How to make computers work like the brain

Size: px
Start display at page:

Download "How to make computers work like the brain"

Transcription

1 How to make computers work like the brain (without really solving the brain) Dileep George

2 a single special machine can be made to do the work of all. It could in fact be made to work as a model of any other machine. Alan Turing 1937

3 Mathematics Databases Communications Video Imaging Audio Gaming - etc. - a single special machine can be made to do the work of all. It could in fact be made to work as a model of any other machine. Alan Turing 1937

4 a single special machine can be made to do the work of all. It could in fact be made to work as a model of any other machine. Alan Turing 1937 Mathematics Databases Communications Video Imaging Audio Gaming - etc. - Visual perception Auditory perception Somatosensory perception Languages Adaptive behavior Planning, thinking,

5 Intelligence paradigms

6 Intelligence paradigms Early AI (1940s to 1970s)

7 Intelligence paradigms Early AI (1940s to 1970s) Program Intelligence

8 Intelligence paradigms Early AI (1940s to 1970s) Program Intelligence Ignore what the brain does

9 Intelligence paradigms Early AI (1940s to 1970s) Program Intelligence Ignore what the brain does Airplanes were not made by...

10 Intelligence paradigms Early AI (1940s to 1970s) Program Intelligence Ignore what the brain does Airplanes were not made by... No learning

11 Intelligence paradigms Early AI (1940s to 1970s) Program Intelligence Ignore what the brain does Airplanes were not made by... No learning Commonsense problem

12 Intelligence Paradigms

13 Intelligence Paradigms Neural Networks (1980s and 1990s)

14 Intelligence Paradigms Neural Networks (1980s and 1990s) Back-propagation algorithmf or multi-layer networks

15 Intelligence Paradigms Neural Networks (1980s and 1990s) Back-propagation algorithmf or multi-layer networks Universal learning machines..can fit any function

16 Intelligence Paradigms Neural Networks (1980s and 1990s) Back-propagation algorithmf or multi-layer networks Universal learning machines..can fit any function The problem of scale

17 Story of chess..

18 Sample complexity of learning Face Non-face 256^1024

19 Sample complexity of learning Face Non-face 256^1024 P(Face) ^1024

20 256^1024=

21 256^1024=

22 256^1024= Number of seconds in a human s life:

23 Origins of Language.. Ramachandran and Hubbard, 2001

24 Bouba Kiki

25

26 Laminar structure

27 Common cortical algorithm: Supporting evidence Seeing in the Sound Zone," by Michael Merzenich, Nature, Vol. 404, April 20, 2000, pp "Induction of visual orientation modules in auditory cortex," by Jitendra Sharma, Alessandra Angelucci and Mriganka Sur, Nature, Vol. 404, April 20, 2000, pp

28 sensory substitution

29 sensory substitution A sensorimotor account of vision and visual consciousness, Kevin O Regan and Alva Noe. Photograph courtesy: P Bach-y-Rita

30 Neocortex Assume that: Neocortex uses the same algorithm to learn different modalities Neocortex learns efficiently

31 The No Free Lunch Theorem

32 The No Free Lunch Theorem No learning algorithm has an inherent superiority over other learning algorithms for all problems. (Wolpert, 1995)

33 The No Free Lunch Theorem No learning algorithm has an inherent superiority over other learning algorithms for all problems. (Wolpert, 1995) An algorithm s superiority comes from the assumptions that it makes about the problem

34 Neocortex Assume that: Neocortex uses the same algorithm to learn different modalities Neocortex learns efficiently

35 Neocortex Assume that: Neocortex uses the same algorithm to learn different modalities Neocortex learns efficiently => Data from different modalities must have the same underlying statistical structure

36 The right question to ask.. Are there assumptions we can make about the world that are 1. General enough to be applied to be a large number of problems 2. Specific enough to make learning possible??

37 High-level properties of the neocortex Hierarchical organization Spatial and temporal Using time as a supervisor Ability to make predictions Sparse Distributed Representations Feed-forward and feedback connections Sensori-motor

38 Abstraction levels Consciousness Cognitive models Perception Connections High-level anatomical structure Micro-circuit structure Neuron models Dendrites Learning rules Synapses Ion channels Proteins Glia

39 Neocortex Source of assumptions and constraints World s Data (Visual/Auditory etc...) To find correspondence with Neocortex properties Computational Principles (Machine Learning/Graphical Models etc..) To understand why brain does what it does in that particular way

40 If you are not computationally grounded, looking into biology is like looking into a religious text. You will always find what you are looking for.

41 Temporal learning example Suppose A-C-D and B-C-E are frequent in the data A C D B C E

42 Temporal learning example Suppose A-C-D and B-C-E are frequent in the data A C D B C E First-order model A C D B E

43 Temporal Models t t t-2 t-1 t-1 N^2, but can initialize from data to create a sparse model Not a scalable way to build higher order models

44 Variable order sequences t A B C D t-1 (kn)^2

45 State-splitting model First order model A C D B E

46 State-splitting model First order model A C D B E Model with replicated A C D states B C E

47 State-splitting model First order model A C D B E Model with replicated A C D states B C E Model after further A C D learning B C E

48 State-splitting model Learn first order model Replicate potential higher-order states Learn temporal statistics on the new model

49 State-splitting model Learn first order model Replicate potential higher-order states Learn temporal statistics on the new model

50 Start with replicated states Should be online Should still be sparse and efficient

51 t t+1 Which cell in this column do we connect to?

52

53 Connection to HMM c1 c2 c3 c4 c5

54 HMM and Forward-Backward Forward-backward algorithm On the restricted HMM, works very well in finding the higher-order states Can be made online by making reducing the lookahead One step look-ahead works quite well Zero look-ahead (pure Hebbian learning) doesn t work well.

55 t t+1 t+2 Which cell in this column do we connect to?

56 Biological implication A B C Can A know whether B was successful in firing C? The answer is YES

57

58

59 The idea of replicated states for learning higher order Neocortex Source of assumptions and constraints HMM model. Why one-step look-ahead is required. Predicted a computational property of neurons Nature of higher-order sequences World s Data (Visual/Auditory etc...) To find correspondence with Neocortex properties Computational Principles (Machine Learning/Graphical Models etc..) To understand why brain does what it does in that particular way

60 Recipe for building brain-like computers Accept the broad biological constraints Hierarchy, time as supervisor, sparse distributed representations, sensori-motor interactions... Have a biological circuit model for the learned system Put in biological details you can computationally justify Get to the biological circuit model using the most expedient learning algorithm Need not be biological. In fact, being biological can be a disadvantage. Work on a real problem

61 On to the paper...

62

63 Can we come to a set of mathematical equations that model cortical function?

64 Can we come to a set of mathematical equations that model cortical function? Something like Maxwell s equations for electromagnetic waves

65 Can we come to a set of mathematical equations that model cortical function? Something like Maxwell s equations for electromagnetic waves Assigns functions/equations for laminar circuits

66 Can we come to a set of mathematical equations that model cortical function? Something like Maxwell s equations for electromagnetic waves Assigns functions/equations for laminar circuits

67 Hierarchical Temporal Memory Mathematical Expression of Theory +

68 Hierarchical Temporal Memory Mathematical Expression of Theory Biological Data Constraints on connectivity, placement +

69 Hierarchical Temporal Memory Mathematical Expression of Theory Biological Data Constraints on connectivity, placement + Laminar Cortical Circuit Model

70

71

72

73 Markov chains (sequences) Coincidence patterns

74 Largel Spatial Scales/ Slow temporal scales. Small Spatial Scales/ Fast temporal scales.

75 Largel Spatial Scales/ Slow temporal scales. Small Spatial Scales/ Fast temporal scales.

76

77 1. Mathematical expression of HTM inference

78 1. Mathematical expression of HTM inference 2. Abstract neural implementation of equations

79 1. Mathematical expression of HTM inference 2. Abstract neural implementation of equations 3. Map the abstract neural implementation to laminar circuits using biological data

80 1. Mathematical expression of HTM inference 2. Abstract neural implementation of equations 3. Map the abstract neural implementation to laminar circuits using biological data

81

82

83 Markov chains (sequences) Coincidence patterns

84 2 Calculate likelihood of Markov chains 3 Calculate belief of coincidence patterns 1 Calculate likelihood of coincidence 4 Calculate probability of Markov chains

85 (1) Coincidence likelihood (2) Markov chain likelihood (3) Coincidence Belief (4) Feedback messages

86 y t (i) =P ( e t c i (t)) M j=1 λ m j t (r m j i )

87 α t (c i,g r )=P ( e t c i (t)) c j (t 1) C k P (c i (t) c j (t 1),g r )α t 1 (c j,g r ) D D D D D D D

88 2 Calculate likelihood of Markov chains 3 Calculate belief of coincidence patterns 1 Calculate likelihood of coincidence 4 Calculate probability of Markov chains

89 2 3 D D D D D D D D D D D D D D 1 4 Belief

90 1. Mathematical expression of HTM inference 2. Abstract neural implementation of equations 3. Map the abstract neural implementation to laminar circuits using biological data

91

92 Alex M. Thomson and A. Peter Bannister. Interlaminar connections in the neocortex. Cerebral cortex (New York, N.Y. : 1991), 13(1):5 14, Bannister 2003

93 D D D D D D D D D D D D D D Belief

94 D D D D D D D D D D D D D D Belief

95

96 Why Layer 4? Thalamo-cortical inputs go to layer 4

97

98

99

100

101

102 I II/III IV V VI

103

104

105 Lee and Mumford, J.Opt. Soc. America. July 2003

106 (a) (b)

107

108

109

110

111

112

113 Thank You Papers, thesis etc.

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections

LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections LoopSOM: A Robust SOM Variant Using Self-Organizing Temporal Feedback Connections Rafael C. Pinto, Paulo M. Engel Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) P.O. Box 15.064

More information

Signal, donnée, information dans les circuits de nos cerveaux

Signal, donnée, information dans les circuits de nos cerveaux NeuroSTIC Brest 5 octobre 2017 Signal, donnée, information dans les circuits de nos cerveaux Claude Berrou Signal, data, information: in the field of telecommunication, everything is clear It is much less

More information

What and where: A Bayesian inference theory of attention

What and where: A Bayesian inference theory of attention What and where: A Bayesian inference theory of attention Sharat Chikkerur, Thomas Serre, Cheston Tan & Tomaso Poggio CBCL, McGovern Institute for Brain Research, MIT Preliminaries Outline Perception &

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

CS532, Winter 2010 Hidden Markov Models

CS532, Winter 2010 Hidden Markov Models CS532, Winter 2010 Hidden Markov Models Dr. Alan Fern, afern@eecs.oregonstate.edu March 8, 2010 1 Hidden Markov Models The world is dynamic and evolves over time. An intelligent agent in such a world needs

More information

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Adam Obtu lowicz Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, P.O.B.

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

attention mechanisms and generative models

attention mechanisms and generative models attention mechanisms and generative models Master's Deep Learning Sergey Nikolenko Harbour Space University, Barcelona, Spain November 20, 2017 attention in neural networks attention You re paying attention

More information

COMP3702/7702 Artificial Intelligence Week1: Introduction Russell & Norvig ch.1-2.3, Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Week1: Introduction Russell & Norvig ch.1-2.3, Hanna Kurniawati COMP3702/7702 Artificial Intelligence Week1: Introduction Russell & Norvig ch.1-2.3, 3.1-3.3 Hanna Kurniawati Today } What is Artificial Intelligence? } Better know what it is first before committing the

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2015 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 1 / 39 Outline 1 Universality of Neural Networks

More information

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named We Live in Exciting Times ACM (an international computing research society) has named CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Apr. 2, 2019 Yoshua Bengio,

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Deep learning in the visual cortex

Deep learning in the visual cortex Deep learning in the visual cortex Thomas Serre Brown University. Fundamentals of primate vision. Computational mechanisms of rapid recognition and feedforward processing. Beyond feedforward processing:

More information

Decoding conceptual representations

Decoding conceptual representations Decoding conceptual representations!!!! Marcel van Gerven! Computational Cognitive Neuroscience Lab (www.ccnlab.net) Artificial Intelligence Department Donders Centre for Cognition Donders Institute for

More information

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015 Flexible Gating of Contextual Influences in Natural Vision Odelia Schwartz University of Miami Oct 05 Contextual influences Perceptual illusions: no man is an island.. Review paper on context: Schwartz,

More information

Neural Networks 1 Synchronization in Spiking Neural Networks

Neural Networks 1 Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Neural Networks 1 Synchronization in Spiking Neural Networks René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Synchronization

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

15-381: Artificial Intelligence. Hidden Markov Models (HMMs)

15-381: Artificial Intelligence. Hidden Markov Models (HMMs) 15-381: Artificial Intelligence Hidden Markov Models (HMMs) What s wrong with Bayesian networks Bayesian networks are very useful for modeling joint distributions But they have their limitations: - Cannot

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

On The Equivalence of Hierarchical Temporal Memory and Neural Nets

On The Equivalence of Hierarchical Temporal Memory and Neural Nets On The Equivalence of Hierarchical Temporal Memory and Neural Nets Bedeho Mesghina Wolde Mender December 7, 2009 Abstract In this paper we present a rigorous definition of classification in a common family

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Pacman Sonar (P4) [Demo: Pacman Sonar

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

Liquid Computing. Wolfgang Maass. Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz, Austria

Liquid Computing. Wolfgang Maass. Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz, Austria NNB SS10 1 Liquid Computing Wolfgang Maass Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz, Austria Institute for Theoretical Computer Science http://www.igi.tugraz.at/maass/

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e Thomas Trappenberg March 21, 2009 Chapter 9: Modular networks, motor control, and reinforcement learning Mixture of experts Expert 1 Input Expert 2 Integration

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Daniel Mess Cornell University May 17,1999

Daniel Mess Cornell University May 17,1999 ~LWF0003 Daniel Mess Cornell University May 17,1999 http : / /www.people. cornell. edu/pages/ dah2 3/pole/pole. html 0- Abstract A neural network is useful for generating a solution to problems without

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Financial Risk and Returns Prediction with Modular Networked Learning

Financial Risk and Returns Prediction with Modular Networked Learning arxiv:1806.05876v1 [cs.lg] 15 Jun 2018 Financial Risk and Returns Prediction with Modular Networked Learning Carlos Pedro Gonçalves June 18, 2018 University of Lisbon, Instituto Superior de Ciências Sociais

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

CSCI 5582 Artificial Intelligence. Today 9/28. Knowledge Representation. Lecture 9

CSCI 5582 Artificial Intelligence. Today 9/28. Knowledge Representation. Lecture 9 CSCI 5582 Artificial Intelligence Lecture 9 Jim Martin Today 9/28 Review propositional logic Reasoning with Models Break More reasoning Knowledge Representation A knowledge representation is a formal scheme

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

How Behavioral Constraints May Determine Optimal Sensory Representations

How Behavioral Constraints May Determine Optimal Sensory Representations How Behavioral Constraints May Determine Optimal Sensory Representations by Salinas (2006) CPSC 644 Presented by Yoonsuck Choe Motivation Neural response is typically characterized in terms of a tuning

More information

COGNITIVE INFORMATION DYNAMICS:

COGNITIVE INFORMATION DYNAMICS: INC talk COGNITIVE INFORMATION DYNAMICS: INFORMATION FLOWS INSTABILITIES AND COORDINATION Life is like giving a concert on the violin while learning to play the instrument. That, friends, is real wisdom.

More information

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND Neural Control of Robotic Devices ELIE BIENENSTOCK, MICHAEL J. BLACK, JOHN DONOGHUE, YUN GAO, MIJAIL SERRUYA BROWN UNIVERSITY Applied Mathematics Computer Science

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2014 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 1 / 35 Outline 1 Universality of Neural Networks

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Introduction I am Laxmidhar Behera, in Department of Electrical Engineering, IIT, Kanpur. I will be teaching

More information

A Model for Real-Time Computation in Generic Neural Microcircuits

A Model for Real-Time Computation in Generic Neural Microcircuits A Model for Real-Time Computation in Generic Neural Microcircuits Wolfgang Maass, Thomas Natschläger Institute for Theoretical Computer Science Technische Universitaet Graz A-81 Graz, Austria maass, tnatschl

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Datamining Seminar Kaspar Märtens Karl-Oskar Masing Today's Topics Modeling sequences: a brief overview Training RNNs with back propagation A toy example of training an RNN Why

More information

Knowledge Extraction from DBNs for Images

Knowledge Extraction from DBNs for Images Knowledge Extraction from DBNs for Images Son N. Tran and Artur d Avila Garcez Department of Computer Science City University London Contents 1 Introduction 2 Knowledge Extraction from DBNs 3 Experimental

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Cognitive Prosem. December 1, 2008

Cognitive Prosem. December 1, 2008 Cognitive Prosem December 1, 2008 Spatial Representation What does it mean to represent spatial information? What are the characteristics of human spatial representations? Reference Frames/Systems Distortions

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Information in Biology

Information in Biology Information in Biology CRI - Centre de Recherches Interdisciplinaires, Paris May 2012 Information processing is an essential part of Life. Thinking about it in quantitative terms may is useful. 1 Living

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Hidden Markov Models, I. Examples. Steven R. Dunbar. Toy Models. Standard Mathematical Models. Realistic Hidden Markov Models.

Hidden Markov Models, I. Examples. Steven R. Dunbar. Toy Models. Standard Mathematical Models. Realistic Hidden Markov Models. , I. Toy Markov, I. February 17, 2017 1 / 39 Outline, I. Toy Markov 1 Toy 2 3 Markov 2 / 39 , I. Toy Markov A good stack of examples, as large as possible, is indispensable for a thorough understanding

More information

Backpropagation and Neural Networks part 1. Lecture 4-1

Backpropagation and Neural Networks part 1. Lecture 4-1 Lecture 4: Backpropagation and Neural Networks part 1 Lecture 4-1 Administrative A1 is due Jan 20 (Wednesday). ~150 hours left Warning: Jan 18 (Monday) is Holiday (no class/office hours) Also note: Lectures

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Course 395: Machine Learning

Course 395: Machine Learning Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

More information

Using Variable Threshold to Increase Capacity in a Feedback Neural Network

Using Variable Threshold to Increase Capacity in a Feedback Neural Network Using Variable Threshold to Increase Capacity in a Feedback Neural Network Praveen Kuruvada Abstract: The article presents new results on the use of variable thresholds to increase the capacity of a feedback

More information

Learning from Sequential and Time-Series Data

Learning from Sequential and Time-Series Data Learning from Sequential and Time-Series Data Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/? Sequential and Time-Series Data Many real-world applications

More information

Shadows of the Mind. A Search for the Missing Science of Consciousness ROGER PENROSE. Rouse Ball Professor of Mathematics University of Oxford

Shadows of the Mind. A Search for the Missing Science of Consciousness ROGER PENROSE. Rouse Ball Professor of Mathematics University of Oxford Shadows of the Mind A Search for the Missing Science of Consciousness ROGER PENROSE Rouse Ball Professor of Mathematics University of Oxford Oxford New York Melbourne OXFORD UNIVERSITY PRESS 1994 CONTENTS

More information

Competitive Learning for Deep Temporal Networks

Competitive Learning for Deep Temporal Networks Competitive Learning for Deep Temporal Networks Robert Gens Computer Science and Engineering University of Washington Seattle, WA 98195 rcg@cs.washington.edu Pedro Domingos Computer Science and Engineering

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Pei Wang( 王培 ) Temple University, Philadelphia, USA

Pei Wang( 王培 ) Temple University, Philadelphia, USA Pei Wang( 王培 ) Temple University, Philadelphia, USA Artificial General Intelligence (AGI): a small research community in AI that believes Intelligence is a general-purpose capability Intelligence should

More information

Learning from Data. Amos Storkey, School of Informatics. Semester 1. amos/lfd/

Learning from Data. Amos Storkey, School of Informatics. Semester 1.   amos/lfd/ Semester 1 http://www.anc.ed.ac.uk/ amos/lfd/ Introduction Welcome Administration Online notes Books: See website Assignments Tutorials Exams Acknowledgement: I would like to that David Barber and Chris

More information

Chapter 3 BIOLOGY AND BEHAVIOR

Chapter 3 BIOLOGY AND BEHAVIOR Chapter 3 BIOLOGY AND BEHAVIOR Section 1: The Nervous System Section 2: The Brain: Our Control Center Section 3: The Endocrine System Section 4: Heredity: Our Genetic Background 1 Section 1: The Nervous

More information

Neuroinformatics. Giorgio A. Ascoli. Erik De Schutter David N. Kennedy IN THIS ISSUE. Editors. Medline/Pubmed/Index Medicus Science Citation Index

Neuroinformatics. Giorgio A. Ascoli. Erik De Schutter David N. Kennedy IN THIS ISSUE. Editors. Medline/Pubmed/Index Medicus Science Citation Index ISSN 1539 2791 Volume 2 Number 3 2004 Neuroinformatics Editors IN THIS ISSUE Giorgio A. Ascoli Scaling Self-Organizing Maps to Model Large Cortical Networks Erik De Schutter David N. Kennedy Classification

More information

Statistical model of evolution of brain parcellation. Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov

Statistical model of evolution of brain parcellation. Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov 1 Statistical model of evolution of brain parcellation Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724. USA. We study the distribution of

More information

COMP304 Introduction to Neural Networks based on slides by:

COMP304 Introduction to Neural Networks based on slides by: COMP34 Introduction to Neural Networks based on slides by: Christian Borgelt http://www.borgelt.net/ Christian Borgelt Introduction to Neural Networks Motivation: Why (Artificial) Neural Networks? (Neuro-)Biology

More information

Information in Biology

Information in Biology Lecture 3: Information in Biology Tsvi Tlusty, tsvi@unist.ac.kr Living information is carried by molecular channels Living systems I. Self-replicating information processors Environment II. III. Evolve

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Rapid evolution of the cerebellum in humans and other great apes

Rapid evolution of the cerebellum in humans and other great apes Rapid evolution of the cerebellum in humans and other great apes Article Accepted Version Barton, R. A. and Venditti, C. (2014) Rapid evolution of the cerebellum in humans and other great apes. Current

More information

Quantitative neuroanatomy as a tool to understand cortical function. Part 1: methodological aspects. Almut Schüz

Quantitative neuroanatomy as a tool to understand cortical function. Part 1: methodological aspects. Almut Schüz Quantitative neuroanatomy as a tool to understand cortical function Part 1: methodological aspects Almut Schüz Max-Planck-Institut für Biologische Kybernetik, Tübingen Cortico-cortical long-range connectivity:

More information

Synchronization in Spiking Neural Networks

Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Synchronization in Spiking Neural Networks ~ Lecture 8 ~ René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2005 Synchronization

More information

Integrated Commonsense Reasoning and Learning Using Non-axiomatic Logic. Pei Wang Temple University Philadelphia, USA

Integrated Commonsense Reasoning and Learning Using Non-axiomatic Logic. Pei Wang Temple University Philadelphia, USA Integrated Commonsense Reasoning and Learning Using Non-axiomatic Logic Pei Wang Temple University Philadelphia, USA Intelligence as a Whole Mainstream AI treats Intelligence as a collection of problem-specific

More information

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and d XY Models with Symmetry-Breaking Fields renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and Random Matrix Theory Non-Hermitian Localization in

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

10/17/04. Today s Main Points

10/17/04. Today s Main Points Part-of-speech Tagging & Hidden Markov Model Intro Lecture #10 Introduction to Natural Language Processing CMPSCI 585, Fall 2004 University of Massachusetts Amherst Andrew McCallum Today s Main Points

More information

In the Name of God. Lecture 9: ANN Architectures

In the Name of God. Lecture 9: ANN Architectures In the Name of God Lecture 9: ANN Architectures Biological Neuron Organization of Levels in Brains Central Nervous sys Interregional circuits Local circuits Neurons Dendrite tree map into cerebral cortex,

More information

Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography

Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography Optimal In-Place Self-Organization for Cortical Development: Limited Cells, Sparse Coding and Cortical Topography Juyang Weng and Matthew D. Luciw Department of Computer Science and Engineering Michigan

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

of the dynamics. There is a competition between the capacity of the network and the stability of the

of the dynamics. There is a competition between the capacity of the network and the stability of the Special Issue on the Role and Control of Random Events in Biological Systems c World Scientic Publishing Company LEARNING SYNFIRE CHAINS: TURNING NOISE INTO SIGNAL JOHN HERTZ and ADAM PRUGEL-BENNETT y

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Hidden Markov Models Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology AI Fuzzy Logic and Neural Nets Fall 2017 Fuzzy Logic Philosophical approach Decisions based on degree of truth Is not a method for reasoning under uncertainty that s probability

More information

Krubitzer & Kaas S1 S2

Krubitzer & Kaas S1 S2 Krubitzer & Kaas S1 S2 V1 V2 A1 MT 30 μm pia white matter Somato- Mean of Motor sensory Frontal Temporal Parietal Visual means Mouse 109.2 ± 6.7 111.9 ±6.9 110.8 ±7.1 110.5 ±6.5 104.7 ±7.2 112.2 ±6.0 109.9

More information

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Variational Autoencoders Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Contents 1. Why unsupervised learning, and why generative models? (Selected slides from Yann

More information

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics Processing of Time Series by Neural Circuits with iologically Realistic Synaptic Dynamics Thomas Natschläger & Wolfgang Maass Institute for Theoretical Computer Science Technische Universität Graz, ustria

More information

Cognitive Systems 300: Probability and Causality (cont.)

Cognitive Systems 300: Probability and Causality (cont.) Cognitive Systems 300: Probability and Causality (cont.) David Poole and Peter Danielson University of British Columbia Fall 2013 1 David Poole and Peter Danielson Cognitive Systems 300: Probability and

More information

Tilt-aftereffect and adaptation of V1 neurons

Tilt-aftereffect and adaptation of V1 neurons Tilt-aftereffect and adaptation of V1 neurons Dezhe Jin Department of Physics The Pennsylvania State University Outline The tilt aftereffect (TAE) Classical model of neural basis of TAE Neural data on

More information

Intro and Homeostasis

Intro and Homeostasis Intro and Homeostasis Physiology - how the body works. Homeostasis - staying the same. Functional Types of Neurons Sensory (afferent - coming in) neurons: Detects the changes in the body. Informations

More information