiltonian is Ĥ = H H τ τ Kτ where H and H τ are magnetic fields acting on the and τ spins

More information

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Kelvin Effect Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Vapor Pressure (e) e < e # e = e # Vapor Pressure e > e # Relative humidity RH =

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by 4.5 Landau treatment of phase transitions 4.5.1 Landau free energy In order to develop a general theory of phase transitions it is necessary to extend the concept of the free energy. For definiteness we

More information

PHYSICS 715 COURSE NOTES WEEK 1

PHYSICS 715 COURSE NOTES WEEK 1 PHYSICS 715 COURSE NOTES WEEK 1 1 Thermodynamics 1.1 Introduction When we start to study physics, we learn about particle motion. First one particle, then two. It is dismaying to learn that the motion

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

Relativistic hydrodynamics for heavy-ion physics

Relativistic hydrodynamics for heavy-ion physics heavy-ion physics Universität Heidelberg June 27, 2014 1 / 26 Collision time line 2 / 26 3 / 26 4 / 26 Space-time diagram proper time: τ = t 2 z 2 space-time rapidity η s : t = τ cosh(η s ) z = τ sinh(η

More information

EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM

EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM 1 EXISTENCE AND UNIQUENESS FOR A THREE DIMENSIONAL MODEL OF FERROMAGNETISM V. BERTI and M. FABRIZIO Dipartimento di Matematica, Università degli Studi di Bologna, P.zza di Porta S. Donato 5, I-4126, Bologna,

More information

Phases of matter and phase diagrams

Phases of matter and phase diagrams Phases of matter and phase diagrams Transition to Supercritical CO2 Water Ice Vapor Pressure and Boiling Point Liquids boil when the external pressure equals the vapor pressure. Temperature of boiling

More information

Answer TWO of the three questions. Please indicate on the first page which questions you have answered.

Answer TWO of the three questions. Please indicate on the first page which questions you have answered. STATISTICAL MECHANICS June 17, 2010 Answer TWO of the three questions. Please indicate on the first page which questions you have answered. Some information: Boltzmann s constant, kb = 1.38 X 10-23 J/K

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Statistical Thermodynamics COURSE CODE : PHAS2228 UNIT VALUE : 0.50 DATE

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

DYNAMICAL THEORY OF THERMODYNAMICAL PHASE TRANSITIONS

DYNAMICAL THEORY OF THERMODYNAMICAL PHASE TRANSITIONS DYNAMICAL HEORY OF HERMODYNAMICAL PHASE RANSIIONS IAN MA AND SHOUHONG WANG Abstract. he objective of this paper is establish the basic dynamical theory for thermodynamic phase transitions. he main components

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

Quiz 3 for Physics 176: Answers. Professor Greenside

Quiz 3 for Physics 176: Answers. Professor Greenside Quiz 3 for Physics 176: Answers Professor Greenside True or False Questions ( points each) For each of the following statements, please circle T or F to indicate respectively whether a given statement

More information

Critical Exponents. From P. Chaikin and T Lubensky Principles of Condensed Matter Physics

Critical Exponents. From P. Chaikin and T Lubensky Principles of Condensed Matter Physics Critical Exponents From P. Chaikin and T Lubensky Principles of Condensed Matter Physics Notice that convention allows for different exponents on either side of the transition, but often these are found

More information

Chapter 5. On-line resource

Chapter 5. On-line resource Chapter 5 The water-air heterogeneous system On-line resource on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases http://webbook.nist.gov/chemistry/fluid/

More information

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Minh Triet Dang, 1 Ana Vila Verde, 2 Van Duc Nguyen, 1 Peter G. Bolhuis, 3 and Peter Schall 1

More information