EXTRA CREDIT REMINDER

Size: px
Start display at page:

Download "EXTRA CREDIT REMINDER"

Transcription

1 EXTRA CREDIT REMINDER Due Tonight at Midnight (January 21 at 11:59 pm) via *** Kinesthetic: If you do not know how to use Prezi you may do a power point otherwise your Prezi link. This will count as a bonus in the test category approximately 10 points averaged with your other grades in the category. It can only HELP! Not harm your grade.

2 Important things to Remember

3 The Mole A counting unit Similar to a dozen, except instead of 12, it s 602,000,000,000,000,000,000, X (in scientific notation) This number is named in honor of Amedeo Avogadro ( )

4 Molar Mass The Mass of 1 mole (in grams) Equal to the numerical value of the average atomic mass (get from periodic table), or add the atoms together for a molecule 1 mole of C atoms = 12.0 g 1 mole of Mg atoms = 24.3 g 1 mole of O 2 molecules = 32.0 g Diatomic elements are: H, N, O, F, Cl, Br, I

5 Molar Mass of Compounds The molar mass (MM) of a compound is determined the same way, except now you add up all the atomic masses for the molecule (or compound) Ex. Molar mass of CaCl 2 Avg. Atomic mass of Calcium = 40.08g Avg. Atomic mass of Chlorine = 35.45g Molar Mass of calcium chloride = g/mol Ca + (2 X 35.45) g/mol Cl g/mol CaCl 2 20 Ca Cl 35.45

6 Atoms or Molecules Flowchart Divide by 6.02 X Multiply by 6.02 X Moles Divide by atomic/molar mass from periodic table Multiply by atomic/molar mass from periodic table Mass (grams)

7 Practice Calculate the Molar Mass of calcium phosphate Formula = Ca 3 (PO 4 ) 2 Masses elements: Ca: 3 Ca s X 40.1 = P: 2 P s X 31.0 = O: 8 O s X 16.0 = g 62.0 g g Molar Mass = 120.3g g g/mol g

8 Calculations molar mass Avogadro s number Grams Moles particles Everything must go through Moles!!!

9 Atoms/Molecules and Grams How many atoms of Cu are present in 35.4 g of Cu? 35.4 g Cu 1 mol Cu 6.02 X atoms Cu 63.5 g Cu 1 mol Cu = 3.4 X atoms Cu

10 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon baking soda 1 teaspoon salt 2 cups semisweet chocolate chips Makes 3 dozen How many eggs are needed to make 3 dozen cookies? How much butter is needed for the amount of chocolate chips used? How many eggs would we need to make 9 dozen cookies? How much brown sugar would I need if I had 1 ½ cups white sugar?

11 Cookies and Chemistry Huh!?!? Just like chocolate chip cookies have recipes, chemists have recipes as well Instead of calling them recipes, we call them reaction equations Furthermore, instead of using cups and teaspoons, we use moles Lastly, instead of eggs, butter, sugar, etc. we use chemical compounds as ingredients

12 Chemistry Recipes Looking at a reaction tells us how much of something you need to react with something else to get a product (like the cookie recipe) Be sure you have a balanced reaction before you start! Example: 2 Na + Cl 2 2 NaCl This reaction tells us that by mixing 2 moles of sodium with 1 mole of chlorine we will get 2 moles of sodium chloride What if we wanted 4 moles of NaCl? 10 moles? 50 moles?

13 Mole Ratios These mole ratios can be used to calculate the moles of one chemical from the given amount of a different chemical Example: How many moles of chlorine is needed to react with 5 moles of sodium (without any sodium left over)? 2 Na + Cl 2 2 NaCl 5 moles Na 1 mol Cl 2 2 mol Na = 2.5 moles Cl 2

14 Mole-Mole Conversions How many moles of sodium chloride will be produced if you react 2.6 moles of chlorine gas with an excess (more than you need) of sodium metal? 2 Na + Cl 2 2 NaCl

15 Mole-Mass Conversions Most of the time in chemistry, the amounts are given in grams instead of moles We still go through moles and use the mole ratio, but now we also use molar mass to get to grams Example: How many grams of chlorine are required to react completely with 5.00 moles of sodium to produce sodium chloride? 2 Na + Cl 2 2 NaCl 5.00 moles Na 1 mol Cl g Cl 2 2 mol Na 1 mol Cl 2 = 177g Cl 2

16 Practice Calculate the mass in grams of Iodine required to react completely with 0.50 moles of aluminum. 2 Al + 3 I 2 2 AlI 3

17 Mass-Mole We can also start with mass and convert to moles of product or another reactant We use molar mass and the mole ratio to get to moles of the compound of interest Calculate the number of moles of ethane (C 2 H 6 ) needed to produce 10.0 g of water 2 C 2 H O 2 4 CO H g H 2 O 1 mol H 2 O 2 mol C 2 H g H 2 O 6 mol H 2 0 = mol C 2 H 6

18 Practice Calculate how many moles of oxygen are required to make 10.0 g of aluminum oxide 4 Al + 3 O 2 2 Al 2 O 3

19 Practice Write the balanced reaction for hydrogen gas reacting with oxygen gas. H 2 + O 2 H 2 O How many moles of each reactants are needed? What if we wanted 4 moles of water how many moles of each reactant would you need? What if we had 3 moles of oxygen, how much hydrogen would we need to react and how much water would we get? What if we had 50 moles of hydrogen, how much oxygen would we need and how much water produced?

20 Practice Write the balanced reaction for hydrogen gas reacting with oxygen gas. 2 H 2 + O 2 2 H 2 O How many moles of reactants are needed? What if we wanted 4 moles of water? 4 mol H 2 2 mol O 2 2 mol H 2 1 mol O 2 What if we had 3 moles of oxygen, how much hydrogen would we need to react and how much water would we get? 6 mol H 2, 6 mol H 2 O What if we had 50 moles of hydrogen, how much oxygen would we need and how much water produced? 25 mol O 2, 50 mol H 2 O

21 Practice A 2 + 2B 2AB What is the mole ratio of substance A to substance AB? What is the mole ratio of substance A to substance B? What is the mole ratio of substance B to substance AB? Show the work for the problems below: If you have 4 moles of substance A, how many moles of substance AB can you produce? If you have 10 moles of substance B and an excess of substance A, how many moles of substance AB can you produce?

22 Mass-Mass Conversions Most often we are given a starting mass and want to find out the mass of a product we will get (called theoretical yield) Or how much of another reactant we need to completely react with it (no leftover ingredients!) Now we must go from grams to moles, mole ratio, and back to grams of compound we are interested in ga mol A mol B gb

23 Mass-Mass Conversion Ex. Calculate how many grams of ammonia are produced when you react 2.00g of nitrogen with excess hydrogen. N 2 + H 2 NH 3 1. Make sure you have a balanced equation. 2. Convert grams of nitrogen to moles of nitrogen 3. Convert moles of nitrogen to moles of ammonia 4. Then, convert moles of ammonia to grams of ammonia With a partner discuss which values you will need for each step above. Then, work the problem. Hint: ga mol A mol B gb

24 Mass-Mass Conversion Ex. Calculate how many grams of ammonia are produced when you react 2.00g of nitrogen with excess hydrogen. N H 2 2 NH 3 ga mol A mol B gb

25 Practice How many grams of calcium nitride are produced when 2.00 g of calcium reacts with an excess of nitrogen? Ca + N 2 Ca 3 N 2

26 Theoretical, Actual, and Percent Yield Theoretical yield: the maximum amount of product, which is calculated using the balanced equation. Actual yield: the amount of product obtained when the reaction takes place Percent yield: the ratio of actual yield to theoretical yield Percent yield = actual yield (g) x 100 theoretical yield (g) 26

27 Percent Yield 27

28 Calculating Percent Yield Suppose you have prepared cookie dough to make 5 dozen cookies. The phone rings and you answer. While you talk, a sheet of 12 cookies burns, and you have to throw them out. The rest of the cookies you make are okay. What is the percent yield of edible cookies? Theoretical yield: 60 cookies possible Actual yield: Percent yield: 48 cookies to eat 48 cookies x 100% = 80.% yield 60 cookies 28

29 Learning Check With a limited amount of oxygen, the reaction of carbon and oxygen produces carbon monoxide. 2C(g) + O 2 (g) 2CO(g) What is the percent yield if 40.0 g of CO are produced when 30.0 g of O 2 are used? 1) 25.0% 2) 75.0% 3) 76.2% 29

30 Solution STEP 1 Given: 40.0 g of CO produced (actual) 30.0 g of O 2 used Need: percent yield of CO STEP 2 Write a plan to calculate % yield of CO: g of O 2 moles of moles of g of CO O 2 CO (theoretical) Percent yield of CO = g of CO (actual) x 100% g of CO (theoretical) 30

31 Solution (continued) STEP 3 Write conversion factors: 1 mole of O 2 = 32.0 g of O 2 1 mole O 2 and 32.0 g O g O 2 1 mole O 2 1 mole of O 2 = 2 moles of CO 1 mole O 2 and 2 moles CO 2 moles CO 1 mole O 2 1 mole of CO = 28.0 g of CO 1 mole CO and 28.0 g CO 28.0 g CO 1 mole CO 31

32 Solution (continued) STEP 4 Setup to calculate theoretical yield in g of O 2 : 30.0 g O 2 x 1 mole O 2 x 2 moles CO x 28.0 g CO 32.0 g O 2 1 mole O 2 1 mole CO = 52.5 g of CO (theoretical) Setup to calculate percent yield: 40.0 g CO (actual) x 100 = 76.2% yield (3) 52.5 g CO (theoretical) 32

33 Learning Check When N 2 and 5.00 g of H 2 are mixed, the reaction produces 16.0 g of NH 3. What is the percent yield for the reaction? N 2 (g) + 3H 2 (g) 2NH 3 (g) 1) 31.3% of NH 3 2) 56.9% of NH 3 3) 80.0% of NH 3 33

34 Solution 2) 56.9% STEP 1 Given: 16.0 g of NH 3 produced (actual) 5.00 g of H 2 used Need: percent yield of NH 3 STEP 2 Write a plan to calculate % yield of NH 3 : g of H 2 moles of moles of g of NH 3 H 2 NH 3 (theoretical) Percent yield of NH 3 = g of NH 3 (actual) x 100% g of NH 3 (theoretical) 34

35 Solution (continued) STEP 3 Write conversion factors: 1 mole of H 2 = 2.02 g of H 2 1 mole H 2 and 2.02 g H g H 2 1 mole H 2 1 mole of H 2 = 2 moles of NH 3 1 mole H 2 and 2 moles NH 3 2 moles NH 3 1 mole H 2 1 mole of NH 3 = 17.0 g of NH 3 1 mole NH 3 and 17.0 g NH g NH 3 1 mole NH 3

36 Solution (continued) STEP 4 Setup to calculate theoretical yield of g of NH 3 : 5.00 g H 2 x 1 mole H 2 x 2 moles NH 3 x 17.0 g NH g H 2 3 moles H 2 1 mole NH 3 = 28.1 g of NH 3 (theoretical) Setup to calculate percent yield: Percent yield = 16.0 g NH 3 x 100 = 56.9% yield (2) 28.1 g NH 3 36

37 Guide to Calculations for Percent Yield 37

38 Limiting Reactant A limiting reactant in a chemical reaction is the substance that is used up limits the amount of product that can form and stops the reaction 38

39 Reacting Amounts In a table setting, there is 1plate, 1 fork, 1 knife, and 1 spoon. How many table settings are possible from 5 plates, 6 forks, 4 spoons, and 7 knives? What is the limiting item? 39

40 Reacting Amounts (continued) Only 4 place settings are possible. Initially Used Left over Plates Forks Spoons Knives The limiting item is the spoon. 40

41 Example 1 of an Everyday Limiting Reactant How many peanut butter sandwiches could be made from 8 slices of bread and 1 jar of peanut butter? With 8 slices of bread, only 4 sandwiches could be made. The bread is the limiting item. 41

42 Example 2 of an Everyday Limiting Reactant How many peanut butter sandwiches could be made from 8 slices bread and 1 tablespoon of peanut butter? With 1 tablespoon of peanut butter, only 1 sandwich could be made. The peanut butter is the limiting item. 42

43 Limiting Reactant When 4.00 moles of H 2 is mixed with 2.00 moles of Cl 2, how many moles of HCl can form? H 2 (g) + Cl 2 (g) 2HCl(g) 4.00 moles 2.00 moles??? Moles Calculate the moles of product that each reactant, H 2 and Cl 2, could produce. The limiting reactant is the one that produces the smaller number of moles of product. 43

44 Limiting Reactant (continued) HCl from H moles H 2 x 2 moles HCl = 8.00 moles of HCl 1 moles H 2 HCl from Cl moles Cl 2 x 2 moles HCl = 4.00 moles of HCl 1 mole Cl moles of HCl is the smaller number of moles produced. Thus, Cl 2 will be used up. The limiting reactant is Cl 2. 44

45 Limiting Reactants Using Mass If 4.80 moles Ca are mixed with 2.00 moles N 2, which is the limiting reactant? 3Ca(s) + N 2 (g) Ca 3 N 2 (s) Moles of Ca 3 N 2 from Ca 4.80 moles Ca x 1 mole Ca 3 N 2 = 1.60 moles of Ca 3 N 2 3 moles Ca (Ca is used up) Moles of Ca 3 N 2 from N moles N 2 x 1 mole Ca 3 N 2 = 2.00 moles of Ca 3 N 2 1 mole N 2 Ca is used up. Thus, Ca is the limiting reactant. 45

46 Learning Check What is the mass of water that can be produced when 8.00 g of H 2 and 24.0 g of O 2 react? 2H 2 (g) + O 2 (g) 2H 2 O(l) 1) 8.0 g of H 2 O 2) 27.0 g of H 2 O 3) 72 g of H 2 O 46

47 Solution 3) 72 g of H 2 O Moles of H 2 O from H 2 : 8.00 g H 2 x 1 mole H 2 x 2 moles H 2 O = 4.0 moles of H 2 O Moles of H 2 O from O 2 : 2.0 g H 2 2 moles H g O 2 x 1 mole O 2 x 2 moles H 2 O = 1.50 moles of H 2 O 32.0 g O 2 1 mole O 2 Smaller number of moles of H 2 O 1.50 moles H 2 O x 18.0 g H 2 O = 27.0 g of H 2 O 1 mole H 2 O 47

48 Guide to Calculating Product from a Limiting Reactant 48

49 Check Calculations Equation H 2 Cl 2 2HCl Initially 4.00 moles 2.00 moles 0 mole Reacted/ Formed Left after reaction 2.00 moles 2.00 moles moles 2.00 moles ( ) Excess 0 moles ( ) Limiting 4.00 moles ( ) Product possible 49

50 Limiting Reactant A limiting reactant in a chemical reaction is the substance that is used up limits the amount of product that can form and stops the reaction 50

51 Reacting Amounts In a table setting, there is 1plate, 1 fork, 1 knife, and 1 spoon. How many table settings are possible from 5 plates, 6 forks, 4 spoons, and 7 knives? What is the limiting item? 51

52 Reacting Amounts (continued) Only 4 place settings are possible. Initially Used Left over Plates Forks Spoons Knives The limiting item is the spoon. 52

53 Example 1 of an Everyday Limiting Reactant How many peanut butter sandwiches could be made from 8 slices of bread and 1 jar of peanut butter? With 8 slices of bread, only 4 sandwiches could be made. The bread is the limiting item. 53

54 Example 2 of an Everyday Limiting Reactant How many peanut butter sandwiches could be made from 8 slices bread and 1 tablespoon of peanut butter? With 1 tablespoon of peanut butter, only 1 sandwich could be made. The peanut butter is the limiting item. 54

55 Limiting Reactant When 4.00 moles of H 2 is mixed with 2.00 moles of Cl 2, how many moles of HCl can form? H 2 (g) + Cl 2 (g) 2HCl(g) 4.00 moles 2.00 moles??? Moles Calculate the moles of product that each reactant, H 2 and Cl 2, could produce. The limiting reactant is the one that produces the smaller number of moles of product. 55

56 Limiting Reactant (continued) HCl from H moles H 2 x 2 moles HCl = 8.00 moles of HCl 1 moles H 2 HCl from Cl moles Cl 2 x 2 moles HCl = 4.00 moles of HCl 1 mole Cl moles of HCl is the smaller number of moles produced. Thus, Cl 2 will be used up. The limiting reactant is Cl 2. 56

57 Limiting Reactants Using Mass If 4.80 moles Ca are mixed with 2.00 moles N 2, which is the limiting reactant? 3Ca(s) + N 2 (g) Ca 3 N 2 (s) Moles of Ca 3 N 2 from Ca 4.80 moles Ca x 1 mole Ca 3 N 2 = 1.60 moles of Ca 3 N 2 3 moles Ca (Ca is used up) Moles of Ca 3 N 2 from N moles N 2 x 1 mole Ca 3 N 2 = 2.00 moles of Ca 3 N 2 1 mole N 2 Ca is used up. Thus, Ca is the limiting reactant. 57

58 Learning Check What is the mass of water that can be produced when 8.00 g of H 2 and 24.0 g of O 2 react? 2H 2 (g) + O 2 (g) 2H 2 O(l) 1) 8.0 g of H 2 O 2) 27.0 g of H 2 O 3) 72 g of H 2 O 58

59 Solution 3) 72 g of H 2 O Moles of H 2 O from H 2 : 8.00 g H 2 x 1 mole H 2 x 2 moles H 2 O = 4.0 moles of H 2 O Moles of H 2 O from O 2 : 2.0 g H 2 2 moles H g O 2 x 1 mole O 2 x 2 moles H 2 O = 1.50 moles of H 2 O 32.0 g O 2 1 mole O 2 Smaller number of moles of H 2 O 1.50 moles H 2 O x 18.0 g H 2 O = 27.0 g of H 2 O 1 mole H 2 O 59

60 Guide to Calculating Product from a Limiting Reactant 60

61 Limiting Limiting Reactant: Example Reactant 10.0g of aluminum reacts with 35.0 grams of chlorine gas to produce aluminum chloride. Which reactant is limiting, which is in excess, and how much product is produced? 2 Al + 3 Cl 2 2 AlCl 3 Start with Al: 10.0 g Al 1 mol Al 2 mol AlCl g AlCl 3 Now Cl 2 : 27.0 g Al 2 mol Al 1 mol AlCl g Cl 2 1 mol Cl 2 2 mol AlCl g AlCl g Cl 2 3 mol Cl 2 1 mol AlCl 3 = 49.4g AlCl 3 = 43.9g AlCl 3

62 LR Example Continued We get 49.4g of aluminum chloride from the given amount of aluminum, but only 43.9g of aluminum chloride from the given amount of chlorine. Therefore, chlorine is the limiting reactant. Once the 35.0g of chlorine is used up, the reaction comes to a complete.

63 Limiting Reactant Practice 15.0 g of potassium reacts with 15.0 g of iodine. Calculate which reactant is limiting and how much product is made.

64 Finding the Amount of Excess By calculating the amount of the excess reactant needed to completely react with the limiting reactant, we can subtract that amount from the given amount to find the amount of excess. Can we find the amount of excess potassium in the previous problem?

65 Finding Excess Practice 15.0 g of potassium reacts with 15.0 g of iodine. 2 K + I 2 2 KI We found that Iodine is the limiting reactant, and 19.6 g of potassium iodide are produced g I 2 1 mol I 2 2 mol K 39.1 g K 254 g I 2 1 mol I 2 1 mol K = 4.62 g K USED! 15.0 g K 4.62 g K = g K EXCESS Given amount of excess reactant Amount of excess reactant actually used Note that we started with the limiting reactant! Once you determine the LR, you should only start with it!

66 Limiting Reactant: Recap 1. You can recognize a limiting reactant problem because there is MORE THAN ONE GIVEN AMOUNT. 2. Convert ALL of the reactants to the SAME product (pick any product you choose.) 3. The lowest answer is the correct answer. 4. The reactant that gave you the lowest answer is the LIMITING REACTANT. 5. The other reactant(s) are in EXCESS. 6. To find the amount of excess, subtract the amount used from the given amount. 7. If you have to find more than one product, be sure to start with the limiting reactant. You don t have to determine which is the LR over and over again!

67 1 gram of Chalk What is the formula for Chalk?

How many molecules are in 0.25 moles of CH 4?

How many molecules are in 0.25 moles of CH 4? Mass Moles- Particle Particles can be atoms, molecules, ions, etc. In one mole of particles, there are 6.02x10 23 particles These particles are so small and we need so many of them to be on a human scale,

More information

Stoichiometry World of Chemistry: Chapter 9

Stoichiometry World of Chemistry: Chapter 9 Stoichiometry World of Chemistry: Chapter 9 Chocolate Chip Cookies!! 1 cup butter 1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs 2 1/2 cups all-purpose flour 1 teaspoon

More information

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1 STOICHIOMETRY Engr. Yvonne Ligaya F. Musico 1 Stoichiometry The study in chemistry dealing with calculations based on balanced chemical equations. The branch of chemistry dealing with mass relationships

More information

Chapter 5 Chemical Reactions Law of Conservation of Mass and Quantities 5.7 Mole Relationships in Chemical Equations

Chapter 5 Chemical Reactions Law of Conservation of Mass and Quantities 5.7 Mole Relationships in Chemical Equations Chapter 5 Chemical Reactions and Quantities Law of Conservation of Mass 5.7 Mole Relationships in Chemical Equations The Law of Conservation of Mass indicates that in an ordinary chemical reaction, Matter

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Proportional Relationships

Proportional Relationships Stoichiometry Video Proportional Relationships 2 1/4 c. flour 1 tsp. baking soda 1 tsp. salt 1 c. butter 3/4 c. sugar 3/4 c. brown sugar 1 tsp vanilla extract 2 eggs 2 c. chocolate chips Makes 5 dozen

More information

3/6/2018. Limiting Reactant. Reacting Amounts. Reacting Amounts. Limiting Reactants. Example of Everyday Limiting Reactant.

3/6/2018. Limiting Reactant. Reacting Amounts. Reacting Amounts. Limiting Reactants. Example of Everyday Limiting Reactant. Chapter 9 Lecture Limiting Reactant Chapter 9 Chemical Quantities in Reactions 9.4 Limiting Reactants Fifth Edition A limiting reactant in a chemical reaction is the substance that is used up first stops

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

Math-tastic! Lesson 9.5 Limiting Reagent & Percent Yield 2/21/2015. Identify the limiting reagent in a reaction. Limiting Reactants OBJECTIVES:

Math-tastic! Lesson 9.5 Limiting Reagent & Percent Yield 2/21/2015. Identify the limiting reagent in a reaction. Limiting Reactants OBJECTIVES: . Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.5: Limiting Reagent & Percent Yield 121 Lesson 9.5 Limiting Reagent & Percent Yield OBJECTIVES: Identify the limiting reagent

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

Stoichiometry Ch. 11. I. Stoichiometric Calculations

Stoichiometry Ch. 11. I. Stoichiometric Calculations Stoichiometry Ch. 11 I. Stoichiometric Calculations Background on things you NEED to know how to do: 1. Name/write correct chemical formula 2. Write chemical equations 3. Balance chemical equations 4.

More information

Limiting Reactants. Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings

Limiting Reactants. Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings Limiting Reactants Copyright 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings Limiting Reactants Limiting Reactant used up in a reaction Determines/limits the amount of product Stops the

More information

Stoichiometry. The study of quantities of substances in chemical reactions

Stoichiometry. The study of quantities of substances in chemical reactions Stoichiometry The study of quantities of substances in chemical reactions Interpreting Chemical Equations N 2 + 3 H 2 2 NH 3 Particles: 1 molecule of Nitrogen reacts with 3 molecules of Hydrogen to produce

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

Announcements. discussion tomorrow. tomorrow. 10/15 (Type I) and Wednesday, 10/17 (Type II) by 7:00pm. 1. Bring handout from Tuesday to

Announcements. discussion tomorrow. tomorrow. 10/15 (Type I) and Wednesday, 10/17 (Type II) by 7:00pm. 1. Bring handout from Tuesday to Announcements 1. Bring handout from Tuesday to discussion tomorrow. 2. Lab write-up and text W due tomorrow. 3. Electronic omework due Monday, 10/15 (Type I) and Wednesday, 10/17 (Type II) by 7:00pm Stoichiometry

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction.

Unit 10: Stoichiometry. Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Unit 10: Stoichiometry Stoichiometry= the process of using a to determine the relative amounts of reactants and products involved in a reaction. Info given by a chemical equation: Chemical changes involve

More information

Limiting Reactants. and Percentage Yield. Section 3

Limiting Reactants. and Percentage Yield. Section 3 GO ONLINE Section 3 8E Main Ideas One reactant limits the product of a reaction. Comparing the actual and theoretical yields helps chemists determine the reaction s efficiency. 8E perform stoichiometric

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry

Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Ch 8 Quant. in Chem RXNs/Stoichiometry STUDY GUIDE Accelerated Chemistry Name /108 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information

**continued on next page**

**continued on next page** Chapter 9 Stoichiometry Section 9.1 Introduction to Stoichiometry Standard.e.: Students know how to calculate the masses of reactant and products in a chemical reaction from the mass of one of the reactants

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Chapter 9. Stoichiometry. Mr. Mole. NB page 189 Chapter 9 Stoichiometry Mr. Mole NB page 189 review Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry study of the relationships in a

Stoichiometry study of the relationships in a Note Taking Guide: Episode 801 Name Stoichiometry study of the relationships in a based on equations 2 Mg + O 2 2 MgO The in a give the for the involved in the. Ex. Problem: When elemental aluminum reacts

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

Chapter 6 Chemical Reactions: Mole and Mass Relationships

Chapter 6 Chemical Reactions: Mole and Mass Relationships Chapter 6 Chemical Reactions: Mole and Mass Relationships 6.1 The Mole and Avogadro s What is a Mole? - A Chemist s way of counting! - Cooks don t count out individual grains of sugar or rice when they

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

UNIT 5: MOLES & STOICHIOMETRY

UNIT 5: MOLES & STOICHIOMETRY *KEY* UNIT 5: MOLES & STOICHIOMETRY *KEY* VOCABULARY: 1. Mole 2. Formula mass (FM) 3. Gram formula mass (GFM) 4. Coefficient 5. Subscript 6. Species 7. Law of conservation of mass 8. Law of conservation

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

CHEMISTRY MOLES PACKET PAGE 1. Chemistry Moles Packet

CHEMISTRY MOLES PACKET PAGE 1. Chemistry Moles Packet CHEMISTRY MOLES PACKET PAGE 1 Chemistry Moles Packet CHEMISTRY MOLES PACKET PAGE 2 INTRODUCTION TO MOLES We are about to start on a unit of chemical calculations called stoichiometry. Stoichiometry is

More information

1.3: Mole Ratio, Limiting & Excess Reactants, Percent Yield. Ms. Kiely Coral Gables Senior High IB Chemistry SL

1.3: Mole Ratio, Limiting & Excess Reactants, Percent Yield. Ms. Kiely Coral Gables Senior High IB Chemistry SL 1.3: Mole Ratio, Limiting & Excess Reactants, Percent Yield Ms. Kiely Coral Gables Senior High IB Chemistry SL Bell-Ringer #4 Which of the following are empirical formulas? I. C₆H₆ II. C₃H₈ III. N₂O₄ IV.

More information

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9. 9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.5 Calculations Involving a Limiting Reactant 9.6 Percent Yield mole-to-mole

More information

Atoms, Molecules, and the Mole

Atoms, Molecules, and the Mole The Mole Now that we know how to write and name chemical compounds, we need to understand how chemists use these formulas quantitatively. As chemists, we need to know how many atoms or molecules are reacting

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS In all chemical reactions there is a conservation of mass, energy, and charge. (3.3a) A balanced chemical equation represents conservation

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Notes on Mole 12.notebook. October 25, CaS. Ca + S. Oct 14 6:22 PM. Oct 14 6:23 PM. Oct 14 6:24 PM. Oct 14 6:23 PM MOLE.

Notes on Mole 12.notebook. October 25, CaS. Ca + S. Oct 14 6:22 PM. Oct 14 6:23 PM. Oct 14 6:24 PM. Oct 14 6:23 PM MOLE. How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the mole,

More information

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another. 8/9/015 A chemical change (a chemical reaction) converts one substance into another. CHAPTER 3: PART Chemical Equations and Stoichiometry Chemical reactions involve: 1. Breaking bonds in the reactants.

More information

Chapter 12 Stoichiometry. Mr. Mole

Chapter 12 Stoichiometry. Mr. Mole Chapter 12 Stoichiometry Mr. Mole Let s make some Cookies! When baking cookies, a recipe is usually used, telling the exact amount of each ingredient. If you need more, you can double or triple the amount

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Right Side NOTES ONLY

Right Side NOTES ONLY Ch. 8 Stoichiometry Title and Highlight TN Ch 8.1 Topic: EQ: Right Side NOTES ONLY Date Write Question out (left side of red line) and answer it (Highlight answer) based on from what you read. Write out

More information

Name: Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 5: Moles & Stoichiometry

Name: Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 5: Moles & Stoichiometry Name: Mr. Dolgos Regents Chemistry NOTE PACKET Unit 5: Moles & Stoichiometry 1 UNIT 5: MOLES & STOICHIOMETRY VOCABULARY: 1. Mole 2. Formula mass (FM) 3. Gram formula mass (GFM) 4. Coefficient 5. Subscript

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry Chapter 3 : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 : Calculations with Chemical Formulas and Equations AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier Law of Conservation of Mass We may lay it down as an incontestable axiom that,

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS

STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS STOICHIOMETRY & LIMITING REACTANTS UNDERSTANDING MASS RELATIONSHIPS IN CHEMICAL REACTIONS If the number of atoms is conserved in a chemical reaction, the mass must also be conserved as expected from the

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 4.1 - The Mole Concept The Atomic Mass Unit You need to know the atomic mass unit and the relative atomic mass. In Unit C3.3, 1 atomic mass unit

More information

Unit 6: Chemical Quantities. Understanding The Mole

Unit 6: Chemical Quantities. Understanding The Mole Unit 6: Chemical Quantities Understanding The Mole 1 How do We Typically Measure Matter? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters.

More information

Student Version Notes: Unit 5 Moles & Stoichiometry

Student Version Notes: Unit 5 Moles & Stoichiometry Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 5 Moles & Stoichiometry Name: KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

EXAM 1 Review Session

EXAM 1 Review Session EXAM 1 Review Session DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018 www.mioy.org/chem161 OUTLINE 1. Significant Figures 2. Dimensional Analysis 3. Elements and Atoms 4. Naming Compounds 5.

More information

CHAPTER 6 CHEMICAL COMPOSITION

CHAPTER 6 CHEMICAL COMPOSITION Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 6 CHEMICAL COMPOSITION Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Today is Tuesday, May (!) 1 st, 2018

Today is Tuesday, May (!) 1 st, 2018 In This Lesson: Stoichiometry (Lesson 4 of 4) Today is Tuesday, May (!) 1 st, 2018 Stuff You Need: Calculator Periodic Table Pre-Class: How does an airbag work? In solving a problem of this sort, the grand

More information

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol) Avogadro s Number and the Mole Molecular weight: The sum of atomic weights of all atoms in a molecule. Formula weight: The sum of atomic weights of all atoms in one formula unit of any compound. Mole:

More information

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015

STOICHIOMETRY is. Math-tastic! Let s make some Cookies! 2/21/2015 Math-tastic! Unit 9: Math of Chemistry Part II - Stoichiometry Lesson # 9.4: The Arithmetic of Equations Mr. Mole 87 STOICHIOMETRY is Greek for measuring elements Pronounced stoy-kee-ahm-uhtree Defined

More information

Stoichiometry & Chemical Reactions

Stoichiometry & Chemical Reactions Stoichiometry & Chemical Reactions Objectives: 1. Students will convert data from one unit of measure to another using dimensional analysis and stoichiometry. 2. Students will interpret data from data

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

How do you measure matter?

How do you measure matter? How do you measure matter? You may count how many you have. Determine a substances mass and weight. Determine a substances volume. But how can you relate these three types of measurements to one another?

More information

Moles, Mass, and Limiting Reactants

Moles, Mass, and Limiting Reactants Moles, Mass, and Limiting Reactants Interpreting a Chemical Equation 1. How many moles of chlorine gas react with 1 mol of hydrogen gas according to the balanced chemical equation? (a) 1 mol (b) 2 mol

More information

Quantitative Composition of Compounds

Quantitative Composition of Compounds Chapter 7 Quantitative Composition of Compounds Making new chemicals is much like following a recipe from a cook book... 1 cup of flour + 2 eggs + ½ tsp baking powder 5 pancakes except you don t get to

More information

Chemical Reactions and Quantities. Chapter 7

Chemical Reactions and Quantities. Chapter 7 Chemical Reactions and Quantities Chapter 7 Chemical Reactions occur Everywhere when fuel burns with oxygen in our cars to make the car move when we cook our food when we dye our hair in our bodies, chemical

More information

St Robert of Newminster Catholic School and Sixth Form College

St Robert of Newminster Catholic School and Sixth Form College St Robert of Newminster Catholic School and Sixth Form College Year 12 Pre-Course Tasks: CHEMISTRY Exercise Mark Grade Atomic structure Chemical bonding Chemical equations Maths for chemists Moles Name:

More information

Chapter 4: Chemical and Solution Stoichiometry

Chapter 4: Chemical and Solution Stoichiometry Chapter 4: Chemical and Solution Stoichiometry (Sections 4.1-4.4) 1 Reaction Stoichiometry The coefficients in a balanced chemical equation specify the relative amounts in moles of each of the substances

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms Topic 7: The Mole Concept Relating Mass to Numbers of Atoms (Chapter 3 in Modern Chemistry beginning on p.82) In order to understand the quantitative parts of chemistry, there are three very important

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Isotope: An atom of an element that has the same number of protons as the element, but different numbers of neutrons.

Isotope: An atom of an element that has the same number of protons as the element, but different numbers of neutrons. SCH 4CI Determining the Mass of Atoms Isotope: An atom of an element that has the same number of protons as the element, but different numbers of neutrons. Example Oxygen 16 O 8 17 O 8 18 O 8 Isotopic

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed.

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed. Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements Brady & Senese, 5th Ed. Index 3.1 The mole conveniently links mass to number of atoms or molecules 3.2 Chemical formulas

More information

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A:

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A: : The Mole- 6.02 x 10 23 ODE TO A MOLE I find that my heart beat goes out of control Just thinking how useful to man is the mole! So perfectly compact. What could be neater? Only occupying twenty-two and

More information

Unit 9 Stoichiometry Notes

Unit 9 Stoichiometry Notes Unit 9 Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations to

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume.

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume. The Mole Concept The mole is a convenient unit A mole is the number of atoms present in exactly 12 g of the isotope carbon-12. In 12 g of carbon-12 there are 6.022 x 10 23 carbon atoms It is easily converted

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Problem Solving. Limiting Reactants

Problem Solving. Limiting Reactants Skills Worksheet Problem Solving Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya PowerPoint to accompany Chapter 2 Stoichiometry: Calculations with Chemical Formulae and Equations Dr V Paideya Chemical Equations CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Figure 2.4 Chemical Equations

More information

September 18, reaction stoichiometry.notebook. May 18 10:07 AM. Sep 13 8:55 AM REACTION STOICHIOMETRY

September 18, reaction stoichiometry.notebook. May 18 10:07 AM. Sep 13 8:55 AM REACTION STOICHIOMETRY REACTION STOICHIOMETRY COMPOSITION STOICHIOMETRY: The mass relationships of elements in a compound REACTION STOICHIOMETRY : the mass relationships between products and reactants May 18 10:07 AM Sep 13

More information

Unit 6 Chemical Analysis. Chapter 8

Unit 6 Chemical Analysis. Chapter 8 Unit 6 Chemical Analysis Chapter 8 Objectives 39 Perform calculations using the mole to calculate the molar mass 40 Perform calculations using the mole to convert between grams, number of particles, volume,

More information

UNIT 5: STOICHIOMETRY

UNIT 5: STOICHIOMETRY UNIT 5: STOICHIOMETRY Outline The Mole Molar Mass, Mass and atoms Molar Mass of Compounds Empirical Formula, Molecular Formula (Not Hydrates) Stoichiometry, Mole Ratios Limiting Reactants, Percent Yield

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number Note Taking Guide: Episode 701 Name Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.)? grains of rice = 1.94 g Avogadro s Number - the = the number Molar Mass the of one of

More information