Non-Negative Matrix Factorization

Size: px
Start display at page:

Download "Non-Negative Matrix Factorization"

Transcription

1 Chapter 3 Non-Negative Matrix Factorization Part : Introduction & computation

2 Motivating NMF Skillicorn chapter 8; Berry et al. (27) DMM, summer 27 2

3 Reminder A T U Σ V T T Σ, V U 2 Σ 2,2 V = The components of the SVD are not very interpretable DMM, summer 27 3

4 DMM, summer 27 Non-negative factors 4 A = W H + W H W 2 H 2 Forcing the factors to be non-negative can, and often will, improve the interpretability of the factorization

5 The definition DMM, summer 27 5

6 Definition of NMF Given a non-negative matrix A 2 R n m and an integer k, find non-negative matrices W 2 R n k + and is minimized. H 2 R k m + 2 ka WHk2 F such that + DMM, summer 27 6

7 Non-negative rank The non-negative rank of matrix A, rank + (A), is the size of the smallest exact non-negative factorization A = WH rank(a) rank + (A) min{n, m} DMM, summer 27 7

8 Some comments NMF is not unique If X is nonnegative and with nonnegative inverse, then WXX H is equivalent valid decomposition Computing NMF (and non-negative rank) is NP-hard This was open until 28 DMM, summer 27 8

9 DMM, summer 27 Example of nonuniqueness = = = + + +

10 NMF has no order The factors in NMF have no inherent order The first component is no more important than the second is no more important NMF is not hierarchical The factors of rank-(k+) decomposition can be completely different to those of rank-k decomposition DMM, summer 27

11 Example } Rank-.5 } = Rank-2 DMM, summer 27

12 Interpreting NMF DMM, summer 27 2

13 Parts-of-whole NMF works over anti-negative semiring There is no subtraction Each rank- component w i h i explains a part of the whole This can yield to sparse factors DMM, summer 27 3

14 NMF example: faces PCA/SVD Row of original = Row of reconstruction DMM, summer 27 4

15 NMF example: faces NMF Row of original = DMM, summer 27 5

16 NMF example: digits NMF factors correspond to patterns and background A H DMM, summer 27 6

17 Some NMF applications Text mining (more later) Bioinformatics Microarray analysis Mineral exploration Neuroscience Image understanding Air pollution research Weather forecasting DMM, summer 27 7

18 Computing NMF DMM, summer 27 8

19 General idea NMF is not convex, but it is biconvex If W is fixed, 2 ka WHk2 F is convex Start from random W and repeat Fix W and update H Fix H and update W until the error doesn t decrease anymore DMM, summer 27 9

20 Notes on the general idea How to create a good random starting point? Is the algorithm robust to initial solutions? How to update W and H? When (and how quickly) has the process converged? Fixed number of iterations? Minimum change in error? DMM, summer 27 2

21 Alternating least squares Without the non-negativity constraint, this is the standard least-squares: w i argmin w wh a i F we can update W AH + and H W + A X + is the pseudo-inverse of X which is LS-optimal The method is called alternating least-squares (ALS) This can introduce negative values DMM, summer 27 2

22 Enforcing non-negativity in ALS Least-squares optimal update of W (or H) with non-negativity constraints is convex optimization problem In theory in P, in practice slow, but subject to much research Simple approach: truncate all negative values to Update W [AH + ] + DMM, summer 27 22

23 The NMF-ALS algorithm. W random(n, k) 2. repeat 2.. H [W + A] W [AH + ] + 3. until convergence DMM, summer 27 23

24 When has there been enough convergence? When the error doesn t change too much A W (k) H (k) F A W (k+) H (k+) F ε After some number of maximum iterations has been achieved Usually, whichever of these two happens first DMM, summer 27 24

25 Gradient descent We can compute the gradient of the error function (with one factor matrix fixed) ƒ (H) = 2 ka WHk2 F = 2 P k Wh k 2 F H j ƒ (H) =(W T A) j (W T WH) j We can move slightly towards the negative gradient How much is the step size and deciding it is a big problem DMM, summer 27 25

26 The NMF gradient descent algorithm. W random(n, k) 2. H random(k, m) 3. repeat H H H ƒ H W W W ƒ W 4. until convergence DMM, summer 27 26

27 Oblique Projected Landweber (OPL) for NMF OPL provides one way to select the step size With H H H ƒ H updates, the convergence radius is 2/λ max (W T W), where λ max is the largest eigenvalue λ max max(rowsums(w T W)) We can set the learning rates to /rowsums(w T W) for a good convergence DMM, summer 27 27

28 The OPL algorithm for updating H. η diag( / rowsums(w T W)) 2. repeat 2.. G W T WH W T A 2.2. H [H ηg] + 3. until a stopping criterion is met (small) number of iterations OR H doesn t change much DMM, summer 27 28

29 Interior Point Gradient (IPG) for NMF In OPL, we might (temporarily) have negative values in W or H In Interior Point Gradient (IPG) algorithm, we set the step sizes so that we never update to negative DMM, summer 27 29

30 The IPG algorithm for updating H. repeat until a stopping criterion is met.. G W T (WH A).2. D H / (W T WH) Gradient Scaling / and * are element-wise.3. P D * G.4. η* vec(p), vec(g) / vec(wp), vec(wp).5. η max{η : H + ηp } Update direction Positive step size Best step size.6. η min{τη, η*}.7. H H + ηp Update DMM, summer 27 3

31 Multiplicative updates The KKT conditions for H in NMF are H ; H A WH 2 /2 H * H A WH 2 /2 = * is element-wise product Substituting H A WH 2 /2 = W T WH W T A one gets H * (W T WH) = H * (W T A) This gives us an update rule for H DMM, summer 27 3

32 The NMF multiplicative updates algorithm. W random(n, k) 2. H random(k, m) 3. repeat 3.. h j h j (W T A) j (W T WH) j j j (AH T ) j (WHH T ) j + 4. until convergence DMM, summer 27 32

33 Notes on multiplicative updates Proposed by Lee & Seung (Nature, 999) Equivalent to gradient descent with dynamic step size Zeros in initial solutions will never turn into non-zeros; non-zeros will never turn into zeros Problems if the correct solution contains zeros DMM, summer 27 33

34 Summary NMF can provide factorizations that are more interpretable than those given by SVD Harder to compute than SVD, but many different approaches Or are they so different In two weeks: Applications & alternations of NMF Stay tuned! DMM, summer 27 34

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 6 Non-Negative Matrix Factorization Rainer Gemulla, Pauli Miettinen May 23, 23 Non-Negative Datasets Some datasets are intrinsically non-negative: Counters (e.g., no. occurrences

More information

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization Chapter 3 Non-Negative Matrix Factorization Part 2: Variations & applications Geometry of NMF 2 Geometry of NMF 1 NMF factors.9.8 Data points.7.6 Convex cone.5.4 Projections.3.2.1 1.5 1.5 1.5.5 1 3 Sparsity

More information

SVD, PCA & Preprocessing

SVD, PCA & Preprocessing Chapter 1 SVD, PCA & Preprocessing Part 2: Pre-processing and selecting the rank Pre-processing Skillicorn chapter 3.1 2 Why pre-process? Consider matrix of weather data Monthly temperatures in degrees

More information

Robust Asymmetric Nonnegative Matrix Factorization

Robust Asymmetric Nonnegative Matrix Factorization Robust Asymmetric Nonnegative Matrix Factorization Hyenkyun Woo Korea Institue for Advanced Study Math @UCLA Feb. 11. 2015 Joint work with Haesun Park Georgia Institute of Technology, H. Woo (KIAS) RANMF

More information

Clustering. SVD and NMF

Clustering. SVD and NMF Clustering with the SVD and NMF Amy Langville Mathematics Department College of Charleston Dagstuhl 2/14/2007 Outline Fielder Method Extended Fielder Method and SVD Clustering with SVD vs. NMF Demos with

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

1 Non-negative Matrix Factorization (NMF)

1 Non-negative Matrix Factorization (NMF) 2018-06-21 1 Non-negative Matrix Factorization NMF) In the last lecture, we considered low rank approximations to data matrices. We started with the optimal rank k approximation to A R m n via the SVD,

More information

Quick Introduction to Nonnegative Matrix Factorization

Quick Introduction to Nonnegative Matrix Factorization Quick Introduction to Nonnegative Matrix Factorization Norm Matloff University of California at Davis 1 The Goal Given an u v matrix A with nonnegative elements, we wish to find nonnegative, rank-k matrices

More information

Nonnegative Matrix Factorization. Data Mining

Nonnegative Matrix Factorization. Data Mining The Nonnegative Matrix Factorization in Data Mining Amy Langville langvillea@cofc.edu Mathematics Department College of Charleston Charleston, SC Yahoo! Research 10/18/2005 Outline Part 1: Historical Developments

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization Nonnegative Matrix Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Bhargav Kanagal Department of Computer Science University of Maryland College Park, MD 277 bhargav@cs.umd.edu Vikas

More information

Interpretable Nonnegative Matrix Decompositions

Interpretable Nonnegative Matrix Decompositions 27 August 2008 Outline 1 Introduction 2 Definitions 3 Algorithms and Complexity 4 Experiments Synthetic Data Real Data 5 Conclusions Outline 1 Introduction 2 Definitions 3 Algorithms and Complexity 4 Experiments

More information

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION Ehsan Hosseini Asl 1, Jacek M. Zurada 1,2 1 Department of Electrical and Computer Engineering University of Louisville, Louisville,

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 08 Boolean Matrix Factorization Rainer Gemulla, Pauli Miettinen June 13, 2013 Outline 1 Warm-Up 2 What is BMF 3 BMF vs. other three-letter abbreviations 4 Binary matrices, tiles,

More information

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Fast Nonnegative Matrix Factorization with Rank-one ADMM Fast Nonnegative Matrix Factorization with Rank-one Dongjin Song, David A. Meyer, Martin Renqiang Min, Department of ECE, UCSD, La Jolla, CA, 9093-0409 dosong@ucsd.edu Department of Mathematics, UCSD,

More information

NON-NEGATIVE SPARSE CODING

NON-NEGATIVE SPARSE CODING NON-NEGATIVE SPARSE CODING Patrik O. Hoyer Neural Networks Research Centre Helsinki University of Technology P.O. Box 9800, FIN-02015 HUT, Finland patrik.hoyer@hut.fi To appear in: Neural Networks for

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 05 Semi-Discrete Decomposition Rainer Gemulla, Pauli Miettinen May 16, 2013 Outline 1 Hunting the Bump 2 Semi-Discrete Decomposition 3 The Algorithm 4 Applications SDD alone SVD

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 PCA, NMF Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki Summary: PCA PCA is SVD

More information

Non-negative Matrix Factorization: Algorithms, Extensions and Applications

Non-negative Matrix Factorization: Algorithms, Extensions and Applications Non-negative Matrix Factorization: Algorithms, Extensions and Applications Emmanouil Benetos www.soi.city.ac.uk/ sbbj660/ March 2013 Emmanouil Benetos Non-negative Matrix Factorization March 2013 1 / 25

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY OUTLINE Why We Need Matrix Decomposition SVD (Singular Value Decomposition) NMF (Nonnegative

More information

An interior-point gradient method for large-scale totally nonnegative least squares problems

An interior-point gradient method for large-scale totally nonnegative least squares problems An interior-point gradient method for large-scale totally nonnegative least squares problems Michael Merritt and Yin Zhang Technical Report TR04-08 Department of Computational and Applied Mathematics Rice

More information

Using Matrix Decompositions in Formal Concept Analysis

Using Matrix Decompositions in Formal Concept Analysis Using Matrix Decompositions in Formal Concept Analysis Vaclav Snasel 1, Petr Gajdos 1, Hussam M. Dahwa Abdulla 1, Martin Polovincak 1 1 Dept. of Computer Science, Faculty of Electrical Engineering and

More information

CPSC 340: Machine Learning and Data Mining. Stochastic Gradient Fall 2017

CPSC 340: Machine Learning and Data Mining. Stochastic Gradient Fall 2017 CPSC 340: Machine Learning and Data Mining Stochastic Gradient Fall 2017 Assignment 3: Admin Check update thread on Piazza for correct definition of trainndx. This could make your cross-validation code

More information

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016 Matrix factorization models for patterns beyond blocks 18 February 2016 What does a matrix factorization do?? A = U V T 2 For SVD that s easy! 3 Inner-product interpretation Element (AB) ij is the inner

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

AN ENHANCED INITIALIZATION METHOD FOR NON-NEGATIVE MATRIX FACTORIZATION. Liyun Gong 1, Asoke K. Nandi 2,3 L69 3BX, UK; 3PH, UK;

AN ENHANCED INITIALIZATION METHOD FOR NON-NEGATIVE MATRIX FACTORIZATION. Liyun Gong 1, Asoke K. Nandi 2,3 L69 3BX, UK; 3PH, UK; 213 IEEE INERNAIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEP. 22 25, 213, SOUHAMPON, UK AN ENHANCED INIIALIZAION MEHOD FOR NON-NEGAIVE MARIX FACORIZAION Liyun Gong 1, Asoke K. Nandi 2,3

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

arxiv: v3 [cs.lg] 18 Mar 2013

arxiv: v3 [cs.lg] 18 Mar 2013 Hierarchical Data Representation Model - Multi-layer NMF arxiv:1301.6316v3 [cs.lg] 18 Mar 2013 Hyun Ah Song Department of Electrical Engineering KAIST Daejeon, 305-701 hyunahsong@kaist.ac.kr Abstract Soo-Young

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

Non-negative Matrix Factorization via accelerated Projected Gradient Descent

Non-negative Matrix Factorization via accelerated Projected Gradient Descent Non-negative Matrix Factorization via accelerated Projected Gradient Descent Andersen Ang Mathématique et recherche opérationnelle UMONS, Belgium Email: manshun.ang@umons.ac.be Homepage: angms.science

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 3 Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

Abstract. LANDI, AMANDA KIM. The Nonnegative Matrix Factorization: Methods and Applications. (Under the direction of Kazufumi Ito.

Abstract. LANDI, AMANDA KIM. The Nonnegative Matrix Factorization: Methods and Applications. (Under the direction of Kazufumi Ito. Abstract LANDI, AMANDA KIM. The Nonnegative Matrix Factorization: Methods and Applications. (Under the direction of Kazufumi Ito.) In today s world, data continues to grow in size and complexity. Thus,

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

Nonnegative matrix factorization for interactive topic modeling and document clustering

Nonnegative matrix factorization for interactive topic modeling and document clustering Nonnegative matrix factorization for interactive topic modeling and document clustering Da Kuang and Jaegul Choo and Haesun Park Abstract Nonnegative matrix factorization (NMF) approximates a nonnegative

More information

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Jiho Yoo and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

Matrix Factorizations over Non-Conventional Algebras for Data Mining. Pauli Miettinen 28 April 2015

Matrix Factorizations over Non-Conventional Algebras for Data Mining. Pauli Miettinen 28 April 2015 Matrix Factorizations over Non-Conventional Algebras for Data Mining Pauli Miettinen 28 April 2015 Chapter 1. A Bit of Background Data long-haired well-known male Data long-haired well-known male ( ) 1

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

Fast Coordinate Descent methods for Non-Negative Matrix Factorization

Fast Coordinate Descent methods for Non-Negative Matrix Factorization Fast Coordinate Descent methods for Non-Negative Matrix Factorization Inderjit S. Dhillon University of Texas at Austin SIAM Conference on Applied Linear Algebra Valencia, Spain June 19, 2012 Joint work

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Compressive Sensing, Low Rank models, and Low Rank Submatrix

Compressive Sensing, Low Rank models, and Low Rank Submatrix Compressive Sensing,, and Low Rank Submatrix NICTA Short Course 2012 yi.li@nicta.com.au http://users.cecs.anu.edu.au/~yili Sep 12, 2012 ver. 1.8 http://tinyurl.com/brl89pk Outline Introduction 1 Introduction

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation

Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation Mikkel N. Schmidt and Morten Mørup Technical University of Denmark Informatics and Mathematical Modelling Richard

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 22: Linear Programming Revisited Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Regularized NNLS Algorithms for Nonnegative Matrix Factorization with Application to Text Document Clustering

Regularized NNLS Algorithms for Nonnegative Matrix Factorization with Application to Text Document Clustering Regularized NNLS Algorithms for Nonnegative Matrix Factorization with Application to Text Document Clustering Rafal Zdunek Abstract. Nonnegative Matrix Factorization (NMF) has recently received much attention

More information

Non-Negative Matrix Factorization with Quasi-Newton Optimization

Non-Negative Matrix Factorization with Quasi-Newton Optimization Non-Negative Matrix Factorization with Quasi-Newton Optimization Rafal ZDUNEK, Andrzej CICHOCKI Laboratory for Advanced Brain Signal Processing BSI, RIKEN, Wako-shi, JAPAN Abstract. Non-negative matrix

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 5 Slides adapted from Jordan Boyd-Graber, Tom Mitchell, Ziv Bar-Joseph Machine Learning: Chenhao Tan Boulder 1 of 27 Quiz question For

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

CONVOLUTIVE NON-NEGATIVE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT

CONVOLUTIVE NON-NEGATIVE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT CONOLUTIE NON-NEGATIE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT Paul D. O Grady Barak A. Pearlmutter Hamilton Institute National University of Ireland, Maynooth Co. Kildare, Ireland. ABSTRACT Discovering

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

This ensures that we walk downhill. For fixed λ not even this may be the case.

This ensures that we walk downhill. For fixed λ not even this may be the case. Gradient Descent Objective Function Some differentiable function f : R n R. Gradient Descent Start with some x 0, i = 0 and learning rate λ repeat x i+1 = x i λ f(x i ) until f(x i+1 ) ɛ Line Search Variant

More information

EUSIPCO

EUSIPCO EUSIPCO 2013 1569741067 CLUSERING BY NON-NEGAIVE MARIX FACORIZAION WIH INDEPENDEN PRINCIPAL COMPONEN INIIALIZAION Liyun Gong 1, Asoke K. Nandi 2,3 1 Department of Electrical Engineering and Electronics,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland LOGISTIC REGRESSION FROM TEXT Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

Online Nonnegative Matrix Factorization with General Divergences

Online Nonnegative Matrix Factorization with General Divergences Online Nonnegative Matrix Factorization with General Divergences Vincent Y. F. Tan (ECE, Mathematics, NUS) Joint work with Renbo Zhao (NUS) and Huan Xu (GeorgiaTech) IWCT, Shanghai Jiaotong University

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy

Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy Caroline Chaux Joint work with X. Vu, N. Thirion-Moreau and S. Maire (LSIS, Toulon) Aix-Marseille

More information

Collaborative Filtering Matrix Completion Alternating Least Squares

Collaborative Filtering Matrix Completion Alternating Least Squares Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 19, 2016

More information

22.4. Numerical Determination of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.4. Numerical Determination of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Numerical Determination of Eigenvalues and Eigenvectors 22.4 Introduction In Section 22. it was shown how to obtain eigenvalues and eigenvectors for low order matrices, 2 2 and. This involved firstly solving

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

arxiv: v2 [math.oc] 6 Oct 2011

arxiv: v2 [math.oc] 6 Oct 2011 Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization Nicolas Gillis 1 and François Glineur 2 arxiv:1107.5194v2 [math.oc] 6 Oct 2011 Abstract Nonnegative

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Linear Discrimination Functions

Linear Discrimination Functions Laurea Magistrale in Informatica Nicola Fanizzi Dipartimento di Informatica Università degli Studi di Bari November 4, 2009 Outline Linear models Gradient descent Perceptron Minimum square error approach

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

Mini-Course 1: SGD Escapes Saddle Points

Mini-Course 1: SGD Escapes Saddle Points Mini-Course 1: SGD Escapes Saddle Points Yang Yuan Computer Science Department Cornell University Gradient Descent (GD) Task: min x f (x) GD does iterative updates x t+1 = x t η t f (x t ) Gradient Descent

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations

Machine Learning for Signal Processing Sparse and Overcomplete Representations Machine Learning for Signal Processing Sparse and Overcomplete Representations Abelino Jimenez (slides from Bhiksha Raj and Sourish Chaudhuri) Oct 1, 217 1 So far Weights Data Basis Data Independent ICA

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2017 Admin Assignment 4: Due Friday. Assignment 5: Posted, due Monday of last week of classes Last Time: PCA with Orthogonal/Sequential

More information

NONNEGATIVE matrix factorization (NMF) has become

NONNEGATIVE matrix factorization (NMF) has become 1 Efficient and Non-Convex Coordinate Descent for Symmetric Nonnegative Matrix Factorization Arnaud Vandaele 1, Nicolas Gillis 1, Qi Lei 2, Kai Zhong 2, and Inderjit Dhillon 2,3, Fellow, IEEE 1 Department

More information

Preserving Privacy in Data Mining using Data Distortion Approach

Preserving Privacy in Data Mining using Data Distortion Approach Preserving Privacy in Data Mining using Data Distortion Approach Mrs. Prachi Karandikar #, Prof. Sachin Deshpande * # M.E. Comp,VIT, Wadala, University of Mumbai * VIT Wadala,University of Mumbai 1. prachiv21@yahoo.co.in

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE Artificial Intelligence Grad Project Dr. Debasis Mitra

Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE Artificial Intelligence Grad Project Dr. Debasis Mitra Factor Analysis (FA) Non-negative Matrix Factorization (NMF) CSE 5290 - Artificial Intelligence Grad Project Dr. Debasis Mitra Group 6 Taher Patanwala Zubin Kadva Factor Analysis (FA) 1. Introduction Factor

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017

One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017 One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017 1 One Picture and a Thousand Words Using Matrix Approximations Dianne P. O Leary

More information

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods March 23, 2018 1 / 35 This material is covered in S. Boyd, L. Vandenberge s book Convex Optimization https://web.stanford.edu/~boyd/cvxbook/.

More information

Homework 5. Convex Optimization /36-725

Homework 5. Convex Optimization /36-725 Homework 5 Convex Optimization 10-725/36-725 Due Tuesday April 21 at 4:00pm submitted to Mallory Deptola in GHC 8001 (make sure to submit each problem separately) ***Instructions: you will solve 4 questions,

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Alvin Grissom II University of Colorado Boulder Slides adapted from Emily Fox Machine Learning: Alvin Grissom II Boulder Classification:

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Continuous methods for numerical linear algebra problems

Continuous methods for numerical linear algebra problems Continuous methods for numerical linear algebra problems Li-Zhi Liao (http://www.math.hkbu.edu.hk/ liliao) Department of Mathematics Hong Kong Baptist University The First International Summer School on

More information

2.3. Clustering or vector quantization 57

2.3. Clustering or vector quantization 57 Multivariate Statistics non-negative matrix factorisation and sparse dictionary learning The PCA decomposition is by construction optimal solution to argmin A R n q,h R q p X AH 2 2 under constraint :

More information

Contingency Table Analysis via Matrix Factorization

Contingency Table Analysis via Matrix Factorization Contingency Table Analysis via Matrix Factorization Kumer Pial Das 1, Jay Powell 2, Myron Katzoff 3, S. Stanley Young 4 1 Department of Mathematics,Lamar University, TX 2 Better Schooling Systems, Pittsburgh,

More information

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016 CPSC 340: Machine Learning and Data Mining Gradient Descent Fall 2016 Admin Assignment 1: Marks up this weekend on UBC Connect. Assignment 2: 3 late days to hand it in Monday. Assignment 3: Due Wednesday

More information