Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Size: px
Start display at page:

Download "Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)"

Transcription

1 Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University, Assam, India 2 Department of Mathematics, Gauhati University, Assam, India Abstract An unsteady free convective flow of dusty visco-elastic fluid through a porous medium in presence of inclined magnetic field, heat source and porosity has been investigated. The visco-elastic fluid flow is haracterized by Walter s liquid (for short relaxation memories). A magnetic field of strength B 0 is applied in a direction making an angle θ with the vertical. The porous medium is bounded by two non conducting parallel walls, where one wall of the channel is fixed and the other is oscillating with time about a constant non- zero mean. Initially, both the walls are kept at same temperature T s. The dust particles gain heat from fluid by conduction through their spherical surface. The equations of the governing fluid motion are solved analytically by using perturbation technique and the velocity profiles for fluid and dust particles are discussed graphically and shearing stress is analyzed numerically for various values of flow parameters involved in the solution. Keywords Free convection, Walters liquid, Saffman Model, porous medium, shearing stress, heat source, Grashoff number I. INTRODUCTION Nowadays researchers from various backgrounds like engineering, applied mathematics etc have shown their interest on dusty visco-elastic fluid flow because of its uses in various fields of engineering and environmental sciences. One of the classes of visco-elastic fluids used in Manufacture of spacecrafts, aeroplanes, tyres, belt conveyers, ropes, cushions, seats, foams, plastic engineering equipments, contact lens etc is Walters liquid (Model B ) and its constitutive equations have been discussed by Walters [1, 2]. The motion of dust particles in a laminar flow was first studied by Saffman [3]. Michael and Miller [4] have investigated the motion of dust particles in a plane parallel flow. Oscillating dusty flow through a rigid pipe has been discussed by Nayfeh [5]. Behaviour of unsteady dusty fluid flow in a channel under various physical situations have been analyzed by Gupta and Gupta [6], Singh [7], Singh and Ram [8], Prasad and Ramacharyulu [9], Gupta and Gupta[10], Ajadi [11]. Govindrajan[12] has discussed the problems of dusty viscous fluid flow using various physical properties. Free convection effects on the Stokes problem for an infinite vertical plate in a dusty fluid flow have been discussed by Ramamurthy [13]. Attia[14] have studied the problem of Unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties. Alle et al. [15] have investigated the motion of dusty visco-elastic fluid in an inclines channel. Heat transfer cases in the motion of dusty viscous fluid with exponential decaying pressure gradient have been shown by Attia et al. [16]. Unsteady flow of a dusty viscous liquid between two parallel plates in presence of a transverse magnetic field has been studied by Kalita [17]. Sandeep and Sugunamma [18] have analysed free convective flow of dusty fluid through a porous medium in presence of inclined magnetic field and volume fraction. Two dimensional steady free convection flow of an electrically conducting viscous fluid through a porous medium bounded by two stationary infinite vertical porous plates in the presence of heat source and chemical reaction has been studied by Ahmed and Bhattacharyya [19]. Effects of chemical reaction on hydro-magnetic unsteady walter s memory flow with constant suction and heat sink have been investigated by Sekhar and Reddy [20]. In this paper we have analysed the problem of unsteady free convective flow of dusty visco-elastic fluid (Walters liquid, Model B ) through a porous medium in presence of applied inclined magnetic field, heat source and permeability of the medium II. MATHEMATICAL FORMULATION We consider an unsteady flow of two dimensional dusty visco-elastic fluid through a porous medium in presence of inclined magnetic field and external heat agent. A magnetic field of strength B 0 is applied in a direction making an angle θ with the vertical. The porous medium is bounded by two non conducting parallel walls, where one wall of the channel is fixed and the other one is oscillating with time about a constant non- zero mean. Initially, the system is at rest and both the walls are kept at same temperature T s. At time t > 0, the temperature of the upper plate is instantaneously raised to a temperature oscillating with time. To study the governing dusty fluid motion, we use the following assumptions: a. The dust particles are assumed to be electrically non-conducting and spherical in shape. b. The induced magnetic field is neglected by assuming very small values of magnetic Reynolds number. Debasish Dey et al. Page 28

2 c. Volume fraction of dust fraction is neglected here. d. The energy dissipation and Ohmic heating is neglected in the energy equation. g The governing equations of fluid motion are: Figure 1: Physical Configuration of the Problem Where is the temperature of the system in static case. The boundary conditions are where & are velocities of fluid particles and dust particles respectively, the displacement variable, the time, g be the acceleration due to gravity, β be the co-efficient of volume expansion, ρ & the densities of fluid particles and dust particles respectively, be the limiting viscosity at small shear rate, K T the thermal conductivity of the fluid, K 1 be the permeability of the medium, B 0 be the strength of the applied magnetic field, m be the mass of the dust particles, Q 0 be the external heat source, & specific heats of fluid and dust particles, be the temperature relaxation time, the viscosity, N 0 the number of dust particle per unit volume, K= 6πµa (a= radius of dust particle) be the Stokes constant, k 0 be the visco-elastic parameter. III. METHOD OF SOLUTION Let us introduce the following non-dimensional parameters in the governing equations of motion (2.2) - (2.5), Then the dimensionless equations of the governing motion are Debasish Dey et al. Page 29

3 The boundary conditions in the dimensionless form are, To solve the equations (3.2) (3.5), we assume that the velocity and temperature to be of the form as follows The zero-th order and first order equations of motion for fluid particles and dust particles are given by The relevant boundary conditions are,, (3.16) IV. RESULTS AND DISCUSSIONS Solving equations (3.8) to (3.15) subject to the boundary conditions (3.16), the velocity profiles of fluid particles and dust particles, temperature fields of fluid and dust particles are obtained as The shearing stresses formed at the plates are given by The problem of dusty visco-elastic fluid characterized by Walter s liquid (Model B ) through a porous medium in presence of inclined magnetic field and heat source has been discussed analytically. The non-zero values of k characterize the visco-elastic fluid and its zero value represents the phenomenon of Newtonian fluid motion. Figure 2: Velocity profile u against y for Pr=3, Gr= 5, k = 0.2, L=1, ωt=π/2, S=1, θ=π/6 Debasish Dey et al. Page 30

4 Figures 2 to 7 characterize the nature of velocity profiles against the displacement variable y over entire height of the channel and it is seen that fluid accelerates with the increasing values of y. Effect of applied magnetic field is exhibited through the magnetic parameter M and figure 2 and 3 states that increasing values of M retards the fluid motion and as well as the motion of dust particles. Grashoff number represents the effect of free convection on the governing fluid motion and its higher values reduce viscosity and as a result the fluid motion is accelerated and so as the motion of the dust particles imposed in the mixture (figure 4 and 5). Figure 3: Velocity profile V against y for Pr=3, Gr= 5, k = 0.2, L=1 ωt=π/2, S=1, θ=π/6. Figure 4: Velocity profile u against y for Pr=3, M= 1, k = 0.2, L=1 ωt=π/2, S=1, θ=π/6 In simultaneous momentum and heat diffusion, the importance of Prandtl number cannot be neglected and its higher value increases the momentum diffusion and as a consequence the speed of the fluid motion is decelerated (figure 6). Figure (7) depicts the velocity profiles for different values of strength of heat source (s) and it can be concluded that during the enhancement of heat source, the fluid will accelerate. Figure 5: Velocity profile V against y for Pr=3, M= 1, k = 0.2, L=1 ωt=π/2, S=1, θ=π/6 Figure 6: Velocity profile u against y for Gr=5, M= 1, k = 0.2, L=1 ωt=π/2, S=1, θ=π/6 Debasish Dey et al. Page 31

5 Tp T Innovation: International Journal of Applied Research; Figure 7: Velocity profile u against y for Pr=3, Gr=5, M= 1, k = 0.2, L=1, ωt=π/2, θ=π/6 cases M Pr Gr Shearing stress For Lower Plate(at y=0) Shearing stress For Upper Plate(at y=1) k=0 k=0.1 k=0.2 k=0 k=0.1 k=0.2 I II III IV Table 1: Shearing stresses at the two plates for θ = 0.6, L=1, ωt=π/2, S=1 Viscous drags or shearing stresses at the two plates are calculated for various cases given in table 1. The table enables the fact that during the growth of visco-elasticity of the governing fluid motion, the shearing stresses at the two plates experience an increasing trend. The growths in Hartmann number (Cases I and II), Prandtl number (I and III) have a retarding effect on shearing stresses at the lower plate but a reverse phenomenon is seen in case of shearing stress formed at the upper plate. Enhancement of Grashoff raises the magnitude of shearing stresses at both the plates (Cases I and IV) Pr=3 Pr=5 Pr =7 Pr = Figure 8: Temperature of fluid particlest against y for, Gr=5, M= 1, k = 0.2, L=1, ωt=π/2, θ=π/6, L o = y 0.6 Pr = 3 Pr = 5 Pr = 7 Pr = Figure 9: Temperature of dust particles Tp against y for, Gr=5, M= 1, k = 0.2, L=1, ωt=π/2, θ=π/6, L o = 0.5. Debasish Dey et al. Page 32 y

6 T Innovation: International Journal of Applied Research; Figures 8-10, represent the nature of the temperature field of fluid particles and dust particles against the width of the channel in combination with other flow parameters involved in the solution. The figures states that during the increasing values of displacement variable, the temperature of the fluid particles and dust particles enhance and also it is noticed that the maximum discrepancy is seen in the neighbourhood of the upper plate. Increasing values of Prandtl number decreases the temperature of both fluid and dust particles of the governing dusty visco-elastic fluid motion (figure 8 and 9). Effects of Heat source/ sink on the temperature are seen on figure 10. As the strength of the external heat agent increases, a declined trend in the temperature of the dusty visco-elastic fluid is experienced along with the increasing height of the channel S = - 3 S = -1 S = 1 S = Figure 10: Temperature T against y for, Pr=3, Gr=5, M= 1, k = 0.2, L=1, ωt=π/2, θ=π/6, L o = 0.5. y V. CONCLUSIONS The behaviour of an unsteady dusty visco-elastic fluid governed by Walters liquid (Model B ) has been investigated under the influence of incline magnetic field and heat source/ sink. Some of the important conclusions are stated as below: Acceleration in fluid motion is dominant in the neighbourhood of the upper plate. Retarded motions of fluid and dust particles are seen during the growth of Hartmann number, Prandtl number but an opposite phenomenon is noticed during the enhancement of Grashoff number. The growth of visco-elasticity strengthens the shearing stresses at the two plates. Maximum variation in the temperature is seen in the neighbourhood of the oscillating plate. ACKNOWLEDGMENT The authors acknowledge Professor Rita Choudhury, Department of Mathematics, Gauhati University, for her encouragement throughout this work. REFERENCES [1] Walters K. (1960), The motion of an elastic-viscous liquids contained between co-axial cylinders, Quart. J. Mech. Appl. Math., 13(4), [2] Walters K. (1962), Non-Newtonian effects in some elastic-viscous liquids whose behaviour at small rates of shear is characterized by general linear equations of state, Quart. J. Mech. Appl. Math., 15(1), [3] Saffman P. G. (1962), On the stability of laminar flow of a dusty gas, Fluid Mech., 13, [4] Michael, D. H. and Miller, D. A. (1966), Plane parallel flow of a dusty gas, Mathematika, 13, [5] Nayfeh A. H., (1966), Oscillating two-phase flow through a rigid pipe, AIAAJ, 4(10), [6] Gupta, P. K. And Gupta, S. C. (1976), Flow of a dusty gas through a channel with arbitrary time varying pressure gradient, Journal of Appl. Math. and Phys., 27, 119. [7] Singh K. K. (1976), Unsteady flow of a conducting dusty fluid through a rectangular channel with time dependent pressure gradient, Indian J. Pure and Appl. Math., 8, [8] Singh, C. B. and Ram, P. C. (1977), Unsteady flow of an electrically conducting dusty viscous liquid through a channel, Indian J. Pure and Appl. Math., 8 (9), [9] Prasad, V. R. and Ramacharyulu, N. C. P. (1979), Unsteady flow of a dusty incompressible fluid between two parallel plates under an impulsive pressure gradient, Def. Sci, Journal, 38, 125. [10] Gupta, R. K. And Gupta K., (1990), Unsteady flow of a dusty visco-elastic fluid through channel with volume fraction, Indian J. Pure and Appl. Math. 21(7), [11] Ajadi, S. O., (2005), A note on the unsteady flow of dusty viscous fluid between two parallel plates, J. Appl. Math. and Computing, 18(1-2), [12] A.GOVINDARAJAN, (2008), Study of physical properties of two phase dusty fluid flow through porous medium, Thesis, July Debasish Dey et al. Page 33

7 [13] Ramamurthy, V., (1990), Free convection effects on the Stokes problem for an infinite vertical plate in a dusty fluid, J. Math. Phys., 24, 297. [14] Attia, H. A., (2006), Unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties, Applied Mathematics and Computation, 177, [15] Alle, G., Roy, A. S., Kalyane, S. and Sonth, R. M., (2011), Unsteady flow of a dusty visco-elastic fluid through an inclined channel, Advances in Pure Math., 1, [16] Attia, H. A., Al-Kaisy, A. M. A. and Ewis, K. M., (2011), MHD Couette flow and heat transfer of a dusty fluid with exponential decaying pressure gradient, Tamkang J. Sci. and Engg., 14(2), [17] Kalita, B. (2012), Unsteady flow of a dusty conducting viscous liquid between two parallel plates in presence of a transverse magnetic field, Appl. Math. Sciences, 6(76), [18] Sandeep, N. & Sugunamma, V., (2013), Effect of inclined magnetic field on unsteady free convection flow of a dusty viscous fluid between two infinite flat plates filled by a porous medium, International Journal of Applied Mathematics and Modelling, 1, 1, [19] Ahmed, N. & Bhattacharyya, D. J., (), Free Convection in MHD Couette Flow with Heat Source and Chemical Reaction, Applied Mathematical Sciences, 8(50), [20] Sekhar D. V., & Reddy, G. V., (2012), Chemical reaction effects on mhd unsteady free convective walter s memory flow with constant suction and heat sink, Advances in Applied Science Research, 2012, 3 (4): Debasish Dey et al. Page 34

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago Unsteady MHD Free Convection Couette Flow Through a Vertical Channel in the Presence of Thermal Radiation With Viscous and Joule Dissipation Effects Using Galerkin's Finite Element Method Victor M. Job

More information

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK

UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE OF HEAT SINK Journal of Rajasthan Academy of Physical Sciences ISSN : 097-6306; URL : http:raops.org.in Vol.16, No.1&, March-June, 017, 1-39 UNSTEADY MHD FREE CONVECTIVE FLOW PAST A MOVING VERTICAL PLATE IN PRESENCE

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Some Aspects of Oscillatory Visco-elastic Flow Through Porous Medium in a Rotating Porous Channel

Some Aspects of Oscillatory Visco-elastic Flow Through Porous Medium in a Rotating Porous Channel Some Aspects of Oscillatory Visco-elastic Flow Through Porous Medium in a Rotating Porous Channel RITA CHOUDHURY, HILLOL KANTI BHATTACHARJEE, Department of Mathematics, Gauhati University Guwahati-78 4

More information

Heat transfer in MHD flow of dusty viscoelastic (Walters liquid model-b) stratified fluid in porous medium under variable viscosity

Heat transfer in MHD flow of dusty viscoelastic (Walters liquid model-b) stratified fluid in porous medium under variable viscosity PRAMANA c Indian Academy of Sciences Vol. 79, No. 6 journal of December 01 physics pp. 1457 1470 Heat transfer in MHD flow of dusty viscoelastic (Walters liquid model-b) stratified fluid in porous medium

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION THERMAL SCIENCE, Year 011, Vol. 15, No. 3, pp. 749-758 749 CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION by Faiza

More information

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Muhim Chutia Department of Mathematics, Mariani College, Assam-785634, India ABSTRACT: In this paper, a numerical

More information

Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow

Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow ISSN: 319-8753 (An ISO 397: 7 Certified Organization) Vol. 3, Issue 8, August 14 Effect of Chemical Reaction on Mass Distribution of a Binary Fluid Mixture in Unsteady MHD Couette Flow B.R Sharma 1, Hemanta

More information

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (4):2169-2178 ISSN: 0976-8610 CODEN (USA): AASRFC Hydromagnetic oscillatory flow through a porous medium

More information

Corresponding Author: Kandie K.Joseph. DOI: / Page

Corresponding Author: Kandie K.Joseph. DOI: / Page IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. 1 (Sep. - Oct. 2017), PP 37-47 www.iosrjournals.org Solution of the Non-Linear Third Order Partial Differential

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL CHANNEL THROUGH A POROUS MEDIUM

VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL CHANNEL THROUGH A POROUS MEDIUM Volume 2, No. 1, Januar 214 Journal of Global Research in Mathematical Archives RESEARCH PAPER Available online at http://www.jgrma.info VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL

More information

Department of Mathematic, Ganjdundwara (P.G.) College, Ganjdundwara (Kashiram Nagar) (U.P.)

Department of Mathematic, Ganjdundwara (P.G.) College, Ganjdundwara (Kashiram Nagar) (U.P.) International Journal of Stability and Fluid Mechanics July- December 1, Volume 1, No., pp. 319-33 ISSN(Print)-975-8399, (Online) -31-475X AACS. All rights reserved IJS M Effect Of Hall Current On Mhd

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION

ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION Kragujevac J. Sci. 35 (23) 5-25. UDC 532.527 ROTATING OSCILLATORY MHD POISEUILLE FLOW: AN EXACT SOLUTION Krishan Dev Singh Wexlow Bldg, Lower Kaithu, Shimla-73, India e-mail: kdsinghshimla@gmail.com (Received

More information

Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects

Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 243 252 (2010) 243 Hartmann Flow in a Rotating System in the Presence of Inclined Magnetic Field with Hall Effects G. S. Seth, Raj Nandkeolyar*

More information

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 088 Volume 4, Issue 6, June 05 67 Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

Couette Flow of Two Immiscible Dusty Fluids between Two Parallel Plates with Heat Transfer

Couette Flow of Two Immiscible Dusty Fluids between Two Parallel Plates with Heat Transfer Current Science International Volume : 06 Issue : 02 April-June 2017 Pages: 334-343 Couette Flow of Two Immiscible Dusty Fluids between Two Parallel Plates with Heat Transfer 1 W. Abbas, 2 S. M. El Shinnawy,

More information

Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection

Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection Mechanics and Mechanical Engineering Vol. 12, No. 2 (2008) 165 176 c Technical University of Lodz Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection Hazem A.

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction of First Order

Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction of First Order ISBN 978-93-5156-38-0 International Conference of Advance Research and Innovation (-014) Radiation and Heat Absorption Effects on Unsteady MHD Flow Through Porous Medium in The Presence of Chemical Reaction

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE

RADIATION ABSORPTION AND ALIGNED MAGNETIC FIELD EFFECTS ON UNSTEADY CONVECTIVE FLOW ALONG A VERTICAL POROUS PLATE Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 5(7): 8-87 Journal Scholarlink of Emerging Research Trends Institute in Engineering Journals, 4 and (ISSN: Applied 4-76) Sciences

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 235242 (2010) 235 Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical

More information

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature

Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature Journal of Applied Science and Engineering, Vol. 20, No. 3, pp. 277 282 (2017) DOI: 10.6180/jase.2017.20.3.01 Effect of Heat Absorption on MHD Flow Over a Plate with Variable Wall Temperature U S Rajput*

More information

Unsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating

Unsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating nsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating M. Rajaiah 1, Dr. A. Sudhakaraiah 1 Research Scholar Department of Mathematics, Rayalaseema

More information

Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current

Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current Journal of Applied Science and Engineering, Vol. 15, No. 3, pp. 281 290 (2012) 281 Heat Transfer Effects on Rotating MHD Couette Flow in a Channel Partially Filled by a Porous Medium with Hall Current

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall

Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall Ramesh Yadav 1 & Vivek Joseph 2 1Assistant Professor, Department of Mathematics BBDNITM Lucknow U P 2Professor, Department of Mathematics

More information

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe T S L Radhika**, M B Srinivas, T Raja Rani*, A. Karthik BITS Pilani- Hyderabad campus, Hyderabad, Telangana, India. *MTC, Muscat,

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information

MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion

MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion Applied Mathematical Sciences, Vol. 5, 2011, no. 3, 149-157 MHD Flow Past an Impulsively Started Vertical Plate with Variable Temperature and Mass Diffusion U. S. Rajput and Surendra Kumar Department of

More information

Chemical Reaction and Thermal Radiation Effects on MHD Mixed Convective Oscillatory Flow Through a Porous Medium Bounded by Two Vertical Porous Plates

Chemical Reaction and Thermal Radiation Effects on MHD Mixed Convective Oscillatory Flow Through a Porous Medium Bounded by Two Vertical Porous Plates American-Eurasian Journal of Scientific Research (): 84-93, 7 ISSN 88-6785 IDOSI Publications, 7 DOI:.589/idosi.aejsr.7.84.93 Chemical Reaction and Thermal Radiation Effects on MHD Mixed Convective Oscillatory

More information

HALL EFFECTS ON UNSTEADY MHD OSCILLATORY FLOW OF BURGER S FLUID THROUGH A PIPE

HALL EFFECTS ON UNSTEADY MHD OSCILLATORY FLOW OF BURGER S FLUID THROUGH A PIPE Inter national Journal of Pure and Applied Mathematics Volume 113 No. 11 2017, 46 54 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu HALL EFFECTS

More information

Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink

Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink International Journal of Applied Science and Engineering 2013. 11, 3: 331-341 Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink J.

More information

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection Volume 28, N. 2, pp. 195 212, 29 Copyright 29 SBMAC ISSN 11-825 www.scielo.br/cam Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-14-155 - HEAT AND MASS TRANSFER IN THE MHD FLOW OF A VISCO-ELSTIC FLUID IN A ROTATING POROUS CHANNEL WITH RADIATIVE

More information

Heat and Mass Transfer Effects on MHD Flow. of Viscous Fluid through Non-Homogeneous Porous. Medium in Presence of Temperature. Dependent Heat Source

Heat and Mass Transfer Effects on MHD Flow. of Viscous Fluid through Non-Homogeneous Porous. Medium in Presence of Temperature. Dependent Heat Source Int. J. Contemp. Math. Sciences, Vol. 7,, no. 3, 597-64 Heat and Mass Transfer Effects on MHD Flow of Viscous Fluid through Non-Homogeneous Porous Medium in Presence of Temperature Dependent Heat Source

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

Numerical Solution for Coupled MHD Flow Equations in a Square Duct in the Presence of Strong Inclined Magnetic Field

Numerical Solution for Coupled MHD Flow Equations in a Square Duct in the Presence of Strong Inclined Magnetic Field International Journal of Advanced Research in Physical Science (IJARPS) Volume 2, Issue 9, September 2015, PP 20-29 ISSN 2349-7874 (Print) & ISSN 2349-7882 (Online) www.arcjournals.org Numerical Solution

More information

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface International Journal of Advances in Applied Mathematics and Mechanics Volume, Issue : (3) pp. 39-5 Available online at www.ijaamm.com IJAAMM ISSN: 347-59 A new approach for local similarity solutions

More information

Magnetic Field and Chemical Reaction Effects on Convective Flow of

Magnetic Field and Chemical Reaction Effects on Convective Flow of Communications in Applied Sciences ISSN 221-7372 Volume 1, Number 1, 213, 161-187 Magnetic Field and Chemical Reaction Effects on Convective Flow of Dust Viscous Fluid P. Mohan Krishna 1, Dr.V.Sugunamma

More information

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 75-75, 6. Available online at www.jafmonline.net, ISSN 75-57, EISSN 75-65. DOI:.8869/acadpub.jafm.68.5.876 Oscillatory MHD Mixed Convection Boundary

More information

Hall Current in a Rotating Channel on MHD Flow with Radiation and Viscous Dissipation

Hall Current in a Rotating Channel on MHD Flow with Radiation and Viscous Dissipation International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 24, PP 6-69 ISSN 247-7X (Print) & ISSN 247-42 (Online) www.arcjournals.org Hall Current in a Rotating

More information

P.O. Box 30197, Nairobi,

P.O. Box 30197, Nairobi, 1 Hydromagnetic Steady Flow of Liquid Between Two Parallel Infinite Plates Under Applied Pressure Gradient when Upper Plate is Moving with Constant Velocity Under the Influence of Inclined Magnetic Field

More information

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION FLUID DYNAMICS MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION M. K. MAZUMDAR, R. K. DEKA Department of Mathematics, Gauhati University Guwahat-781 014, Assam,

More information

Rajampet (Autonomous), A. P, India. *corresponding author Abstract

Rajampet (Autonomous), A. P, India. *corresponding author   Abstract Vol.61, (13), pp.39-5 http://dx.doi.org/1.157/ijast.13.61.5 Unsteady MHD Free Convective Visco-Elastic Fluid Flow Bounded by an Infinite Inclined Porous Plate in the esence of Heat Source, Viscous Dissipation

More information

MHD free convection heat and mass transfer flow over a vertical porous plate in a rotating system with hall current, heat source and suction

MHD free convection heat and mass transfer flow over a vertical porous plate in a rotating system with hall current, heat source and suction Int. J. Adv. Appl. Math. and Mech. 5(4) (2018) 49 64 (ISSN: 2347-2529) IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics MHD free convection

More information

Muhim Chutia * Department of Mathematics, Mariani College, Jorhat, Assam, , India. Nomenclature. address:

Muhim Chutia * Department of Mathematics, Mariani College, Jorhat, Assam, , India. Nomenclature.  address: Effect of variable thermal conductivity and the inclined magnetic field on MHD plane poiseuille flow in a Porous channel with non-uniform plate temperature Muhim Chutia * Department of Mathematics, Mariani

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department

More information

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 27 37 NONLINEAR HYDROMAGNETIC FLOW, HEAT AND MASS TRANSFER OVER AN ACCELERATING VERTICAL SURFACE WITH INTERNAL HEAT GENERATION

More information

HEAT SOURCE AND CHEMICAL EFFECTS ON MHD FLOW IN THE PRESENCE OF SORET

HEAT SOURCE AND CHEMICAL EFFECTS ON MHD FLOW IN THE PRESENCE OF SORET HEAT SOURCE AND CHEMICAL EFFECTS ON MHD FLOW IN THE PRESENCE OF SORET R. Kiruthika Research Scholar, Department of Mathematics, Karuppannan Mariappan College, Tirupur, Tamil Nadu, India ---------------------------------------------------------------------------------------------------------------------------------------------

More information

International Journal of Mathematical Archive-3(6), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(6), 2012, Available online through   ISSN nternational Journal of Mathematical Archive-3(6), 1, 331-339 Available online through www.ijma.info SSN 9 546 HYDROMAGNETC OSCLLATORY LOW O DUSTY LUD N A ROTATNG POROUS CHANNEL K. D. Singh 1, Khem Chand

More information

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate Daffodil International University Institutional Repository DIU Journal of Science and Technology Volume 1, Issue 1, January 17 17-1 Finite Difference Solution of Unsteady Free Convection Heat and Mass

More information

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY S563 THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY by Kishan NAIKOTI * and Meenakshi VADITHYA Department of Mathematics,

More information

Effect of Radiation on Dusty Viscous Fluid through Porous Medium overa Moving Infinite Vertical Plate with Heat Source

Effect of Radiation on Dusty Viscous Fluid through Porous Medium overa Moving Infinite Vertical Plate with Heat Source International Archive of Applied Sciences and Technology Int. Arch. App. Sci. Technol; Vol 4 [4]Decemebr 3: - 3 Society of Education, India [ISO9: 8 Certified Organization] www.soeagra.com/iaast.html CODEN:

More information

Effects of Hall Current and Rotation on Unsteady MHD Couette Flow in the Presence of an Inclined Magnetic Field

Effects of Hall Current and Rotation on Unsteady MHD Couette Flow in the Presence of an Inclined Magnetic Field Journal of Applied Fluid Mechanics, Vol. 5, No., pp. 67-74,. Available online at www.jafmonline.net, ISSN 735-357, EISSN 735-3645. Effects of Hall Current and Rotation on Unsteady MHD Couette Flow in the

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Keywords: - Injection/suction, Viscoelastic, convection, magneto hydro magnetic, oscillatory, rotating, radiation.

Keywords: - Injection/suction, Viscoelastic, convection, magneto hydro magnetic, oscillatory, rotating, radiation. An Oscillatory MHD Convective Flow of Viscoelastic Fluid through Porous Medium Filled in a Rotating Vertical Porous Channel with Heat Radiation B. P. Garg K. D. Singh A.K. Bansal Research Supervisor Punjab

More information

Unsteady Mhd Flow of a Non-Newtonian Fluid Down and Open Inclined Channel with Naturally Permeable Bed

Unsteady Mhd Flow of a Non-Newtonian Fluid Down and Open Inclined Channel with Naturally Permeable Bed International Journal of Fluids Engineering. ISSN 974-8 Volume 5, Number (), pp. 57-76 International Research Publication House http://www.irphouse.com Unsteady Mhd Flow of a Non-Newtonian Fluid Down and

More information

Pressure Effects on Unsteady Free Convection. and Heat Transfer Flow of an Incompressible. Fluid Past a Semi-Infinite Inclined Plate with

Pressure Effects on Unsteady Free Convection. and Heat Transfer Flow of an Incompressible. Fluid Past a Semi-Infinite Inclined Plate with Applied Mathematical Sciences, Vol. 6,, no. 68, 47-65 Pressure Effects on Unsteady Free Convection and Heat Transfer Flow of an Incompressible Fluid Past a Semi-Infinite Inclined Plate with Impulsive and

More information

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Ramesh Yadav Department of Mathematics Babu Banarasi Das National Institute of Technology & Management Lucknow Uttar

More information

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 10, Issue 6 Ver. III (Nov - Dec. 2014), PP 73-78 Influence of chemical reaction, Soret and Dufour effects on heat and

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate International Journal of Applied Science and Engineering 2013. 11, 3: 267-275 Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate Murali Gundagania,*, Sivaiah Sheria, Ajit Paulb,

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

MHD Free convection flow of couple stress fluid in a vertical porous layer

MHD Free convection flow of couple stress fluid in a vertical porous layer Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, (6:5- ISSN: 976-86 CODEN (USA: AASRFC MHD Free convection flow of couple stress fluid in a vertical porous layer

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 7 Oct-25 www.irjet.net p-issn: 2395-72 Influence of chemical reaction and thermal radiation effects

More information

Department of Mathematics, The University of Burdwan, Burdwan , West Bengal, India

Department of Mathematics, The University of Burdwan, Burdwan , West Bengal, India Journal of Bangladesh Academy of Sciences, Vol. 35, No. 1, 43-50, 011 APPLICATION OF SCALING GROUP OF TRANSFORMATIONS TO STEADY BOUNDARY LAYER FLOW OF NEWTONIAN FLUID OVER A STRETCHING SHEET IN PRESENCE

More information

The Chemical Diffusion and Bouyancy Effects on MHD Flow of Casson Fluids Past a Stretching Inclined Plate with Non-Uniform Heat Source

The Chemical Diffusion and Bouyancy Effects on MHD Flow of Casson Fluids Past a Stretching Inclined Plate with Non-Uniform Heat Source J. Appl. Environ. Biol. Sci., 7(6)135-14, 017 017, TextRoad Publication ISSN: 090-474 Journal of Applied Environmental and Biological Sciences www.textroad.com The Chemical Diffusion and Bouyancy Effects

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium.

Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In A Porous Medium. IOSR Journal of Engineering (IOSRJEN) e-issn: 50-301, p-issn: 78-8719, Volume, Issue 9 (September 01), PP 50-59 Effect of Mass Transfer And Hall Current On Unsteady Mhd Flow Of A Viscoelastic Fluid In

More information

Effect of thermal diffusion on transient MHD Free Convective flow past an Infinite Vertical Porous Plate in a Rotating System with Hall Current

Effect of thermal diffusion on transient MHD Free Convective flow past an Infinite Vertical Porous Plate in a Rotating System with Hall Current ISSN : 79 535. Volume : III, Issue : I Effect of thermal diffusion on transient MHD Free Convective flow past an Infinite Vertical Porous Plate in a Rotating System with Hall Current K. K. Kaanodiya and

More information

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature Journal of Applied Science and Engineering, Vol. 19, No. 4, pp. 385392 (2016) DOI: 10.6180/jase.2016.19.4.01 Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate

More information

Heat and Mass Transfer

Heat and Mass Transfer 1 Comments on six papers published by S.P. Anjali Devi and R. Kandasamy in Heat and Mass Transfer, ZAMM, Mechanics Research Communications, International Communications in Heat and Mass Transfer, Communications

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X. Volume 2, Issue 4 Ver. III (Jul. - Aug.26), PP 66-77 www.iosrjournals.org Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer

More information

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current

Study on MHD Free Convection Heat and Mass Transfer Flow past a Vertical Plate in the Presence of Hall Current American Journal of Engineering Research (AJER) Research Paper American Journal of Engineering Research (AJER) e-issn : 3-87 p-issn : 3-93 Volume-3 Issue- pp-7- www.ajer.org Open Access Study on MHD Free

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

International ejournals

International ejournals Available online at www.internationalejournals.com ISSN 0976 1411 International ejournals International ejournal of Mathematics and Engineering 30 (013) 4 55 RADIATION EFFECTS ON UNSTEADY FLOW PAST AN

More information

Finite Element Analysis of Fully Developed Unsteady MHD Convection Flow in a Vertical Rectangular Duct with Viscous Dissipation and Heat Source/Sink

Finite Element Analysis of Fully Developed Unsteady MHD Convection Flow in a Vertical Rectangular Duct with Viscous Dissipation and Heat Source/Sink Journal of Applied Science and Engineering, Vol. 18, No. 2, pp. 143 152 (2015) DOI: 10.6180/jase.2015.18.2.06 Finite Element Analysis of Fully Developed Unsteady MHD Convection Flow in a Vertical Rectangular

More information

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel

Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in a horizontal finite channel IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 8, Issue 6 (Nov. Dec. 2013), PP 32-39 Peristaltic Transport of a Magneto Non-Newtonian Fluid through A porous medium in

More information

Hall Effects on MHD Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field

Hall Effects on MHD Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 243252 (2014) DOI: 10.6180/jase.2014.17.3.04 Hall Effects on MHD Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media B.R.Sharma, Debozani Borgohain Department of Mathematics, Dibrugarh University, Dibrugarh-786004,

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer. Week 10 Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

More information