Three-Way Tables (continued):

Size: px
Start display at page:

Download "Three-Way Tables (continued):"

Transcription

1 STAT5602 Categorical Data Analysis Mills 2015 page 110 Three-Way Tables (continued) Now let us look back over the br preference example. We have fitted the following loglinear models 1.MODELX,Y,Z logm ijk i X j Y k Z G ,df 4,p value MODELXY, Z logm ijk i X j Y k Z ij XY G ,df 3,pvalue MODELXY, XZ logm ijk i X j Y k Z ij XY ik XZ G ,df 2,pvalue MODEL XY, XZ, YZ logm ijk X i Y j Z k XY ij XZ YZ ik jk G ,df 1,p value MODEL XYZ logm ijk X i Y j Z k XY ij XZ ik YZ XYZ jk ijk G 2 0,df 0 When one model is nested within the other, we can conduct a Chi-square test to compare the fit of the two models. When the simpler model holds, the asymptotic distribution for the difference in the likelihood ratio statistics for the two models, G 2, is Chi-square with degrees of freedom equal to df,, the difference in the degrees of freedom associated with the two models (ref. Bishop, Fienberg & Holl 1975, Haberman1974, Rao 1973). We will use these ideas to find the simplest, best-fitting model.

2 STAT5602 Categorical Data Analysis Mills 2015 page 111 Consider the models XY,Z XY, XZ G with df The pvalue for testing the hypothesis that there is no difference in the fit of the two models is Therefore, we conclude that there is evidence to indicate that model XY,XZ results in a significantly better fit than model XY,Z. For models XY,XZ XY,XZ,YZ G with df The pvalue for testing the hypothesis that there is no difference in the fit of these two models is Therefore, we conclude here that there is insufficient evidence to indicate difference in the fits of these two models. These above models are only a subset of the possible models we could have fit to the br preference data. For example, we have not considered XZ, Y, YZ, X, XY, YZ XZ, YZ. The following table summarizes fitting the model of mutual independence, all possible models with one two-way interactions, all possible models with two two-way interactions, the model with three two-way interactions, the model with three-way interaction Note We are ignoring models that do not include some of the main effects. Model G 2 df p value X,Y,Z IJKIJK XY, Z 7.84 K 1IJ XZ, Y J 1IK YZ, X I 1JK XY, XZ 3.48 IJ 1K XY, YZ 6.59 JI 1K XZ, YZ KI 1J XY, XZ, YZ 2.79 I 1J 1K XYZ 0 0

3 STAT5602 Categorical Data Analysis Mills 2015 page 112 How to choose an appropriate model Stepwise Procedure In exploratory studies, we can use an algorithmic search method to help select a model. Goodman (1971) proposed methods analogous to forward selection backward elimination procedures in multiple regression analysis (Draper Smith, 1981, Chpt.6). Forward Selection Terms are added sequentially to the model until further additions do not improve the fit. At each stage, we add the term that gives the greatest improvement in fit. The maximum pvalue for the resulting model is a sensible criterion, since reduction in G 2 for different terms may have different degrees of freedom. To illustrate the forward selection process for the br preference example, we begin with the main effects model X,Y,Z logm ijk i X j Y k Z for which G ,df 4,pvalue Thus there is evidence that this model does not fit the data. If we are to add a term to this model, we have the choice of interaction terms represented by XY ij, XZ ik, or YZ jk. Thus we compare model X,Y,Z in turn to XY,Z logm ijk i X j Y k Z ij XY for which G ,df 3,pvalue XZ,Y logm ijk i X j Y k Z ik XZ for which G ,df 3,pvalue YZ, X logm ijk X i Y j Z k YZ jk for which G ,df 3,pvalue

4 STAT5602 Categorical Data Analysis Mills 2015 page 113 Comparison G 2 df p value X,Y,Z with XY, Z X, Y, Z with XZ, Y X, Y, Zwith YZ, X We look for the greatest improvement to the model X, Y, Z.The greatest improvement to this model is obtained by adding ij XY ; the corresponding pvalue of indicates that the improvement is significant. The resulting model is XY, Z ;it has an associated p value of , indicating that there is weak evidence that the model fits the data. However, using the forward selection process, it is possible we might be able to find a better fitting model yet. To do so, we would need to add an additional term to the model XY,Z. Possible choices are still two-way interaction terms represented by XZ ik, or YZ jk. Thus we compare model XY,Z in turn to XY,XZ logm ijk i X j Y k Z ij XY ik XZ for which G ,df 2,pvalue XY,YZ logm ijk X i Y j Z k XY ij YZ jk for which G ,df 2,pvalue Comparison G 2 df p value XY, Z with XY, XZ XY, Z with XY, YZ Here we see that the greatest improvement to the model XY, Z is obtained by adding XZ ik ; the pvalue associated with adding XZ ik is which indicates that the improvement is significant. The resulting model XY, XZ has an overall associated p value of , indicating that there is evidence that the model fits the data.

5 STAT5602 Categorical Data Analysis Mills 2015 page 114 Using the forward selection process, can we find an even better fitting model? To answer this question, we would need to add an additional term to the model XY,XZ. The possible option is to add the two-way interaction represented by YZ jk. Thus we compare model XY,XZ to XY,XZ,YZ logm ijk X i Y j Z k XY ij XZ YZ ik jk for which G , df 1, p value Comparing XY,XZ with XY,XZ,YZ yields G with df 1; this has associated YZ pvalue of This indicates that the model XY,XZ is not improved by adding jk (which was the only possibility). Thus the forward selection procedure terminates here, with XY, XZ as the final model of choice. Alternatively, backward elimination begins with a complex model sequentially removes terms. At each stage, we remove the term for which there is the least effect on the model (i.e. terms that are not significant). We stop when any further deletion leads to a significantly poorer-fitting model. To illustrate the backward elimination process for the br preference example, we begin with the saturated model XYZ logm ijk X i Y j Z k XY ij XZ ik YZ XYZ jk ijk for which G 2 0, df 0. This saturated model fits the data perfectly. If we are to delete just one term from this model, based on the hierarchical principle, the only possibility here would be XYZ ijk. Thus, we compare model XYZ toxy, XZ, YZ XY, XZ, YZ logm ijk X i Y j Z k XY ij XZ YZ ik jk for which G , df 1, pvalue With a pvalue of we have some evidence that the model XY, XZ, YZ fits the data. Comparing model XY, XZ, YZ with model XYZ yields G with df 1; the XYZ pvalue associated with dropping ijk from the model is This suggests there is no statistically significant difference in the fits of these two models hence suggests that we can eliminate XYZ ijk from the model. Using the backward elimination process, can we find an even more parsimonious model that fits the data? This would mean that we would need to remove a term from model XY, XZ, YZ. Our possible choices are two-way interactions represented by

6 STAT5602 Categorical Data Analysis Mills 2015 page 115 XY ij, XZ ik, or YZ jk.thus, we compare model XY, XZ, YZ in turn to XY, XZ logm ijk i X j Y k Z ij XY ik XZ for which G , df 2, pvalue XY, YZ logm ijk X i Y j Z k XY YZ ij ik for which G , df 2, pvalue XZ, YZ logm ijk X i Y j Z k XZ YZ ij ik for which G , df 2, pvalue Comparison G 2 df p value XY, XZ, YZ with XY, XZ XY, XZ, YZ with XY, YZ XY, XZ, YZ with XZ, YZ The smallest effect on the fit of the model XY, XZ, YZ occurs when removing YZ jk ; the p value associated with its removal is , indicating that the effect removed is not statistically significant. The resulting model is XY, XZ this model has an associated p value of , indicating that there is some evidence that this model fits the data. Can we find a still more parsimonious model that fits the data by removing a term from the model XY, XZ? We have two possible choices - ik XY or jk XZ.Thus, we compare model XY, XZ in turn to XY, Z logm ijk i X j Y k Z ij XY for which G , df 3, pvalue XZ, Y logm ijk i X j Y k Z ik XZ for which G , df 3, pvalue

7 STAT5602 Categorical Data Analysis Mills 2015 page 116 Comparison G 2 df p value XY, XZ with XY, Z XY, XZ with XZ, Y The smallest effect on the model XY, XZ results from removing jk XZ. The pvalue of associated with removing jk XZ indicates that the term being removed is statistically significant. Removing it results in a significantly poorer-fitting model. Thus, the backward elimination procedure would terminate, with XY, XZ as the model of choice. In this case, forward selection backward elimination result in the same model for the br preference example, namely XY, XZ. This is not generally the case. How should we interpret the relationships among the three variables? Recall that under our best model, estimated marginal partial odds ratios are given by ASSOCIATION Br-Prevuse Br-Temp Prevuse-Temp Marginal Partial Level Level If we treat br preference as a response variable, previous use of M temperature as explanatory variables, the relationships of interest would be between br preference previous use of br M we might wish to see if the relationship differs for individuals washing in high temperature vs low temperature These relationships could be described using the appropriate estimated partial odds ratios. For example, consider the relationship between br preference previous use of M. Given that an individual washes in high temperature, it is estimated the odds of preferring X for previous users of M is times the odds of preferring X for individuals who have never used M.

8 STAT5602 Categorical Data Analysis Mills 2015 page 117 We can make exactly the same statement for individuals who wash in low temperature. Thus, we estimate that regardless of temperature, the odds of preferring X for previous users of M is times the odds of preferring X for individuals who have never used M. Similarly, regardless of whether an individual has previously used M or not, we estimate that the odds of preferring X for individuals who wash in high temperature is times the odds of preferring X for individuals who wash in low temperature. NOTE Iit is possible to fit loglinear models to four- higher-way tables. Forward selection backward elimination procedures can be used to assist in identifying an appropriate model. However, the selection process becomes more onerous as the number of variables increases because of the rapid increase in possible associations interactions.

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as page1 Loglinear Models Loglinear models are a way to describe association and interaction patterns among categorical variables. They are commonly used to model cell counts in contingency tables. These

More information

Solution to Tutorial 7

Solution to Tutorial 7 1. (a) We first fit the independence model ST3241 Categorical Data Analysis I Semester II, 2012-2013 Solution to Tutorial 7 log µ ij = λ + λ X i + λ Y j, i = 1, 2, j = 1, 2. The parameter estimates are

More information

Various Issues in Fitting Contingency Tables

Various Issues in Fitting Contingency Tables Various Issues in Fitting Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Complete Tables with Zero Entries In contingency tables, it is possible to have zero entries in a

More information

ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T.

ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T. Exam 3 Review Suppose that X i = x =(x 1,, x k ) T is observed and that Y i X i = x i independent Binomial(n i,π(x i )) for i =1,, N where ˆπ(x) = exp(ˆα + ˆβ T x) 1 + exp(ˆα + ˆβ T x) This is called the

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals. Satoshi AOKI and Akimichi TAKEMURA

Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals. Satoshi AOKI and Akimichi TAKEMURA Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals Satoshi AOKI and Akimichi TAKEMURA Graduate School of Information Science and Technology University

More information

10.2: The Chi Square Test for Goodness of Fit

10.2: The Chi Square Test for Goodness of Fit 10.2: The Chi Square Test for Goodness of Fit We can perform a hypothesis test to determine whether the distribution of a single categorical variable is following a proposed distribution. We call this

More information

Lecture 8: Summary Measures

Lecture 8: Summary Measures Lecture 8: Summary Measures Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 8:

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Three-Way Contingency Tables

Three-Way Contingency Tables Newsom PSY 50/60 Categorical Data Analysis, Fall 06 Three-Way Contingency Tables Three-way contingency tables involve three binary or categorical variables. I will stick mostly to the binary case to keep

More information

Multiple Linear Regression

Multiple Linear Regression Andrew Lonardelli December 20, 2013 Multiple Linear Regression 1 Table Of Contents Introduction: p.3 Multiple Linear Regression Model: p.3 Least Squares Estimation of the Parameters: p.4-5 The matrix approach

More information

Treatment Variables INTUB duration of endotracheal intubation (hrs) VENTL duration of assisted ventilation (hrs) LOWO2 hours of exposure to 22 49% lev

Treatment Variables INTUB duration of endotracheal intubation (hrs) VENTL duration of assisted ventilation (hrs) LOWO2 hours of exposure to 22 49% lev Variable selection: Suppose for the i-th observational unit (case) you record ( failure Y i = 1 success and explanatory variabales Z 1i Z 2i Z ri Variable (or model) selection: subject matter theory and

More information

Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann

Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann Association Model, Page 1 Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann Arbor, MI 48106. Email: yuxie@umich.edu. Tel: (734)936-0039. Fax: (734)998-7415. Association

More information

How the mean changes depends on the other variable. Plots can show what s happening...

How the mean changes depends on the other variable. Plots can show what s happening... Chapter 8 (continued) Section 8.2: Interaction models An interaction model includes one or several cross-product terms. Example: two predictors Y i = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2 + ɛ i. How

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 39 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 5. Akaike s information

More information

Exercise 7.4 [16 points]

Exercise 7.4 [16 points] STATISTICS 226, Winter 1997, Homework 5 1 Exercise 7.4 [16 points] a. [3 points] (A: Age, G: Gestation, I: Infant Survival, S: Smoking.) Model G 2 d.f. (AGIS).008 0 0 (AGI, AIS, AGS, GIS).367 1 (AG, AI,

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Correlation and regression

Correlation and regression 1 Correlation and regression Yongjua Laosiritaworn Introductory on Field Epidemiology 6 July 2015, Thailand Data 2 Illustrative data (Doll, 1955) 3 Scatter plot 4 Doll, 1955 5 6 Correlation coefficient,

More information

Cohen s s Kappa and Log-linear Models

Cohen s s Kappa and Log-linear Models Cohen s s Kappa and Log-linear Models HRP 261 03/03/03 10-11 11 am 1. Cohen s Kappa Actual agreement = sum of the proportions found on the diagonals. π ii Cohen: Compare the actual agreement with the chance

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

y = µj n + β 1 b β b b b + α 1 t α a t a + e

y = µj n + β 1 b β b b b + α 1 t α a t a + e The contributions of distinct sets of explanatory variables to the model are typically captured by breaking up the overall regression (or model) sum of squares into distinct components This is useful quite

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & Informatics Colorado School of Public Health University of Colorado Denver

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

Model Selection Procedures

Model Selection Procedures Model Selection Procedures Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Model Selection Procedures Consider a regression setting with K potential predictor variables and you wish to explore

More information

Dimensionality Reduction Techniques (DRT)

Dimensionality Reduction Techniques (DRT) Dimensionality Reduction Techniques (DRT) Introduction: Sometimes we have lot of variables in the data for analysis which create multidimensional matrix. To simplify calculation and to get appropriate,

More information

Topics in Graphical Models. Statistical Machine Learning Ryan Haunfelder

Topics in Graphical Models. Statistical Machine Learning Ryan Haunfelder Topics in Statistical Machine Learning Loglinear Models When all of the measured variables are discrete we can create a contingency table and model expected counts using log-linear models. Recall that

More information

Describing Contingency tables

Describing Contingency tables Today s topics: Describing Contingency tables 1. Probability structure for contingency tables (distributions, sensitivity/specificity, sampling schemes). 2. Comparing two proportions (relative risk, odds

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

Week 8 Hour 1: More on polynomial fits. The AIC

Week 8 Hour 1: More on polynomial fits. The AIC Week 8 Hour 1: More on polynomial fits. The AIC Hour 2: Dummy Variables Hour 3: Interactions Stat 302 Notes. Week 8, Hour 3, Page 1 / 36 Interactions. So far we have extended simple regression in the following

More information

Multiple Regression of Students Performance Using forward Selection Procedure, Backward Elimination and Stepwise Procedure

Multiple Regression of Students Performance Using forward Selection Procedure, Backward Elimination and Stepwise Procedure ISSN 2278 0211 (Online) Multiple Regression of Students Performance Using forward Selection Procedure, Backward Elimination and Stepwise Procedure Oti, Eric Uchenna Lecturer, Department of Statistics,

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: )

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: ) NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3

More information

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Balanced vs. unbalanced

More information

2.2 Classical Regression in the Time Series Context

2.2 Classical Regression in the Time Series Context 48 2 Time Series Regression and Exploratory Data Analysis context, and therefore we include some material on transformations and other techniques useful in exploratory data analysis. 2.2 Classical Regression

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

7. Assumes that there is little or no multicollinearity (however, SPSS will not assess this in the [binary] Logistic Regression procedure).

7. Assumes that there is little or no multicollinearity (however, SPSS will not assess this in the [binary] Logistic Regression procedure). 1 Neuendorf Logistic Regression The Model: Y Assumptions: 1. Metric (interval/ratio) data for 2+ IVs, and dichotomous (binomial; 2-value), categorical/nominal data for a single DV... bear in mind that

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

Topic 21 Goodness of Fit

Topic 21 Goodness of Fit Topic 21 Goodness of Fit Contingency Tables 1 / 11 Introduction Two-way Table Smoking Habits The Hypothesis The Test Statistic Degrees of Freedom Outline 2 / 11 Introduction Contingency tables, also known

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Multiple regression: Model building. Topics. Correlation Matrix. CQMS 202 Business Statistics II Prepared by Moez Hababou

Multiple regression: Model building. Topics. Correlation Matrix. CQMS 202 Business Statistics II Prepared by Moez Hababou Multiple regression: Model building CQMS 202 Business Statistics II Prepared by Moez Hababou Topics Forward versus backward model building approach Using the correlation matrix Testing for multicolinearity

More information

Estimating a Population Mean. Section 7-3

Estimating a Population Mean. Section 7-3 Estimating a Population Mean Section 7-3 The Mean Age Suppose that we wish to estimate the mean age of residents of Metropolis. Furthermore, suppose we know that the ages of Metropolis residents are normally

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

INTRODUCTION TO LOG-LINEAR MODELING

INTRODUCTION TO LOG-LINEAR MODELING INTRODUCTION TO LOG-LINEAR MODELING Raymond Sin-Kwok Wong University of California-Santa Barbara September 8-12 Academia Sinica Taipei, Taiwan 9/8/2003 Raymond Wong 1 Hypothetical Data for Admission to

More information

B. Weaver (24-Mar-2005) Multiple Regression Chapter 5: Multiple Regression Y ) (5.1) Deviation score = (Y i

B. Weaver (24-Mar-2005) Multiple Regression Chapter 5: Multiple Regression Y ) (5.1) Deviation score = (Y i B. Weaver (24-Mar-2005) Multiple Regression... 1 Chapter 5: Multiple Regression 5.1 Partial and semi-partial correlation Before starting on multiple regression per se, we need to consider the concepts

More information

Sigmaplot di Systat Software

Sigmaplot di Systat Software Sigmaplot di Systat Software SigmaPlot Has Extensive Statistical Analysis Features SigmaPlot is now bundled with SigmaStat as an easy-to-use package for complete graphing and data analysis. The statistical

More information

Linear Models (continued)

Linear Models (continued) Linear Models (continued) Model Selection Introduction Most of our previous discussion has focused on the case where we have a data set and only one fitted model. Up until this point, we have discussed,

More information

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Joshua R. Loftus Outline 1 Intro and background 2 Framework: quadratic model selection events

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

Generalized Linear Models: An Introduction

Generalized Linear Models: An Introduction Applied Statistics With R Generalized Linear Models: An Introduction John Fox WU Wien May/June 2006 2006 by John Fox Generalized Linear Models: An Introduction 1 A synthesis due to Nelder and Wedderburn,

More information

3 Way Tables Edpsy/Psych/Soc 589

3 Way Tables Edpsy/Psych/Soc 589 3 Way Tables Edpsy/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois Spring 2017

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Selection criteria Example Methods MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Lecture 5, spring 2018 Model selection tools Mathematical Statistics / Centre

More information

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010 1 Linear models Y = Xβ + ɛ with ɛ N (0, σ 2 e) or Y N (Xβ, σ 2 e) where the model matrix X contains the information on predictors and β includes all coefficients (intercept, slope(s) etc.). 1. Number of

More information

Contingency Tables Part One 1

Contingency Tables Part One 1 Contingency Tables Part One 1 STA 312: Fall 2012 1 See last slide for copyright information. 1 / 32 Suggested Reading: Chapter 2 Read Sections 2.1-2.4 You are not responsible for Section 2.5 2 / 32 Overview

More information

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21 Sections 2.3, 2.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 21 2.3 Partial association in stratified 2 2 tables In describing a relationship

More information

MSH3 Generalized linear model

MSH3 Generalized linear model Contents MSH3 Generalized linear model 7 Log-Linear Model 231 7.1 Equivalence between GOF measures........... 231 7.2 Sampling distribution................... 234 7.3 Interpreting Log-Linear models..............

More information

Correspondence Analysis

Correspondence Analysis Correspondence Analysis Q: when independence of a 2-way contingency table is rejected, how to know where the dependence is coming from? The interaction terms in a GLM contain dependence information; however,

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information

Discrete Math I Exam II (2/9/12) Page 1

Discrete Math I Exam II (2/9/12) Page 1 Discrete Math I Exam II (/9/1) Page 1 Name: Instructions: Provide all steps necessary to solve the problem. Simplify your answer as much as possible. Additionally, clearly indicate the value or expression

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Some models of genomic selection

Some models of genomic selection Munich, December 2013 What is the talk about? Barley! Steptoe x Morex barley mapping population Steptoe x Morex barley mapping population genotyping from Close at al., 2009 and phenotyping from cite http://wheat.pw.usda.gov/ggpages/sxm/

More information

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti Good Confidence Intervals for Categorical Data Analyses Alan Agresti Department of Statistics, University of Florida visiting Statistics Department, Harvard University LSHTM, July 22, 2011 p. 1/36 Outline

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Testing and Model Selection

Testing and Model Selection Testing and Model Selection This is another digression on general statistics: see PE App C.8.4. The EViews output for least squares, probit and logit includes some statistics relevant to testing hypotheses

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear relationship between: - one independent variable X and -

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 1. Developed by George Boole in 1847 2. Applied to the Design of Switching Circuit by Claude Shannon in 1939 Department of Communication Engineering, NCTU 1 2.1 Basic Operations

More information

Date Log-linear Modeling. Seminar in Methodology and Statistics Edgar Weiffenbach (with Nick Ruiz) S

Date Log-linear Modeling. Seminar in Methodology and Statistics Edgar Weiffenbach (with Nick Ruiz) S Date 26.05.2010 1 Log-linear Modeling Seminar in Methodology and Statistics Edgar Weiffenbach (with Nick Ruiz) S1422022 Date 26.05.2010 2 Overview Our project in the field Summary References Date 26.05.2010

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3 4 5 6 Full marks

More information

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data Outline Mixed models in R using the lme4 package Part 3: Longitudinal data Douglas Bates Longitudinal data: sleepstudy A model with random effects for intercept and slope University of Wisconsin - Madison

More information

AR-order estimation by testing sets using the Modified Information Criterion

AR-order estimation by testing sets using the Modified Information Criterion AR-order estimation by testing sets using the Modified Information Criterion Rudy Moddemeijer 14th March 2006 Abstract The Modified Information Criterion (MIC) is an Akaike-like criterion which allows

More information

Chapter 2: Describing Contingency Tables - II

Chapter 2: Describing Contingency Tables - II : Describing Contingency Tables - II Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu]

More information

Tuning Parameter Selection in L1 Regularized Logistic Regression

Tuning Parameter Selection in L1 Regularized Logistic Regression Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Tuning Parameter Selection in L1 Regularized Logistic Regression Shujing Shi Virginia Commonwealth University

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Marginal log-linear parameterization of conditional independence models

Marginal log-linear parameterization of conditional independence models Marginal log-linear parameterization of conditional independence models Tamás Rudas Department of Statistics, Faculty of Social Sciences ötvös Loránd University, Budapest rudas@tarki.hu Wicher Bergsma

More information

Sample Size and Power Considerations for Longitudinal Studies

Sample Size and Power Considerations for Longitudinal Studies Sample Size and Power Considerations for Longitudinal Studies Outline Quantities required to determine the sample size in longitudinal studies Review of type I error, type II error, and power For continuous

More information

Conditional Independence test for categorical data using Poisson log-linear model

Conditional Independence test for categorical data using Poisson log-linear model MPRA Munich Personal RePEc Archive Conditional Independence test for categorical data using Poisson log-linear model Michail Tsagris University of Crete March 2017 Online at https://mpra.ub.uni-muenchen.de/79464/

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

Log-linear Models for Contingency Tables

Log-linear Models for Contingency Tables Log-linear Models for Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Log-linear Models for Two-way Contingency Tables Example: Business Administration Majors and Gender A

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

Solutions for Examination Categorical Data Analysis, March 21, 2013

Solutions for Examination Categorical Data Analysis, March 21, 2013 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, Frank Miller MT 5006 LÖSNINGAR 21 mars 2013 Solutions for Examination Categorical Data Analysis, March 21, 2013 Problem 1 a.

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2018 University of California, Berkeley

PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION Integrative Biology 200 Spring 2018 University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2018 University of California, Berkeley D.D. Ackerly Feb. 26, 2018 Maximum Likelihood Principles, and Applications to

More information

8 Configural Moderator Models

8 Configural Moderator Models This is a chapter excerpt from Guilford Publications. Advances in Configural Frequency Analysis. By Alexander A. von Eye, Patrick Mair, and Eun-Young Mun. Copyright 2010. 8 Configural Moderator Models

More information

Logistic Regression Analysis

Logistic Regression Analysis Logistic Regression Analysis Predicting whether an event will or will not occur, as well as identifying the variables useful in making the prediction, is important in most academic disciplines as well

More information

Genstat. Regression.

Genstat. Regression. Genstat Regression www.vsni.co.uk A Guide to Regression, Nonlinear and Generalized Linear Models in Genstat (18 th Edition) by Roger Payne. Genstat is developed by VSN International Ltd, in collaboration

More information

The Missing-Index Problem in Process Control

The Missing-Index Problem in Process Control The Missing-Index Problem in Process Control Joseph G. Voelkel CQAS, KGCOE, RIT October 2009 Voelkel (RIT) Missing-Index Problem 10/09 1 / 35 Topics 1 Examples Introduction to the Problem 2 Models, Inference,

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Tables Table A Table B Table C Table D Table E 675

Tables Table A Table B Table C Table D Table E 675 BMTables.indd Page 675 11/15/11 4:25:16 PM user-s163 Tables Table A Standard Normal Probabilities Table B Random Digits Table C t Distribution Critical Values Table D Chi-square Distribution Critical Values

More information

Multiple linear regression S6

Multiple linear regression S6 Basic medical statistics for clinical and experimental research Multiple linear regression S6 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/42 Introduction Two main motivations for doing multiple

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007 Applied Statistics I Time Allowed: Three Hours Candidates should answer

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9 The Common Factor Model Measurement Methods Lecture 15 Chapter 9 Today s Class Common Factor Model Multiple factors with a single test ML Estimation Methods New fit indices because of ML Estimation method

More information

Chapter 14 Student Lecture Notes 14-1

Chapter 14 Student Lecture Notes 14-1 Chapter 14 Student Lecture Notes 14-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 14 Multiple Regression Analysis and Model Building Chap 14-1 Chapter Goals After completing this

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

Factoring and Algebraic Fractions

Factoring and Algebraic Fractions Worksheet. Algebraic Fractions Section Factoring and Algebraic Fractions As pointed out in worksheet., we can use factoring to simplify algebraic expressions, and in particular we can use it to simplify

More information