An ADMM algorithm for optimal sensor and actuator selection

Size: px
Start display at page:

Download "An ADMM algorithm for optimal sensor and actuator selection"

Transcription

1 An ADMM algorithm for optimal sensor and actuator selection Neil K. Dhingra, Mihailo R. Jovanović, and Zhi-Quan Luo 53rd Conference on Decision and Control, Los Angeles, California, / 25

2 2 / 25 Motivation Systematic approach to selecting sensors and actuators Phasor Measurement Units in power networks Autonomous formations of vehicles Flexible wing aircraft

3 3 / 25 Recent work Particular measurement models Linear measurements (Joshi, Boyd 09) Cramer-Rao lower bound (Roy, Chepuri, Leus 13) Optimal experiment design (Kekatos, Giannakis, Wollenberg 12) Related approaches Maximize effect of actuators (Summers, Lygeros 14) ADMM for nonconvex formulation (Masazade, Fardad, Varshney 12) Convex characterization as Semidefinite Program SDP formulation (Polyak, Khlebnikov, Shcherbakov 13) Discrete time (Munz, Pfister, Wolfrum 14)

4 4 / 25 Problem formulation LTI system with many potential actuators ẋ = Ax + B 1 d + B 2 u [ ] [ Q 1/2 0 z = x + 0 R 1/2 ] u Objective: Minimize closed loop H 2 norm using a few actuators

5 Actuator selection via regularization 5 / 25 minimize J(K) + γ i e T i K 2 variance amplification (closed loop H 2 norm) row-sparsity-promoting penalty function

6 Actuator selection via regularization minimize J(K) + γ i e T i K 2 variance amplification (closed loop H 2 norm) row-sparsity-promoting penalty function γ specifies relative importance of sparsity γ = 0 uses all actuators Lin, Fardad, Jovanovic, ACC 11, TAC 13 5 / 25

7 6 / 25 State feedback H 2 problem minimize X,K trace ( Q X) + trace(r K X K T) subject to (A B 2 K) X + X (A B 2 K) T + B 1 B T 1 = 0 X 0

8 7 / 25 LMI formulation Standard change of variables Y := KX yields convex form minimize X,Y trace ( Q X) + trace(r Y X 1 Y T) subject to A X B 2 Y + X A T Y T B T 2 + B 1 B T 1 = 0 X 0

9 8 / 25 Challenge: impose structure on K in (X, Y) coordinates Linear constraints on K become nonlinear on Y and X

10 Row-sparsity is preserved 9 / 25

11 10 / 25 Actuator selection - Semidefinite Program minimize X,Y trace(q X) + trace(r Y X 1 Y T ) + γ e T i Y 2 }{{} f (X,Y) subject to A X B 2 Y + X A T Y T B T 2 + B 1 B T 1 = 0 X 0 Promote row sparsity of Y instead of K Polyak, Khlebnikov, Shcherbakov, ECC 13 Munz, Pfister, Wolfrum, TAC 14

12 11 / 25 Computational complexity trace( R Y X 1 Y T ) = trace(r Θ) Worst case computational complexity: O ( (n + m) 6)

13 12 / 25 Alternating Direction Method of Multipliers (ADMM) Splitting method for convex functions with linear constraints Form augmented Lagrangian L ρ (X, Y, Λ) := f (X, Y) + Λ, h(x, Y) + ρ 2 h(x, Y) 2 F h(x, Y) := A X B 2 Y + X A T Y T B T 2 + B 1 B T 1

14 13 / 25 Update variables separately X k+1 = arg min X L ρ (X, Y k, Λ k ) Y k+1 = arg min Y L ρ (X k+1, Y, Λ k ) Λ k+1 = Λ k + ρ h(x k+1, Y k+1 ) Boyd, Parikh, Chu, Peleato, Eckstein 11

15 14 / 25 minimize Y Y-minimization γ e T i Y 2 + ρ 2 B 2 Y + Y T B T 2 + V k 2 F Group LASSO

16 14 / 25 minimize Y Y-minimization γ e T i Y 2 + ρ 2 B 2 Y + Y T B T 2 + V k 2 F Group LASSO Proximal method: sequentially approximate with minimize Y γ e T i Y Y V k 2 F Computational complexity of O(n 2 m)

17 15 / 25 X-minimization minimize X trace ( X Q + X 1 Yk T R Y ) + ρ A X + X AT + 2 U k 2 F Can formulate as SDP (worst case computational complexity O(n 6 ))

18 15 / 25 X-minimization minimize X trace ( X Q + X 1 Yk T R Y ) + ρ A X + X AT + 2 U k 2 F Can formulate as SDP (worst case computational complexity O(n 6 )) Projected Newton s method Find search directions with conjugate gradient (n 5 ) Project onto {X : X 0}

19 16 / 25 Sensor Selection: SDP Formulation Change of coordinates Z := X o L

20 17 / 25 Example - Flexible Wing Aircraft Select subset of sensors to minimize estimation error

21 Using less than half the sensors degrades performance by only 20% 18 / 25

22 19 / 25 Example - Mass Spring System Dynamics p i = (p i+1 p i ) + (p i 1 p i ) + d i Sensors Position of each mass Velocity of each mass

23 20 / 25 Computation time for γ = 100 n states and n outputs 50 states and m outputs

24 21 / 25 Conclusions Convex characterization of sensor or actuator selection Splitting algorithm Solve simpler sub-problems Scaling dependent on number of states Future work More efficient X-minimization Customized Interior Point Method Alternative splitting methods

25 22 / 25 Acknowledgements Support: NASA JPFP Fellowship MnDRIVE Graduate Scholars Program NSF ECCS Collaboration on aircraft example Marty Brenner, NASA Claudia Moreno and Harald Pfifer

26 23 / 25 Dual Problem Lagrangian g(y) = maximize e T i U γ U, Y L(X, Y, Λ, M) = trace(qx + X 1 Y T RY) + U, Y + Λ, AX + XA T BY Y T B T + V M, X where M 0 [ X L Y L ] = [ Q X 1 Y T RYX 1 + A T Λ + ΛA 2RYX 1 + U 2B T 2 Λ ] Dual Problem maximize V, Λ subject to Q + ΛA + A T Λ (B T 2 Λ 1 2 U)T R 1 (B T 2 Λ 1 2 U) 0 e T i U 2 γ

27 24 / 25 Sensor Selection ẋ = A x + B 1 d y = C x + η Observer estimates state from output ˆx = A ˆx + L (y ŷ)

28 24 / 25 Sensor Selection ẋ = A x + B 1 d y = C x + η Observer estimates state from output ˆx = A ˆx + L (y ŷ) Steady-state variance of the estimation error x ˆx J(L) = trace (X o B 1 B T 1 + X o L L T ) Observability gramian X o 0 (A L C) T X o + X o (A L C) + I = 0.

29 25 / 25 Sensor Selection: SDP Formulation Change of coordinates Z := X o L minimize X o, Z trace ( X o B 1 B T 1 + X 1 o Z Z T) + γ r Z e i 2 i = 1 subject to A T X o + X o A C T Z ZC + I = 0 X o 0

An ADMM algorithm for optimal sensor and actuator selection

An ADMM algorithm for optimal sensor and actuator selection 53rd IEEE Conference on Decision and Control December 15-17, 2014. Los Angeles, California, USA An ADMM algorithm for optimal sensor and actuator selection Neil K. Dhingra, Mihailo R. Jovanović, and Zhi-Quan

More information

Perturbation of system dynamics and the covariance completion problem

Perturbation of system dynamics and the covariance completion problem 1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th IEEE Conference on Decision and Control, Las Vegas,

More information

A method of multipliers algorithm for sparsity-promoting optimal control

A method of multipliers algorithm for sparsity-promoting optimal control 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016. Boston, MA, USA A method of multipliers algorithm for sparsity-promoting optimal control Neil K. Dhingra and Mihailo

More information

1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th

1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th 1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th IEEE Conference on Decision and Control, Las Vegas,

More information

Sparsity-Promoting Optimal Control of Distributed Systems

Sparsity-Promoting Optimal Control of Distributed Systems Sparsity-Promoting Optimal Control of Distributed Systems Mihailo Jovanović www.umn.edu/ mihailo joint work with: Makan Fardad Fu Lin LIDS Seminar, MIT; Nov 6, 2012 wind farms raft APPLICATIONS: micro-cantilevers

More information

Stochastic dynamical modeling:

Stochastic dynamical modeling: Stochastic dynamical modeling: Structured matrix completion of partially available statistics Armin Zare www-bcf.usc.edu/ arminzar Joint work with: Yongxin Chen Mihailo R. Jovanovic Tryphon T. Georgiou

More information

arxiv: v3 [math.oc] 20 Mar 2013

arxiv: v3 [math.oc] 20 Mar 2013 1 Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers Fu Lin, Makan Fardad, and Mihailo R. Jovanović Abstract arxiv:1111.6188v3 [math.oc] 20 Mar 2013 We design sparse

More information

Sparse quadratic regulator

Sparse quadratic regulator 213 European Control Conference ECC) July 17-19, 213, Zürich, Switzerland. Sparse quadratic regulator Mihailo R. Jovanović and Fu Lin Abstract We consider a control design problem aimed at balancing quadratic

More information

Sparsity-promoting wide-area control of power systems. F. Dörfler, Mihailo Jovanović, M. Chertkov, and F. Bullo American Control Conference

Sparsity-promoting wide-area control of power systems. F. Dörfler, Mihailo Jovanović, M. Chertkov, and F. Bullo American Control Conference Sparsity-promoting wide-area control of power systems F. Dörfler, Mihailo Jovanović, M. Chertkov, and F. Bullo 203 American Control Conference Electro-mechanical oscillations in power systems Local oscillations

More information

Design of structured optimal feedback gains for interconnected systems

Design of structured optimal feedback gains for interconnected systems Design of structured optimal feedback gains for interconnected systems Mihailo Jovanović www.umn.edu/ mihailo joint work with: Makan Fardad Fu Lin Technische Universiteit Delft; Sept 6, 2010 M. JOVANOVIĆ,

More information

Convex synthesis of symmetric modifications to linear systems

Convex synthesis of symmetric modifications to linear systems 215 American Control Conference Palmer House Hilton July 1-3, 215. Chicago, IL, USA Convex synthesis of symmetric modifications to linear systems Neil K. Dhingra and Mihailo R. Jovanović Abstract We develop

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

2 Regularized Image Reconstruction for Compressive Imaging and Beyond

2 Regularized Image Reconstruction for Compressive Imaging and Beyond EE 367 / CS 448I Computational Imaging and Display Notes: Compressive Imaging and Regularized Image Reconstruction (lecture ) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement

More information

Perturbation of System Dynamics and the Covariance Completion Problem

Perturbation of System Dynamics and the Covariance Completion Problem 2016 IEEE 55th Conference on Decision and Control (CDC) ARIA Resort & Casino December 12-14, 2016, Las Vegas, USA Perturbation of System Dynamics and the Covariance Completion Problem Armin Zare, Mihailo

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Preconditioning via Diagonal Scaling

Preconditioning via Diagonal Scaling Preconditioning via Diagonal Scaling Reza Takapoui Hamid Javadi June 4, 2014 1 Introduction Interior point methods solve small to medium sized problems to high accuracy in a reasonable amount of time.

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Distributed Optimization via Alternating Direction Method of Multipliers

Distributed Optimization via Alternating Direction Method of Multipliers Distributed Optimization via Alternating Direction Method of Multipliers Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato Stanford University ITMANET, Stanford, January 2011 Outline precursors dual decomposition

More information

On identifying sparse representations of consensus networks

On identifying sparse representations of consensus networks Preprints of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems On identifying sparse representations of consensus networks Neil Dhingra Fu Lin Makan Fardad Mihailo R. Jovanović

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

Leader selection in consensus networks

Leader selection in consensus networks Leader selection in consensus networks Mihailo Jovanović www.umn.edu/ mihailo joint work with: Makan Fardad Fu Lin 2013 Allerton Conference Consensus with stochastic disturbances 1 RELATIVE INFORMATION

More information

On Optimal Link Removals for Controllability Degradation in Dynamical Networks

On Optimal Link Removals for Controllability Degradation in Dynamical Networks On Optimal Link Removals for Controllability Degradation in Dynamical Networks Makan Fardad, Amit Diwadkar, and Umesh Vaidya Abstract We consider the problem of controllability degradation in dynamical

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein December 2, 2015 1 / 25 Background The Dual Problem Consider

More information

arxiv: v1 [math.oc] 23 May 2017

arxiv: v1 [math.oc] 23 May 2017 A DERANDOMIZED ALGORITHM FOR RP-ADMM WITH SYMMETRIC GAUSS-SEIDEL METHOD JINCHAO XU, KAILAI XU, AND YINYU YE arxiv:1705.08389v1 [math.oc] 23 May 2017 Abstract. For multi-block alternating direction method

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Structure identification and optimal design of large-scale networks of dynamical systems

Structure identification and optimal design of large-scale networks of dynamical systems Structure identification and optimal design of large-scale networks of dynamical systems A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Fu Lin IN PARTIAL

More information

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong 2014 Workshop

More information

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations Chuangchuang Sun and Ran Dai Abstract This paper proposes a customized Alternating Direction Method of Multipliers

More information

Divide-and-combine Strategies in Statistical Modeling for Massive Data

Divide-and-combine Strategies in Statistical Modeling for Massive Data Divide-and-combine Strategies in Statistical Modeling for Massive Data Liqun Yu Washington University in St. Louis March 30, 2017 Liqun Yu (WUSTL) D&C Statistical Modeling for Massive Data March 30, 2017

More information

Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains

Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains Syracuse University SURFACE Electrical Engineering and Computer Science College of Engineering and Computer Science 2011 Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization Alternating Direction Method of Multipliers Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last time: dual ascent min x f(x) subject to Ax = b where f is strictly convex and closed. Denote

More information

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation Zhouchen Lin Peking University April 22, 2018 Too Many Opt. Problems! Too Many Opt. Algorithms! Zero-th order algorithms:

More information

Dual Methods. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Dual Methods. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Dual Methods Lecturer: Ryan Tibshirani Conve Optimization 10-725/36-725 1 Last time: proimal Newton method Consider the problem min g() + h() where g, h are conve, g is twice differentiable, and h is simple.

More information

An Optimization-based Approach to Decentralized Assignability

An Optimization-based Approach to Decentralized Assignability 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016 Boston, MA, USA An Optimization-based Approach to Decentralized Assignability Alborz Alavian and Michael Rotkowitz Abstract

More information

Convex Reformulation of a Robust Optimal Control Problem for a Class of Positive Systems

Convex Reformulation of a Robust Optimal Control Problem for a Class of Positive Systems 2016 IEEE 55th Conference on Decision and Control CDC ARIA Resort & Casino December 12-14, 2016, Las Vegas, USA Convex Reformulation of a Robust Optimal Control Problem for a Class of Positive Systems

More information

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem Kangkang Deng, Zheng Peng Abstract: The main task of genetic regulatory networks is to construct a

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Dual Ascent. Ryan Tibshirani Convex Optimization

Dual Ascent. Ryan Tibshirani Convex Optimization Dual Ascent Ryan Tibshirani Conve Optimization 10-725 Last time: coordinate descent Consider the problem min f() where f() = g() + n i=1 h i( i ), with g conve and differentiable and each h i conve. Coordinate

More information

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems?

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Mingyi Hong IMSE and ECpE Department Iowa State University ICCOPT, Tokyo, August 2016 Mingyi Hong (Iowa State University)

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

A second order primal-dual algorithm for nonsmooth convex composite optimization

A second order primal-dual algorithm for nonsmooth convex composite optimization 2017 IEEE 56th Annual Conference on Decision and Control (CDC) December 12-15, 2017, Melbourne, Australia A second order primal-dual algorithm for nonsmooth convex composite optimization Neil K. Dhingra,

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

ADMM and Fast Gradient Methods for Distributed Optimization

ADMM and Fast Gradient Methods for Distributed Optimization ADMM and Fast Gradient Methods for Distributed Optimization João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST) European Control Conference, ECC 13 July 16, 013 Joint work

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

Contraction Methods for Convex Optimization and monotone variational inequalities No.12

Contraction Methods for Convex Optimization and monotone variational inequalities No.12 XII - 1 Contraction Methods for Convex Optimization and monotone variational inequalities No.12 Linearized alternating direction methods of multipliers for separable convex programming Bingsheng He Department

More information

Dealing with Constraints via Random Permutation

Dealing with Constraints via Random Permutation Dealing with Constraints via Random Permutation Ruoyu Sun UIUC Joint work with Zhi-Quan Luo (U of Minnesota and CUHK (SZ)) and Yinyu Ye (Stanford) Simons Institute Workshop on Fast Iterative Methods in

More information

Asynchronous Non-Convex Optimization For Separable Problem

Asynchronous Non-Convex Optimization For Separable Problem Asynchronous Non-Convex Optimization For Separable Problem Sandeep Kumar and Ketan Rajawat Dept. of Electrical Engineering, IIT Kanpur Uttar Pradesh, India Distributed Optimization A general multi-agent

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22 PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control ALADIN An Algorithm for Distributed Non-Convex Optimization and Control Boris Houska, Yuning Jiang, Janick Frasch, Rien Quirynen, Dimitris Kouzoupis, Moritz Diehl ShanghaiTech University, University of

More information

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Constrained Optimization May 2014 1 / 46 In This

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization x = prox_f(x)+prox_{f^*}(x) use to get prox of norms! PROXIMAL METHODS WHY PROXIMAL METHODS Smooth

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

Linearized Alternating Direction Method: Two Blocks and Multiple Blocks. Zhouchen Lin 林宙辰北京大学

Linearized Alternating Direction Method: Two Blocks and Multiple Blocks. Zhouchen Lin 林宙辰北京大学 Linearized Alternating Direction Method: Two Blocks and Multiple Blocks Zhouchen Lin 林宙辰北京大学 Dec. 3, 014 Outline Alternating Direction Method (ADM) Linearized Alternating Direction Method (LADM) Two Blocks

More information

Performance bounds for optimal feedback control in networks

Performance bounds for optimal feedback control in networks Performance bounds for optimal feedback control in networks Tyler Summers and Justin Ruths Abstract Many important complex networks, including critical infrastructure and emerging industrial automation

More information

Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach

Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach Johannes Köhler, Matthias A. Müller, Na Li, Frank Allgöwer Abstract Fast power fluctuations pose

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Online Control Basis Selection by a Regularized Actor Critic Algorithm

Online Control Basis Selection by a Regularized Actor Critic Algorithm Online Control Basis Selection by a Regularized Actor Critic Algorithm Jianjun Yuan and Andrew Lamperski Abstract Policy gradient algorithms are useful reinforcement learning methods which optimize a control

More information

Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance

Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance Date: Mar. 3rd, 2017 Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance Presenter: Songtao Lu Department of Electrical and Computer Engineering Iowa

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Coordinate Update Algorithm Short Course Operator Splitting

Coordinate Update Algorithm Short Course Operator Splitting Coordinate Update Algorithm Short Course Operator Splitting Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 25 Operator splitting pipeline 1. Formulate a problem as 0 A(x) + B(x) with monotone operators

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Completion of partially known turbulent flow statistics

Completion of partially known turbulent flow statistics 2014 American Control Conference (ACC) June 4-6, 2014. Portland, Oregon, USA Completion of partially known turbulent flow statistics Armin Zare, Mihailo R. Jovanović, and Tryphon T. Georgiou Abstract Second-order

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Distributed Optimization and Statistics via Alternating Direction Method of Multipliers

Distributed Optimization and Statistics via Alternating Direction Method of Multipliers Distributed Optimization and Statistics via Alternating Direction Method of Multipliers Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato Stanford University Stanford Statistics Seminar, September 2010

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Sparse and Regularized Optimization

Sparse and Regularized Optimization Sparse and Regularized Optimization In many applications, we seek not an exact minimizer of the underlying objective, but rather an approximate minimizer that satisfies certain desirable properties: sparsity

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections

Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections Jianhui Chen 1, Tianbao Yang 2, Qihang Lin 2, Lijun Zhang 3, and Yi Chang 4 July 18, 2016 Yahoo Research 1, The

More information

Algorithm-Hardware Co-Optimization of the Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems

Algorithm-Hardware Co-Optimization of the Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems Algorithm-Hardware Co-Optimization of the Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems Ao Ren 1, Sijia Liu, Ruizhe Cai 1, Wujie Wen 3, Pramod K. Varshney 1, Yanzhi Wang 1 1

More information

Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications

Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications Sijia Liu Jie Chen Pin-Yu Chen Alfred O. Hero University of Michigan Northwestern Polytechnical IBM

More information

A SIMPLE PARALLEL ALGORITHM WITH AN O(1/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS

A SIMPLE PARALLEL ALGORITHM WITH AN O(1/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS A SIMPLE PARALLEL ALGORITHM WITH AN O(/T ) CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS HAO YU AND MICHAEL J. NEELY Abstract. This paper considers convex programs with a general (possibly non-differentiable)

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Relaxed linearized algorithms for faster X-ray CT image reconstruction

Relaxed linearized algorithms for faster X-ray CT image reconstruction Relaxed linearized algorithms for faster X-ray CT image reconstruction Hung Nien and Jeffrey A. Fessler University of Michigan, Ann Arbor The 13th Fully 3D Meeting June 2, 2015 1/20 Statistical image reconstruction

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

A Tutorial on Primal-Dual Algorithm

A Tutorial on Primal-Dual Algorithm A Tutorial on Primal-Dual Algorithm Shenlong Wang University of Toronto March 31, 2016 1 / 34 Energy minimization MAP Inference for MRFs Typical energies consist of a regularization term and a data term.

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING YANGYANG XU Abstract. Motivated by big data applications, first-order methods have been extremely

More information

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent Yinyu Ye K. T. Li Professor of Engineering Department of Management Science and Engineering Stanford

More information

Adaptive Primal Dual Optimization for Image Processing and Learning

Adaptive Primal Dual Optimization for Image Processing and Learning Adaptive Primal Dual Optimization for Image Processing and Learning Tom Goldstein Rice University tag7@rice.edu Ernie Esser University of British Columbia eesser@eos.ubc.ca Richard Baraniuk Rice University

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information