Emden-Fowler Equation and Inverse Analysis of Simple Flows through Variable Permeability Porous Layers

Size: px
Start display at page:

Download "Emden-Fowler Equation and Inverse Analysis of Simple Flows through Variable Permeability Porous Layers"

Transcription

1 4 Int. J. Open Problems Compt. Math., Vol. 0, No., June 07 ISSN ; Copyright ICSRS Publication, 07 Emden-Fowler Equation and Inverse Analysis of Simple Flows through Variable Permeability Porous Layers M.H. Hamdan and M.S. Abu Zaytoon Department of Mathematics Statistics, University of New Brunswic, P.O. Box 5050, Saint John, New Brunswic, Canada EL 4L5 Corresponding Author Abstract In this wor we introduce an inverse method to analyze simple flows through variable permeability porous layers. Assuming that the velocity distribution is given, or specified as a function of the permeability, the governing equation is solved for the permeability distribution, then the velocity function is then recovered. Poiseuille-type flow involving Brinman s equation is considered together with other flow problems involving coupled parallel flow through composite layers. In case of flow through a Brinman-Forchheimer layer over a Darcy layer, the governing equation was transformed into an Emden-Fowler equation whose solution provides a method for determining Beavers and Joseph slip parameter. Keywords: Brinman-Forchheimer, Variable Permeability, Emden-Fowler Equation, Slip Parameter. Introduction Many excellent reviews of flow through and over porous layers are available in the literature, (cf. [,5,8,]) and discuss all aspects of the flow phenomena, including the various flow models and their validity, applications, solutions and analysis of the model equation. Modelling fluid flow through porous layers with variable permeability can be argued to be more realistic in representing natural phenomena as compared to flow through constant permeability layers [], and finds applications in industry and nature, and has implications in the analysis of the transition layer [9]. However, analysis of this type of flow presents challenges at

2 5 M.H. Hamdan and M.S. Abu Zaytoon more than one front, including modelling permeability variations and solutions to the resulting governing equations. The momentum equation in this type of unidirectional flow involves two functions to be solved for: velocity and permeability. If permeability distribution is specified then velocity can be solved for. A number of variable permeability models have been introduced and successfully analyzed in the literature [], and are based mainly on specifying the permeability distribution and solving the resulting governing equation for the velocity function (cf. [,6] and the references therein). In a recent article however, [6], the authors used a non-dimensionalizing procedure that resulted in a variable permeability distribution, for Brinman s equation, that is tied to the velocity distribution. We capitalize on this idea in the current wor where we consider simple flows in which the velocity is pre-defined in terms of the variable permeability in order to obtain a permeability equation that can be solved for the permeability distribution and subsequently the velocity is recovered. We illustrate this inverse approach by considering five flow configurations that involve Brinman s equation and the Brinman-Forchheimer equation and obtain a permeability equation that is easily solved. In case of the Brinman-Forchheimer equation, we reduce the permeability equation to the Emden-Fowler equation, [4,0], whose solution is readily available. Inverse analysis in this case can provide information on the slip parameter of the Beavers and Jospeh condition, [3]. Problem Formulation The steady flow of a viscous, incompressible fluid, in the absence of body forces, through porous media is governed by the continuity equation, namely v 0 () and the following general momentum equation that incorporates Darcian and non-darcian ects, nown as the Brinman- Forchheimer equation: C f ( v v) p v v v v () wherein p is the pressure, is the permeability, v is the velocity vector, is the fluid density, C f is the Forchheimer drag coicient, is the base fluid viscosity, and is the ective viscosity of the fluid saturating the porous medium. For parallel, unidirectional flow through a porous layer with variable permeability, governing equations () and () reduce to: d u C f u u (3) dy ( where u u( is the tangential velocity component.

3 Emden-Fowler Equation and Inverse Analysis 6 If the permeability distribution ( is given, equation (3) can be solved for the velocity distribution u (. On the other hand, if the velocity distribution u ( is given as a function of the permeability, equation (3) gives an equation that the permeability has to satisfy. Once the permeability distribution is solved for, the associated velocity distribution can be obtained. Thus, if u( f ( ( ) then (3) taes the form C f ( f ( ( ) ( f ( ( ) f ( ( ) [ f ( ( )] ( (4). (5) Clearly, with the nowledge of either ( or f ( ( ), equation (5) can be solved for the other function. In what follows we consider simple flows in which f ( ( ) is given. 3 Simple Flows 3. Flow through a variable-permeability Brinman porous layer between parallel plates Consider the unidirectional flow through a Brinman porous layer between solid, parallel plates located at y 0 and y h. On the solid walls, the no-slip velocity condition u ( 0) u( 0 and the non-penetrability condition ( 0) ( 0 are imposed. We assume that the channel is squeezed to the point that permeability is continuously varying. The flow is governed by Brinman s equation which taes the following form for the configuration in Fig., obtained by setting C to zero in equation (3): f d u u. (6) dy ( y y=h y=0 Brinman porous layer Flow direction Fig.. Representative setch of flow between parallel plates Assuming that equation (4) is valid for this flow, equation (5) reduces to:

4 7 M.H. Hamdan and M.S. Abu Zaytoon ( f ( ( ) ( f ( ( ) f ( ( ). (7) ( Equation (7) can be solved for ( if given the form of f ( ( ). For the sae of illustration, assume that u( f ( ( ) A (8) where A is a constant. Using (8) in (7), we obtain (. A (9) Solution to (9) satisfying ( 0) ( 0 is given by ( [ A ]( y h (0) and velocity distribution (8) taes the form A u( [ ]( y h. () Equations (0) and () give maximum permeability, y h / respectively as max, and maximum velocity, u max, at max h h ( ) [ ] () 8 A u h h ( A 8 A max u ) A[ ] max. (3) We note that equation (0) is the dimensional form of the permeability function obtained in [6] through non-dimensionalizing. 3. Flow through a variable-permeability finite Brinman porous layer over a semi-infinite Darcy layer Consider the unidirectional flow through a Brinman porous layer between y 0 and y h, over a semi-infinite Darcy layer of constant permeability, depicted in Fig.. The flow is

5 Emden-Fowler Equation and Inverse Analysis 8 governed by Brinman s equation (6) in the Brinman layer and in the Darcy layer by Darcy s law, of the form u D (4) where u is the Darcy velocity, D is the constant permeability in the Darcy layer and 0 is the common driving pressure gradient. On the solid wall at y h, the no-slip velocity condition u ( 0 and the non-penetrability condition ( 0 are imposed. At the interface, y 0, the following Beavers and Joseph condition [3] is valid y y=h y=0 Brinman porous layer Darcy semi-infinite layer Flow direction Fig.. Representative setch of flow through a finite Brinman layer over a semi-infinite Darcy layer u where ( u B ud ) at y 0 (5) u u( 0 B ). (6) Assuming that (8) is valid, then using (8) in (6) results in (. A (7) Solution to (7) taes the form y ( [ ] c y c. (8) A where c,c are arbitrary constants. Velocity in the Brinman layer is thus given by

6 9 M.H. Hamdan and M.S. Abu Zaytoon y u( A A[ ] c Ay c A and its derivative is given by A (9) u( A[ ] y c A. (0) A Using u ( 0, in (9), we obtain h ] ch c [ A 0. () From (6) and (9) we obtain u( 0) ub c A () and from (0) we obtain ( 0) c A. u (3) Using (4), () and (3) in (5) we obtain c c. A (4) Equations () and (4) are solved for the arbitrary constants c and c and yield h h Ah c ( ) (5) A[ h ] h Ah c ( ). (6) A[ h With c and c determined, the flow quantities are described as follows.

7 Emden-Fowler Equation and Inverse Analysis 30 ( [ A h A[ h A u( [ h [ h y ] A[ h h Ah ( ) ] y ] [ h h Ah ( ) ] h ( h ( Ah ) y. (7) Ah ) y. (8) u(0) [ h h ( Ah ) (9) u B h h Ah ( ). (30) [ h ] 3.3 Shear-driven flow in a semi-infinite Brinman-Forchheimer porous layer Consider the flow through a semi-infinite porous layer, shown in Fig. 3. The flow is generated by an applied pressure gradient and a moving plate, with velocity U, located at y h. The flow is governed by equation (3), valid on the interval h y. Velocity conditions to be satisfied are: u( U ; u ( ) 0; u ( ) 0. (3) y y=h Semi-infinite porous layer Plate moving with velocity U Fig. 3. Representative setch of moving plate In order to satisfy (4), (5) and (3) we assume that

8 3 M.H. Hamdan and M.S. Abu Zaytoon u f ( ) (. Equation (5) thus reduces to ( 3 / (3) (33) where C f. (34) Comparing (33) with the Emden-Fowler equation, [4,0], namely ( y n m (35) whose solution is given by y ( n)/(m ) (36) where ( n )( n m ) /( m) [ ] (37) ( m ) 3 we see that n 0 and m, and solution to (33) taes the form 0 4 ( ) y. (38) Velocity distribution thus taes the form 0 4 u ( ( ) y (39) with u ( ) y. (40) Using (39), we obtain velocity of the moving plate as u( U 0 ( ) h 4. (4)

9 Emden-Fowler Equation and Inverse Analysis 3 Conditions (3) are thus satisfied, as can be seen from (39) and (40), wherein u ( ) u( ) 0. Furthermore, equation (4) shows the parameters that the velocity of the moving plate depends on in order to have the permeability distribution given by (38). 3.4 Flow through a Brinman-Forchheimer layer over a Darcy layer Consider the coupled, parallel flow through a variable permeability Brinman- Forchheimer porous layer of semi-infinite extent ( h y ) over a constant permeability Darcy porous layer of semi-infinite extent ( y h ), shown in Fig. 4. y y=h Brinman-Forchheimer semi-infinite porous layer Darcy semi-infinite porous layer Fig. 4. Representative setch of coupled parallel flow The assumingly sharp interface between the layers is located at y h. In the Brinman- Forchheimer layer, the flow is governed by equation (3), and in the Darcy layer the flow is governed by Darcy s law, written as: u D (4) where u is the Darcy velocity and D is the constant permeability in the Darcy layer. The flow in both layers is driven by a common constant pressure gradient, 0. At the interface, y h, Beavers and Joseph condition [3,7] is assumed to be valid, namely u ( u u B D ) at y h (43) where is a slip parameter, u B u( y h ) is the velocity at the interface obtained from solution to (3). Permeability and velocity distributions in the Brinman-Forchheimer layer are obtained from solution to equation (3) and are given by () and (), from which we obtain 0 u B u( ( ) h 4 (44)

10 33 M.H. Hamdan and M.S. Abu Zaytoon 4 0 u( ( ) h 5. (45) Upon using (4), (44) and (45) in (43) we obtain the following expression for the slip parameter : 4(0). 4 h[ h (0) ] (46) Expression (46) indicates that the Beavers and Joseph slip parameter depends on the Darcy constant permeability, viscosity of the base fluid, ective viscosity of the fluid saturating the porous layer, density of the fluid, the pressure gradient, location of the interface, thicness of the porous layer and the Forchheimer drag coicient. In order to further illustrate dependence of the slip parameter on thicness of the porous layer we consider the situation in the next section. 3.5 Flow through a Brinman-Forchheimer layer sandwiched between two Darcy layers An interesting variation of the above problem of flow over a Darcy layer is the flow through a Brinman-Forchheimer layer of variable permeability that is bounded from above and below by two semi-infinite Darcy layers of constant permeability, as shown in Fig. 5. y y=h y=h Darcy semi-infinite porous layer Brinman-Forchheimer porous layer Darcy semi-infinite porous layers Fig. 5. Representative setch of a Brinman-Forchheimer porous core The Brinman-Forchheimer layer spans h y h while the Darcy layers span y h and h y. Equations governing the flow through the given configuration are equation (3) in the Brinman-Forchheimer layer, equation (4) in the lower Darcy layer, and u D (47)

11 Emden-Fowler Equation and Inverse Analysis 34 in the upper Darcy layer. Conditions at the interfaces between layers are given by u and u ( u u B D ) ( u u B D ) at at y h, (48) y h. (49) In equations (47)-(49), and are the slip parameters associated with the lower and upper interfaces, respectively, u B and u B are the lower and upper interfacial velocities, respectively, u D and u D are the Darcy velocities in the lower and upper Darcy layers, respectively, and and are the constant permeabilities in the lower and upper Darcy layers, respectively. Permeability and velocity distributions in the Brinman-Forchheimer layer are obtained from solution to equation (3) and are given by (38) and (39), which yield the following expressions for the lower and upper interfacial velocities, respectively: 0 u B u( ( ) h 4 (50) 0 4 u B u( ( ) ( and the following shear stress expressions at the lower and upper interfaces, respectively: 4 0 u( ( ) h 5 (5) (5) 4 u( 0 ( ) ( 5. (53) Upon using (4), (47) and (50) to (53) in (48) and (49), we can solve for the following expression for the slip parameters and : 4(0). (54) 4 h[ h (0) ] 4(0). (55) 4 ([ ( (0) ]

12 35 M.H. Hamdan and M.S. Abu Zaytoon It is clear from (54) and (55) that the slip parameters depend on fluid and medium properties, and on the location of the interfaces and the thicness of the Brinman-Forchheimer porous layer. 4 Conclusion In this wor we introduced an inverse method to analyze simple, unidirectional flows in variable permeability porous layers. Rather than specifying a permeability distribution and then solving the momentum equation for the velocity, we imposed a velocity distribution that is a function of the permeability and solved the momentum equation for the necessary permeability distribution. We analyzed five situations that involve simple flows through porous layers where the flows were governed by Brinman s equation and the Brinman-Forchheimer equation. In the latter case, the governing equation was transformed into an Emden-Fowler equation whose solution is well-documented in the literature. The analysis in this wor provided some insights into the determination of the Beavers and Joseph slip parameter. 5 Open Problem In most of the inverse analysis above, we relied on the particular solution of the Emden- Fowler equation to provide a variable permeability distribution that satisfies a prescribed velocity distribution. When the flow domain is composed of a Brinman-Forchheimer variable permeability porous layer that is bounded by a lower and an upper solid wall on which no-slip and no-penetration conditions are imposed, the Brinman-Forchheimer equation is reduced to the Emden-Fowler equation (33). Particular solution to this equation does not satisfy the no-slip, nopenetration conditions on the solid boundary. There is a need to construct a solution that satisfies this Poiseuille-type flow. References [] M.S. Abu Zaytoon, T.L. Alderson and M. H. Hamdan, Flow through variable permeability composite porous layers, Gen. Math. Notes, 33(), 06, [] B. Alazmi and K. Vafai, Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, International Journal of Heat and Mass Transfer, 44, 00, [3] G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, 30, 967, [4] O.P. Bhutani and K. Vijayaumar, On certain new and exact solutions of the Emden-Fowler equation and Emden equation via invariant variational principles and group invariance, J. Austral. Math. Soc. Ser. B 3, 99, [5] R.A. Ford, M.S. Abu Zaytoon and M.H. Hamdan, Simulation of flow through layered porous media, IOSR Journal of Engineering, 6(6), 06, pp [6] M.H. Hamdan and M.T. Kamel, Flow through variable permeability porous layers, Adv.

13 Emden-Fowler Equation and Inverse Analysis 36 Theor. Appl. Mech., 4, 0, [7] D.A. Nield, The Beavers Joseph boundary condition and related matters: A historical and critical note, Transport in Porous Media, 78, 009, [8] D.A. Nield and A. Bejan, Convection in Porous Media, 5 th ed. Springer, (07). [9] D.A. Nield and A.V. Kuznetsov, The ect of a transition layer between a fluid and a porous medium: shear flow in a channel, Transport in Porous Media, 78, 009, [0] A.D. Polyanin and V.F. Zaitsev, Handboo of Exact Solutions for Ordinary Differential Equations, nd ed., Chapman and Hall/CRC Press, (003). [] K. Vafai and R. Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, Int. J. Heat Mass Transfer, 30(7), 987,

A Permeability Function for Brinkman s Equation

A Permeability Function for Brinkman s Equation Proceedings of the th WSEAS Int. Conf. on MATHEMATICAL METHOS, COMPUTATIONAL TECHNIQUES AN INTELLIGENT SYSTEMS A Permeability Function for Brinman s Equation M.H. HAMAN, M.T. KAMEL, and H.I. SIYYAM 3,

More information

Flow through a Variable Permeability Brinkman Porous Core

Flow through a Variable Permeability Brinkman Porous Core Journal of Applied Mathematics and Phsics, 06, 4, 766-778 Published Online April 06 in SciRes http://wwwscirporg/journal/jamp http://dxdoiorg/0436/jamp0644087 Flow through a Variable Permeabilit Brinman

More information

Multi-Point Special Boundary-Value Problems and Applications to Fluid Flow Through Porous Media

Multi-Point Special Boundary-Value Problems and Applications to Fluid Flow Through Porous Media Multi-Point Special Boundary-Value Problems and Applications to Fluid Flow Through Porous Media Mohamed A. Hajji Abstract In this paper we propose a numerical scheme based on finite differences for the

More information

FLOW DOWN AN INCLINED PLANE OF A FLUID WITH PRESSURE- DEPENDENT VISCOSITY THROUGHT A POROUS MEDIUM WITH CONSTANT PERMEABILITY

FLOW DOWN AN INCLINED PLANE OF A FLUID WITH PRESSURE- DEPENDENT VISCOSITY THROUGHT A POROUS MEDIUM WITH CONSTANT PERMEABILITY J. Modern Technology & Engineering Vol., No., 07, pp.55-66 FLOW DOWN AN INCLINED PLANE OF A FLUID WITH PRESSURE- DEPENDENT VISCOSITY THROUGHT A POROUS MEDIUM WITH CONSTANT PERMEABILITY S.M. Alzahrani,

More information

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Ramesh Yadav Department of Mathematics Babu Banarasi Das National Institute of Technology & Management Lucknow Uttar

More information

Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions

Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions Transp Porous Med (2011) 90:791 806 DOI 10.1007/s11242-011-9816-8 Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions Ozgur Cekmer Moghtada

More information

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS

CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS Introduction: The objective of this chapter is to establish analytical

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS Proceedings of 4 th ICCHMT May 7 0, 005, Paris-Cachan, FRANCE ICCHMT 05-53 NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS L. Storesletten*, D.A.S.

More information

Convective flow of two immiscible viscous fluids using Brinkman model

Convective flow of two immiscible viscous fluids using Brinkman model Indian Journal of Pure & Applied Physics Vol 4 June 5 pp 45-4 Convective flow of two immiscible viscous fluids using inkman model Atul umar ingh Department of Mathematics V D College anpur 8 Received July

More information

Convective Flow of Two Immiscible Fluids and Heat Transfer With Porous Along an Inclined Channel with Pressure Gradient.

Convective Flow of Two Immiscible Fluids and Heat Transfer With Porous Along an Inclined Channel with Pressure Gradient. Research Inventy: Internional Journal Of Engineering And Science Issn: -, Vol., Issue (February ), Pp - Www.Researchinventy.Com Convective Flow of Two Immiscible Fluids and He Transfer With Porous Along

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

MODELING AND SIMULATION OF FREE FLUID OVER A POROUS MEDIUM BY MESHLESS METHOD

MODELING AND SIMULATION OF FREE FLUID OVER A POROUS MEDIUM BY MESHLESS METHOD 6th uropean Conference on Computational echanics (CC 6) 7th uropean Conference on Computational Fluid Dynamics (CFD 7) 5 June 8, Glasgow, UK ODLING AND SIULATION OF FR FLUID OVR A POROUS DIU BY SLSS TOD

More information

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System 12 th Fluid Dynamics Conference, Babol Noshirvani University of Technology, 28-30 April 2009 Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall

Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall Ramesh Yadav 1 & Vivek Joseph 2 1Assistant Professor, Department of Mathematics BBDNITM Lucknow U P 2Professor, Department of Mathematics

More information

K.Kumara Swamy Naidu. E. Sudhakara

K.Kumara Swamy Naidu. E. Sudhakara International Journal of Scientific and Innovative Mathematical Research (IJSIMR) olume, Issue 7, July 4, 67-636 ISSN 347-37X (rint) & ISSN 347-34 (Online) www.arcjournals.org The Effect of the Thickness

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 10, Issue 6 Ver. III (Nov - Dec. 2014), PP 73-78 Influence of chemical reaction, Soret and Dufour effects on heat and

More information

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux

Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Stud. Univ. Babeş-Bolyai Math. 60(2015), No. 2, 341 350 Fully developed mixed convection through a vertical porous channel with an anisotropic permeability: case of heat flux Diana Andrada Filip, Radu

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection International Journal of Fluid Mechanics & Thermal Sciences 17; 3(4): 41-45 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.1734.1 ISSN: 469-815 (Print); ISSN: 469-8113 (Online) ombined

More information

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 1, pp. 139-145, 016. Selected papers from the 7 th International Exergy, Energy and Environment Symposium, IEEE7-015 Available online at www.jafmonline.net,

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium M. B. K. MOORTHY, K. SENTHILVADIVU Department of Mathematics, Institute

More information

Verification of the boundary condition at the porous medium fluid interface

Verification of the boundary condition at the porous medium fluid interface EPJ Web of Conferences 114, 02125 (2016) DOI: 10.1051/ epjconf/ 2016114 02125 C Owned by the authors, published by EDP Sciences, 2016 Verification of the boundary condition at the porous medium fluid interface

More information

Temperature and Internal Heat Generation in a Porous Medium

Temperature and Internal Heat Generation in a Porous Medium TECHNISCHE MECHANIK, Band 21, Heft 4, (20011313318 Manuskripteingang: 20. September 200] Free Convection over 3 Vertical Flat Plate with a Variable Wall Temperature and Internal Heat Generation in a Porous

More information

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION THERMAL SCIENCE, Year 011, Vol. 15, No. 3, pp. 749-758 749 CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION by Faiza

More information

Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects

Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects Journal of Applied Science and Engineering, Vol. 15, No. 4, pp. 415422 (2012 415 Mixed Convection Flow of Couple Stress Fluid in a Non-Darcy Porous Medium with Soret and Dufour Effects D. Srinivasacharya*

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 04 ISSN 3-707 MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA Samuel Olumide ADESANYA, Oluwole Daniel MAKINDE This paper deals

More information

STEADY SOLUTE DISPERSION IN COMPOSITE POROUS MEDIUM BETWEEN TWO PARALLEL PLATES

STEADY SOLUTE DISPERSION IN COMPOSITE POROUS MEDIUM BETWEEN TWO PARALLEL PLATES Journal of Porous Media, 6 : 087 05 03 STEADY SOLUTE DISPERSION IN COMPOSITE POROUS MEDIUM BETWEEN TWO PARALLEL PLATES J. Prathap Kumar, J. C. Umavathi, & Ali J. Chamkha, Department of Mathematics, Gulbarga

More information

ISSN Article

ISSN Article Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective

More information

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure

Numerical Study of Natural Convection in. an Inclined L-shaped Porous Enclosure Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 5, 237-245 Numerical Study of Natural Convection in an Inclined L-shaped Porous Enclosure S. M. Moghimi 1 *, G. Domairry 2, H. Bararnia 2, Soheil Soleimani 2

More information

MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect

MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect ISSN 975-333 Mapana J Sci,, 3(22), 25-232 https://doi.org/.2725/mjs.22.4 MHD and Thermal Dispersion-Radiation Effects on Non-Newtonian Fluid Saturated Non-Darcy Mixed Convective Flow with Melting Effect

More information

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 97 106 (2011) 97 Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSN(Online): 239-8753 Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Heat And Mass Transfer in Boundary Layer Flow Over a Stretching Cylinder Embedded in a Porous Medium using

More information

Numerical Analysis of Heat Transfer and Gas Flow in PEM Fuel Cell Ducts by a Generalized Extended Darcy Model

Numerical Analysis of Heat Transfer and Gas Flow in PEM Fuel Cell Ducts by a Generalized Extended Darcy Model INTERNATIONAL JOURNAL OF GREEN ENERGY Vol. 1, No. 1, pp. 47 63, 2004 Numerical Analysis of Heat Transfer and Gas Flow in PEM Fuel Cell Ducts by a Generalized Extended Darcy Model Jinliang Yuan* and Bengt

More information

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Assunta Andreozzi 1,a, Bernardo Buonomo 2,b, Oronzio Manca 2,c and Sergio Nardini 2,d 1 DETEC, Università degli Studi

More information

A problem of entropy generation in a channel filled with a porous medium

A problem of entropy generation in a channel filled with a porous medium CREATIVE MATH. & INF. 7 (8), No. 3, 357-36 Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 584-86X Online Edition: ISSN 843-44X Dedicated to Professor Iulian Coroian on the occasion

More information

Analysis of Variants Within the Porous Media Transport Models

Analysis of Variants Within the Porous Media Transport Models Analysis of Variants Within the Porous Media Transport Models B. Alazmi K. Vafai e-mail: Vafai.1@osu.edu Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210 An investigation

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

COUETTE FLOW IN A PARTIALLY POROUS CURVED CHANNEL WHICH IS SLIGHTLY ECCENTRIC

COUETTE FLOW IN A PARTIALLY POROUS CURVED CHANNEL WHICH IS SLIGHTLY ECCENTRIC ISTP-6, 5, PAGUE 6 TH INTENATIONAL SYMPOSIUM ON TANSPOT PHENOMENA COUETTE FLOW IN A PATIALLY POOUS CUVED CHANNEL WHICH IS SLIGHTLY ECCENTIC Leong, J.C., Tsai, C.H., Tai, C.H. Department of Vehicle Engineering,

More information

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface Gen. Math. Notes, Vol. 4, No., October 014, pp. 97-10 ISSN 19-7184; Copyright ICSRS Publication, 014 www.i-csrs.org Available free online at http://www.geman.in Similarity Flow Solution of MHD Boundary

More information

MHD FORCED FLOW OF A CONDUCTING VISCOUS FLUID THROUGH A POROUS MEDIUM INDUCED BY AN IMPERVIOUS ROTATING DISK

MHD FORCED FLOW OF A CONDUCTING VISCOUS FLUID THROUGH A POROUS MEDIUM INDUCED BY AN IMPERVIOUS ROTATING DISK FLUID DYNAMICS MAGNETOHYDRODYNAMICS MHD FORCED FLOW OF A CONDUCTING VISCOUS FLUID THROUGH A POROUS MEDIUM INDUCED BY AN IMPERVIOUS ROTATING DISK BHUPENDRA KUMAR SHARMA, ABHAY KUMAR JHA, R. C. CHAUDHARY

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Srinivas Maripala 1 and Kishan Naikoti 2 1Department of mathematics, Sreenidhi Institute

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

Analysis of Least Stable Mode of Buoyancy Assisted Mixed Convective Flow in Vertical Pipe Filled with Porous Medium

Analysis of Least Stable Mode of Buoyancy Assisted Mixed Convective Flow in Vertical Pipe Filled with Porous Medium Proceedings of the World Congress on Engineering 2 Vol I WCE 2, July 6-8, 2, London, U.K. Analysis of Least Stable Mode of Buoyancy Assisted Mixed Convective Flow in Vertical Pipe Filled with Porous Medium

More information

Using LBM to Investigate the Effects of Solid-Porous Block in Channel

Using LBM to Investigate the Effects of Solid-Porous Block in Channel International Journal of Modern Physics and Applications Vol. 1, No. 3, 015, pp. 45-51 http://www.aiscience.org/journal/ijmpa Using LBM to Investigate the Effects of Solid-Porous Bloc in Channel Neda Janzadeh,

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Navier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Microscopic

More information

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current American Journal of Engineering Research (AJER) Research Paper American Journal of Engineering Research (AJER) e-issn : 3-87 p-issn : 3-93 Volume-3 Issue- pp-7- www.ajer.org Open Access Study on MHD Free

More information

Onset of convection of a reacting fluid layer in a porous medium with temperature-dependent heat source

Onset of convection of a reacting fluid layer in a porous medium with temperature-dependent heat source AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2011, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2011.2.6.860.864 Onset of convection of a reacting fluid layer in

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

A NUMERICAL STUDY OF POROUS-FLUID COUPLED FLOW SYSTEMS WITH MASS TRANSFER BAI HUIXING

A NUMERICAL STUDY OF POROUS-FLUID COUPLED FLOW SYSTEMS WITH MASS TRANSFER BAI HUIXING A NUMERICAL STUDY OF POROUS-FLUID COUPLED FLOW SYSTEMS WITH MASS TRANSFER BAI HUIXING NATIONAL UNIVERSITY OF SINGAPORE 2011 A NUMERICAL STUDY OF POROUS-FLUID COUPLED FLOW SYSTEMS WITH MASS TRANSFER BAI

More information

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 75-75, 6. Available online at www.jafmonline.net, ISSN 75-57, EISSN 75-65. DOI:.8869/acadpub.jafm.68.5.876 Oscillatory MHD Mixed Convection Boundary

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

2 D.D. Joseph To make things simple, consider flow in two dimensions over a body obeying the equations ρ ρ v = 0;

2 D.D. Joseph To make things simple, consider flow in two dimensions over a body obeying the equations ρ ρ   v  = 0; Accepted for publication in J. Fluid Mech. 1 Viscous Potential Flow By D.D. Joseph Department of Aerospace Engineering and Mechanics, University of Minnesota, MN 55455 USA Email: joseph@aem.umn.edu (Received

More information

Turbulent flow over anisotropic porous media

Turbulent flow over anisotropic porous media Turbulent flow over anisotropic porous media Alfredo Pinelli School of Mathematics, Computer Science and Engineering City, University of London U.K. Work done in collaboration with: M. Omidyeganeh, A.

More information

MHD Free convection flow of couple stress fluid in a vertical porous layer

MHD Free convection flow of couple stress fluid in a vertical porous layer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, (6:5- ISSN: 976-86 CODEN (USA: AASRFC MHD Free convection flow of couple stress fluid in a vertical porous layer

More information

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 8, Issue 6 (Nov. Dec. 2013), PP 32-39 Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Fluid flow in a channel partially filled with porous material

Fluid flow in a channel partially filled with porous material Fluid flow in a channel partially filled with porous material M. Hriberkk', R. Jec12& L. Skerget' 'Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia 2Facultyof

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium

Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium M.B.K.MOORTHY, K.SENTHILVADIVU Department of Mathematics, Institute of Road

More information

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.8(4) No.,pp.7-38 Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a

More information

Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations Copyright 2014 Tech Science Press CMES, vol.103, no.4, pp.215-227, 2014 Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations J.R. Zabadal 1, B. Bodmann 1, V. G. Ribeiro

More information

P.O. Box 30197, Nairobi,

P.O. Box 30197, Nairobi, 1 Hydromagnetic Steady Flow of Liquid Between Two Parallel Infinite Plates Under Applied Pressure Gradient when Upper Plate is Moving with Constant Velocity Under the Influence of Inclined Magnetic Field

More information

Unsteady Couette Flow through a Porous Medium in a Rotating System

Unsteady Couette Flow through a Porous Medium in a Rotating System International Journal of Computational Science and Mathematics. ISSN 974-3189 Volume 2, Number 3 (21), pp. 381-39 International Research Publication House http://www.irphouse.com Unsteady Couette Flow

More information

THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT METHOD

THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT METHOD J. Kramer et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. (013) 103 115 THREE-DIMENSIONAL DOUBLE-DIFFUSIVE NATURAL CONVECTION WITH OPPOSING BUOYANCY EFFECTS IN POROUS ENCLOSURE BY BOUNDARY ELEMENT

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS

LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS Journal of Marine Science and Technology, Vol. 13, No. 4, pp. 57-64 (5) 57 LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS Tong-Bou Chang Key words: surface

More information

CHAPTER 2 THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS

CHAPTER 2 THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS CHAPTER THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS MEDIUM. Introduction The theory of micropolar fluids introduced by Eringen [34,35], deals with a class

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Fluid flows through unsaturated porous media: An alternative simulation procedure

Fluid flows through unsaturated porous media: An alternative simulation procedure Engineering Conferences International ECI Digital Archives 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry Refereed Proceedings Summer 6-24-2014

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current

Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current Journal of Applied Science and Engineering, Vol. 15, No. 3, pp. 281 290 (2012) 281 Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current

More information

Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall

Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall Transp Porous Med DOI 10.1007/s11242-010-9584-x Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall A. Tamayol K. Hooman M. Bahrami Received: 1 December 2009 / Accepted: 8 April

More information

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 42-49 www.iosrjournals.org Effect of Mass and Partial

More information

Entropy ISSN

Entropy ISSN Entrop 5, 7[4], 3 37 3 Entrop ISSN 99-43 www.mdpi.org/entrop/ Full Paper Second law analsis of laminar flow in a channel filled with saturated porous media: a numerical solution Kamel Hooman, Arash Ejlali

More information

Analytical Solution of Non-Isothermal Couette Flow between two Plates.

Analytical Solution of Non-Isothermal Couette Flow between two Plates. IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:39-765x. Volume, Issue Ver. VI (Mar-Apr. 4), PP 44-48 Analytical Solution of Non-Isothermal Couette Flow between two Plates. A.W. Ogunsola,

More information

SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM

SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM Proceedings NZ GeothermalWorkshop SIMILARITY SOLUTION FOR DOUBLE NATURAL CONVECTION WITH DISPERSION FROM SOURCES IN AN INFINITE POROUS MEDIUM A.V. and A. F. Geothermal Institute, The University of Auckland,

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

RAYLEIGH-TAYLOR INSTABILITY OF COUPLE STRESS FLUID THROUGH POROUS MEDIA IN A FLUID LAYER OF FINITE THICKNESS

RAYLEIGH-TAYLOR INSTABILITY OF COUPLE STRESS FLUID THROUGH POROUS MEDIA IN A FLUID LAYER OF FINITE THICKNESS International Journal of Mathematics and Computer Applications Research (IJMCAR) Vol., Issue Dec 0-7 TJPRC Pvt. Ltd., RAYLEIGH-TAYLOR INSTABILITY OF COUPLE STRESS FLUID THROUGH POROUS MEDIA IN A FLUID

More information

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side Applied Mathematical Sciences, Vol., 2012, no. 97, 801-812 Visualization of Natural Convection in Enclosure Filled with Porous Medium by Sinusoidally Temperature on the One Side Paweena Khansila Department

More information

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1) Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University,

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

A curvature-unified equation for a non-newtonian power-law fluid flow

A curvature-unified equation for a non-newtonian power-law fluid flow Int. J. Adv. Appl. Math. and Mech. 2(3) (215) 72-77 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics A curvature-unified equation

More information

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer

Thermal diffusion effect on MHD free convection flow of stratified viscous fluid with heat and mass transfer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 03, 4():-9 ISSN: 0976-860 CODEN (USA): AASRFC Thermal diffusion effect on MHD free convection flow of stratified

More information

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate Nonlinear Analysis: Modelling and Control, 27, Vol. 12, No. 3, 37 316 Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate M. A. Alim

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING FLUID DYNAMICS UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING R. C. CHAUDHARY, PREETI JAIN Department of Mathematics, University of Rajasthan

More information

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium.

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium. IOSR Journal of Engineering (IOSRJEN) e-issn: 50-301, p-issn: 78-8719, Volume, Issue 9 (September 01), PP 50-59 Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In

More information

NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED

NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED International Journal of Microscale and Nanoscale Thermal.... ISSN: 1949-4955 Volume 2, Number 3 2011 Nova Science Publishers, Inc. NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE EMBEDDED

More information

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Excerpt from the Proceedings of the COMSOL Conference 2010 Paris PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Igor Bogdanov 1*, Sylvain Jardel 1, Anis Turki 1, Arjan Kamp 1 1 Open &

More information

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 7 Oct-25 www.irjet.net p-issn: 2395-72 Influence of chemical reaction and thermal radiation effects

More information