Mapping multiple QTL in experimental crosses

Size: px
Start display at page:

Download "Mapping multiple QTL in experimental crosses"

Transcription

1 Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison [ Teaching Miscellaneous lectures]

2 Example Sugiyama et al. Genomics 71:70-77, male mice from the backcross (A B) B Blood pressure after two weeks drinking water with 1% NaCl Blood pressure 2

3 Genetic map Location (cm) X Chromosome 3

4 Genotype data X 200 Individuals Markers 4

5 Goals Identify quantitative trait loci (QTL) (and interactions among QTL) Interval estimates of QTL location Estimated QTL effects 5

6 LOD curves 8 6 LOD score 4 5% Chromosome 6

7 Estimated effects Chr 48 cm Chr 30 cm Chr 24 cm Chr 20 cm blood pressure BB BA BB BA BB BA BB BA Genotype Genotype Genotype Genotype 7

8 Modeling multiple QTL Reduce residual variation increased power Separate linked QTL Identify interactions among QTL (epistasis) 8

9 Epistasis in BC Additive Epistatic H H Ave. phenotype A QTL 2 Ave. phenotype A QTL A H A H QTL 1 QTL 1 9

10 Epistasis in F 2 Additive Epistatic B B 80 H QTL 2 80 QTL 2 Ave. phenotype A Ave. phenotype H A A H B QTL 1 A H B QTL 1 10

11 2-dim, 2-QTL scan For all pairs of positions, fit the following models: H f : y = µ + β 1 q 1 + β 2 q 2 + γq 1 q 2 + ɛ H a : y = µ + β 1 q 1 + β 2 q 2 + +ɛ H 1 : y = µ + β 1 q 1 + ɛ H 0 : y = µ + ɛ log 10 likelihoods: l f (s, t) l a (s, t) l 1 (s) l 0 11

12 2-dim, 2-QTL scan LOD scores: LOD f (s, t) = l f (s, t) l 0 LOD a (s, t) = l a (s, t) l 0 LOD i (s, t) = l f (s, t) l a (s, t) LOD 1 (s) = l 1 (s) l 0 12

13 Results: LOD i and LOD f Chromosome Chromosome 13

14 Results: LOD i and LOD f Chromosome Chromosome 14

15 Summaries Consider each pair of chromosomes, (j, k), and let c(s) denote the chromosome for position s. M f (j, k) = M a (j, k) = M 1 (j, k) = max LOD f(s, t) c(s)=j,c(t)=k max LOD a(s, t) c(s)=j,c(t)=k max LOD 1(s) c(s)=j or k M i (j, k) = M f (j, k) M a (j, k) M fv1 (j, k) = M f (j, k) M 1 (j, k) M av1 (j, k) = M a (j, k) M 1 (j, k) 15

16 Results: LOD i and LOD fv Chromosome Chromosome 16

17 Thresholds A pair of chromosomes (j, k) is considered interesting if: M f (j, k) > T f and { M fv1 (j, k) > T fv1 or M i (j, k) > T i } or M a (j, k) > T a and M av1 (j, k) > T av1 where the thresholds (T f, T fv1, T i, T a, T av1 ) are determined by a permutation test with a 2d scan 17

18 2d scan summary pos1f pos2f lod.full lod.fv1 lod.int c1:c c6:c c1:c pos1a pos2a lod.add lod.av1 c1:c c6:c c1:c

19 Estimated effects 1 x 4 6 x Chr 1 genotype 110 Chr 6 genotype BB BA BB BA blood pressure BB BA BB BA Chr 4 genotype Chr 15 Genotype 19

20 Chr 1: LOD i and LOD av Position (cm) Position (cm)

21 Hypothesis testing? In the past, QTL mapping has been regarded as a task of hypothesis testing. Is this a QTL? Much of the focus has been on adjusting for test multiplicity. It is better to view the problem as one of model selection. What set of QTL are well supported? Is there evidence for QTL-QTL interactions? Model = a defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions). 21

22 Model selection Class of models Additive models + pairwise interactions + higher-order interactions Model comparison Estimated prediction error AIC, BIC, penalized likelihood Bayes Model fit Maximum likelihood Haley-Knott regression extended Haley-Knott Multiple imputation Markov chain Monte Carlo Model search Forward selection Backward elimination Stepwise selection Randomized algorithms 22

23 Target Selection of a model includes two types of errors: Miss important terms (QTLs or interactions) Include extraneous terms Unlike in hypothesis testing, we can make both errors at the same time. Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms. 23

24 What is special here? Goal: identify the major players A continuum of ordinal-valued covariates (the genetic loci) Association among the covariates Loci on different chromosomes are independent Along chromosome, a very simple (and known) correlation structure 24

25 Exploratory methods Condition on a large-effect QTL Reduce residual variation Conditional LOD score: { } Pr(data q1, q 2 ) LOD(q 2 q 1 ) = log 10 Pr(data q 1 ) Piece together the putative QTL from the 1d and 2d scans Omit loci that no longer look interesting (drop-one-at-a-time analysis) Study potential interactions among the identified loci Scan for additional loci (perhaps allowing interactions), conditional on these 25

26 Controlling for chr 4 8 Interval mapping Control for chr 4 6 LOD score Chromosome 26

27 Drop-one-QTL table df LOD %var :

28 Automation Assist inexperienced analysts Understand performance Many phenotypes 28

29 Additive QTL Simple situation: Dense markers Complete genotype data No epistasis y = µ + β j q j + ɛ which β j 0? plod(γ) = LOD(γ) T γ 29

30 Additive QTL Simple situation: Dense markers Complete genotype data No epistasis y = µ + β j q j + ɛ which β j 0? plod(γ) = LOD(γ) T γ 0 vs 1 QTL: plod( ) = 0 plod({λ}) = LOD(λ) T 29

31 Additive QTL Simple situation: Dense markers Complete genotype data No epistasis y = µ + β j q j + ɛ which β j 0? plod(γ) = LOD(γ) T γ For the mouse genome: T = 2.69 (BC) or 3.52 (F 2 ) 29

32 Experience Controls rate of inclusion of extraneous terms Forward selection over-selects Forward selection followed by backward elimination works as well as MCMC Need to define performance criteria Need large-scale simulations Broman & Speed, JRSS B 64: ,

33 Epistasis y = µ + β j q j + γ jk q j q k + ɛ plod(γ) = LOD(γ) T m γ m T i γ i T m = as chosen previously T i =? 31

34 Idea 1 Imagine there are two additive QTL and consider a 2d, 2-QTL scan. T i = 95th percentile of the distribution of max LOD f (s, t) max LOD a (s, t) 32

35 Idea 1 Imagine there are two additive QTL and consider a 2d, 2-QTL scan. T i = 95th percentile of the distribution of max LOD f (s, t) max LOD a (s, t) For the mouse genome: T m = 2.69 (BC) or 3.52 (F 2 ) T H i = 2.62 (BC) or 4.28 (F 2 ) 32

36 Idea 2 Imagine there is one QTL and consider a 2d, 2-QTL scan. T m + T i = 95th percentile of the distribution of max LOD f (s, t) max LOD 1 (s) 33

37 Idea 2 Imagine there is one QTL and consider a 2d, 2-QTL scan. T m + T i = 95th percentile of the distribution of max LOD f (s, t) max LOD 1 (s) For the mouse genome: T m = 2.69 (BC) or 3.52 (F 2 ) T H i = 2.62 (BC) or 4.28 (F 2 ) T L i = 1.19 (BC) or 2.69 (F 2 ) 33

38 Models as graphs A C B D 34

39 Results 1 4 LOD =

40 Results LOD = T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

41 Results T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

42 Profile LOD curves Profile LOD score 8 6 1@68.3 6@ @ Chromosome 36

43 Drop-one-QTL table df LOD %var :

44 Add an interaction? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

45 Add an interaction? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

46 Add an interaction? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

47 Add an interaction? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

48 Add an interaction? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

49 Add another QTL? b T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

50 Add another QTL? T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

51 Add another QTL? b 6 15 T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

52 Add a pair of QTL? 1 4 3a b 6 15 T m = 2.69 T i H = 2.62 T i L = 1.19 T m + T i H = 5.31 T m + T i L = T m =

53 Summary QTL mapping is a model selection problem The criterion for comparing models is most important We re focusing on a penalized likelihood method, with penalties derived from permutation tests with 1d and 2d scans Broman and Speed, J Roy Stat Soc B 64: , 2002 Manichaikul et al., Genetics 181: ,

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org R/qtl workshop (part 2) Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Example Sugiyama et al. Genomics 71:70-77, 2001 250 male

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Human vs mouse Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman www.daviddeen.com

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

QTL Model Search. Brian S. Yandell, UW-Madison January 2017

QTL Model Search. Brian S. Yandell, UW-Madison January 2017 QTL Model Search Brian S. Yandell, UW-Madison January 2017 evolution of QTL models original ideas focused on rare & costly markers models & methods refined as technology advanced single marker regression

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Backcross P 1 P 2 P 1 F 1 BC 4

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

Statistical issues in QTL mapping in mice

Statistical issues in QTL mapping in mice Statistical issues in QTL mapping in mice Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Outline Overview of QTL mapping The X chromosome Mapping

More information

Gene mapping in model organisms

Gene mapping in model organisms Gene mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Goal Identify genes that contribute to common human diseases. 2

More information

Mapping QTL to a phylogenetic tree

Mapping QTL to a phylogenetic tree Mapping QTL to a phylogenetic tree Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman Human vs mouse www.daviddeen.com 3 Intercross

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Overview. Background

Overview. Background Overview Implementation of robust methods for locating quantitative trait loci in R Introduction to QTL mapping Andreas Baierl and Andreas Futschik Institute of Statistics and Decision Support Systems

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

QTL Mapping I: Overview and using Inbred Lines

QTL Mapping I: Overview and using Inbred Lines QTL Mapping I: Overview and using Inbred Lines Key idea: Looking for marker-trait associations in collections of relatives If (say) the mean trait value for marker genotype MM is statisically different

More information

QTL model selection: key players

QTL model selection: key players Bayesian Interval Mapping. Bayesian strategy -9. Markov chain sampling 0-7. sampling genetic architectures 8-5 4. criteria for model selection 6-44 QTL : Bayes Seattle SISG: Yandell 008 QTL model selection:

More information

An applied statistician does probability:

An applied statistician does probability: An applied statistician does probability: It s not pretty Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman An applied statistician

More information

Selecting explanatory variables with the modified version of Bayesian Information Criterion

Selecting explanatory variables with the modified version of Bayesian Information Criterion Selecting explanatory variables with the modified version of Bayesian Information Criterion Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland in cooperation with J.K.Ghosh,

More information

Use of hidden Markov models for QTL mapping

Use of hidden Markov models for QTL mapping Use of hidden Markov models for QTL mapping Karl W Broman Department of Biostatistics, Johns Hopkins University December 5, 2006 An important aspect of the QTL mapping problem is the treatment of missing

More information

Causal Model Selection Hypothesis Tests in Systems Genetics

Causal Model Selection Hypothesis Tests in Systems Genetics 1 Causal Model Selection Hypothesis Tests in Systems Genetics Elias Chaibub Neto and Brian S Yandell SISG 2012 July 13, 2012 2 Correlation and Causation The old view of cause and effect... could only fail;

More information

QTL model selection: key players

QTL model selection: key players QTL Model Selection. Bayesian strategy. Markov chain sampling 3. sampling genetic architectures 4. criteria for model selection Model Selection Seattle SISG: Yandell 0 QTL model selection: key players

More information

Causal Graphical Models in Systems Genetics

Causal Graphical Models in Systems Genetics 1 Causal Graphical Models in Systems Genetics 2013 Network Analysis Short Course - UCLA Human Genetics Elias Chaibub Neto and Brian S Yandell July 17, 2013 Motivation and basic concepts 2 3 Motivation

More information

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines Lecture 8 QTL Mapping 1: Overview and Using Inbred Lines Bruce Walsh. jbwalsh@u.arizona.edu. University of Arizona. Notes from a short course taught Jan-Feb 2012 at University of Uppsala While the machinery

More information

Model Selection for Multiple QTL

Model Selection for Multiple QTL Model Selection for Multiple TL 1. reality of multiple TL 3-8. selecting a class of TL models 9-15 3. comparing TL models 16-4 TL model selection criteria issues of detecting epistasis 4. simulations and

More information

Binary trait mapping in experimental crosses with selective genotyping

Binary trait mapping in experimental crosses with selective genotyping Genetics: Published Articles Ahead of Print, published on May 4, 2009 as 10.1534/genetics.108.098913 Binary trait mapping in experimental crosses with selective genotyping Ani Manichaikul,1 and Karl W.

More information

Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial

Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial Quantile-based permutation thresholds for QTL hotspot analysis: a tutorial Elias Chaibub Neto and Brian S Yandell September 18, 2013 1 Motivation QTL hotspots, groups of traits co-mapping to the same genomic

More information

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation One-week Course on Genetic Analysis and Plant Breeding 21-2 January 213, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation Jiankang Wang, CIMMYT China and CAAS E-mail: jkwang@cgiar.org; wangjiankang@caas.cn

More information

Locating multiple interacting quantitative trait. loci using rank-based model selection

Locating multiple interacting quantitative trait. loci using rank-based model selection Genetics: Published Articles Ahead of Print, published on May 16, 2007 as 10.1534/genetics.106.068031 Locating multiple interacting quantitative trait loci using rank-based model selection, 1 Ma lgorzata

More information

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees:

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees: MCMC for the analysis of genetic data on pedigrees: Tutorial Session 2 Elizabeth Thompson University of Washington Genetic mapping and linkage lod scores Monte Carlo likelihood and likelihood ratio estimation

More information

How the mean changes depends on the other variable. Plots can show what s happening...

How the mean changes depends on the other variable. Plots can show what s happening... Chapter 8 (continued) Section 8.2: Interaction models An interaction model includes one or several cross-product terms. Example: two predictors Y i = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2 + ɛ i. How

More information

Inferring Causal Phenotype Networks from Segregating Populat

Inferring Causal Phenotype Networks from Segregating Populat Inferring Causal Phenotype Networks from Segregating Populations Elias Chaibub Neto chaibub@stat.wisc.edu Statistics Department, University of Wisconsin - Madison July 15, 2008 Overview Introduction Description

More information

Inferring Genetic Architecture of Complex Biological Processes

Inferring Genetic Architecture of Complex Biological Processes Inferring Genetic Architecture of Complex Biological Processes BioPharmaceutical Technology Center Institute (BTCI) Brian S. Yandell University of Wisconsin-Madison http://www.stat.wisc.edu/~yandell/statgen

More information

THE problem of identifying the genetic factors un- QTL models because of their ability to separate linked

THE problem of identifying the genetic factors un- QTL models because of their ability to separate linked Copyright 2001 by the Genetics Society of America A Statistical Framework for Quantitative Trait Mapping Śaunak Sen and Gary A. Churchill The Jackson Laboratory, Bar Harbor, Maine 04609 Manuscript received

More information

Lecture 11: Multiple trait models for QTL analysis

Lecture 11: Multiple trait models for QTL analysis Lecture 11: Multiple trait models for QTL analysis Julius van der Werf Multiple trait mapping of QTL...99 Increased power of QTL detection...99 Testing for linked QTL vs pleiotropic QTL...100 Multiple

More information

Variance Component Models for Quantitative Traits. Biostatistics 666

Variance Component Models for Quantitative Traits. Biostatistics 666 Variance Component Models for Quantitative Traits Biostatistics 666 Today Analysis of quantitative traits Modeling covariance for pairs of individuals estimating heritability Extending the model beyond

More information

Multiple interval mapping for ordinal traits

Multiple interval mapping for ordinal traits Genetics: Published Articles Ahead of Print, published on April 3, 2006 as 10.1534/genetics.105.054619 Multiple interval mapping for ordinal traits Jian Li,,1, Shengchu Wang and Zhao-Bang Zeng,, Bioinformatics

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Users Manual of QTL IciMapping v3.1

Users Manual of QTL IciMapping v3.1 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 Users Manual of QTL IciMapping v3.1 Jiankang Wang, Huihui Li, Luyan Zhang, Chunhui Li and Lei Meng QZ10 QZ9 QZ8 QZ7 QZ6 QZ5 QZ4 QZ3 QZ2 QZ1 L 120 90 60 30 0 120 90 60

More information

Prediction of the Confidence Interval of Quantitative Trait Loci Location

Prediction of the Confidence Interval of Quantitative Trait Loci Location Behavior Genetics, Vol. 34, No. 4, July 2004 ( 2004) Prediction of the Confidence Interval of Quantitative Trait Loci Location Peter M. Visscher 1,3 and Mike E. Goddard 2 Received 4 Sept. 2003 Final 28

More information

Bayesian construction of perceptrons to predict phenotypes from 584K SNP data.

Bayesian construction of perceptrons to predict phenotypes from 584K SNP data. Bayesian construction of perceptrons to predict phenotypes from 584K SNP data. Luc Janss, Bert Kappen Radboud University Nijmegen Medical Centre Donders Institute for Neuroscience Introduction Genetic

More information

TECHNICAL REPORT NO April 22, Causal Model Selection Tests in Systems Genetics 1

TECHNICAL REPORT NO April 22, Causal Model Selection Tests in Systems Genetics 1 DEPARTMENT OF STATISTICS University of Wisconsin 1300 University Avenue Madison, WI 53706 TECHNICAL REPORT NO. 1157 April 22, 2010 Causal Model Selection Tests in Systems Genetics 1 Elias Chaibub Neto

More information

Fast Bayesian Methods for Genetic Mapping Applicable for High-Throughput Datasets

Fast Bayesian Methods for Genetic Mapping Applicable for High-Throughput Datasets Fast Bayesian Methods for Genetic Mapping Applicable for High-Throughput Datasets Yu-Ling Chang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment

More information

Hierarchical Generalized Linear Models for Multiple QTL Mapping

Hierarchical Generalized Linear Models for Multiple QTL Mapping Genetics: Published Articles Ahead of Print, published on January 1, 009 as 10.1534/genetics.108.099556 Hierarchical Generalized Linear Models for Multiple QTL Mapping Nengun Yi 1,* and Samprit Baneree

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

MOST complex traits are influenced by interacting

MOST complex traits are influenced by interacting Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.108.099556 Hierarchical Generalized Linear Models for Multiple Quantitative Trait Locus Mapping Nengjun Yi*,1 and Samprit Banerjee

More information

Affected Sibling Pairs. Biostatistics 666

Affected Sibling Pairs. Biostatistics 666 Affected Sibling airs Biostatistics 666 Today Discussion of linkage analysis using affected sibling pairs Our exploration will include several components we have seen before: A simple disease model IBD

More information

Quantitative Genetics. February 16, 2010

Quantitative Genetics. February 16, 2010 Quantitative Genetics February 16, 2010 A General Model y ij z ij y ij y ij = y i(j) = g j + ε ij 2 1 [zij =j]f ij ( complete likelihood ) j=0 2 ω ij f ij j=0 ( likelihood ) ω i0 = Pr[z ij = j] = q 2 =

More information

TECHNICAL REPORT NO December 1, 2008

TECHNICAL REPORT NO December 1, 2008 DEPARTMENT OF STATISTICS University of Wisconsin 300 University Avenue Madison, WI 53706 TECHNICAL REPORT NO. 46 December, 2008 Revised on January 27, 2009 Causal Graphical Models in System Genetics: a

More information

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics 1 Springer Nan M. Laird Christoph Lange The Fundamentals of Modern Statistical Genetics 1 Introduction to Statistical Genetics and Background in Molecular Genetics 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

More information

The genomes of recombinant inbred lines

The genomes of recombinant inbred lines The genomes of recombinant inbred lines Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman C57BL/6 2 1 Recombinant inbred lines (by sibling mating)

More information

Anumber of statistical methods are available for map- 1995) in some standard designs. For backcross populations,

Anumber of statistical methods are available for map- 1995) in some standard designs. For backcross populations, Copyright 2004 by the Genetics Society of America DOI: 10.1534/genetics.104.031427 An Efficient Resampling Method for Assessing Genome-Wide Statistical Significance in Mapping Quantitative Trait Loci Fei

More information

A Statistical Framework for Expression Trait Loci (ETL) Mapping. Meng Chen

A Statistical Framework for Expression Trait Loci (ETL) Mapping. Meng Chen A Statistical Framework for Expression Trait Loci (ETL) Mapping Meng Chen Prelim Paper in partial fulfillment of the requirements for the Ph.D. program in the Department of Statistics University of Wisconsin-Madison

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017 Lecture 2: Genetic Association Testing with Quantitative Traits Instructors: Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 29 Introduction to Quantitative Trait Mapping

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power Proportional Variance Explained by QTL and Statistical Power Partitioning the Genetic Variance We previously focused on obtaining variance components of a quantitative trait to determine the proportion

More information

The Admixture Model in Linkage Analysis

The Admixture Model in Linkage Analysis The Admixture Model in Linkage Analysis Jie Peng D. Siegmund Department of Statistics, Stanford University, Stanford, CA 94305 SUMMARY We study an appropriate version of the score statistic to test the

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8 The E-M Algorithm in Genetics Biostatistics 666 Lecture 8 Maximum Likelihood Estimation of Allele Frequencies Find parameter estimates which make observed data most likely General approach, as long as

More information

Case-Control Association Testing. Case-Control Association Testing

Case-Control Association Testing. Case-Control Association Testing Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits. Technological advances have made it feasible to perform case-control association studies

More information

BAYESIAN MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI

BAYESIAN MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI BAYESIAN MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI By DÁMARIS SANTANA MORANT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI ROBY JOEHANES

MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI ROBY JOEHANES MULTIPLE-TRAIT MULTIPLE-INTERVAL MAPPING OF QUANTITATIVE-TRAIT LOCI by ROBY JOEHANES B.S., Universitas Pelita Harapan, Indonesia, 1999 M.S., Kansas State University, 2002 A REPORT submitted in partial

More information

Genotype Imputation. Biostatistics 666

Genotype Imputation. Biostatistics 666 Genotype Imputation Biostatistics 666 Previously Hidden Markov Models for Relative Pairs Linkage analysis using affected sibling pairs Estimation of pairwise relationships Identity-by-Descent Relatives

More information

Detection of multiple QTL with epistatic effects under a mixed inheritance model in an outbred population

Detection of multiple QTL with epistatic effects under a mixed inheritance model in an outbred population Genet. Sel. Evol. 36 (2004) 415 433 415 c INRA, EDP Sciences, 2004 DOI: 10.1051/gse:2004009 Original article Detection of multiple QTL with epistatic effects under a mixed inheritance model in an outbred

More information

(Genome-wide) association analysis

(Genome-wide) association analysis (Genome-wide) association analysis 1 Key concepts Mapping QTL by association relies on linkage disequilibrium in the population; LD can be caused by close linkage between a QTL and marker (= good) or by

More information

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 Association Testing with Quantitative Traits: Common and Rare Variants Timothy Thornton and Katie Kerr Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 1 / 41 Introduction to Quantitative

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

Genome-wide Multiple Loci Mapping in Experimental Crosses by the Iterative Adaptive Penalized Regression

Genome-wide Multiple Loci Mapping in Experimental Crosses by the Iterative Adaptive Penalized Regression Genetics: Published Articles Ahead of Print, published on February 15, 2010 as 10.1534/genetics.110.114280 Genome-wide Multiple Loci Mapping in Experimental Crosses by the Iterative Adaptive Penalized

More information

I Have the Power in QTL linkage: single and multilocus analysis

I Have the Power in QTL linkage: single and multilocus analysis I Have the Power in QTL linkage: single and multilocus analysis Benjamin Neale 1, Sir Shaun Purcell 2 & Pak Sham 13 1 SGDP, IoP, London, UK 2 Harvard School of Public Health, Cambridge, MA, USA 3 Department

More information

Methods for QTL analysis

Methods for QTL analysis Methods for QTL analysis Julius van der Werf METHODS FOR QTL ANALYSIS... 44 SINGLE VERSUS MULTIPLE MARKERS... 45 DETERMINING ASSOCIATIONS BETWEEN GENETIC MARKERS AND QTL WITH TWO MARKERS... 45 INTERVAL

More information

Quantile based Permutation Thresholds for QTL Hotspots. Brian S Yandell and Elias Chaibub Neto 17 March 2012

Quantile based Permutation Thresholds for QTL Hotspots. Brian S Yandell and Elias Chaibub Neto 17 March 2012 Quantile based Permutation Thresholds for QTL Hotspots Brian S Yandell and Elias Chaibub Neto 17 March 2012 2012 Yandell 1 Fisher on inference We may at once admit that any inference from the particular

More information

Dimensionality Reduction Techniques (DRT)

Dimensionality Reduction Techniques (DRT) Dimensionality Reduction Techniques (DRT) Introduction: Sometimes we have lot of variables in the data for analysis which create multidimensional matrix. To simplify calculation and to get appropriate,

More information

arxiv: v4 [stat.me] 2 May 2015

arxiv: v4 [stat.me] 2 May 2015 Submitted to the Annals of Statistics arxiv: arxiv:0000.0000 BAYESIAN NONPARAMETRIC TESTS VIA SLICED INVERSE MODELING By Bo Jiang, Chao Ye and Jun S. Liu Harvard University, Tsinghua University and Harvard

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Linkage analysis and QTL mapping in autotetraploid species Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Collaborators John Bradshaw Zewei Luo Iain Milne Jim McNicol Data and

More information

Lecture 8 Genomic Selection

Lecture 8 Genomic Selection Lecture 8 Genomic Selection Guilherme J. M. Rosa University of Wisconsin-Madison Mixed Models in Quantitative Genetics SISG, Seattle 18 0 Setember 018 OUTLINE Marker Assisted Selection Genomic Selection

More information

Bayesian reversible-jump for epistasis analysis in genomic studies

Bayesian reversible-jump for epistasis analysis in genomic studies Balestre and de Souza BMC Genomics (2016) 17:1012 DOI 10.1186/s12864-016-3342-6 RESEARCH ARTICLE Bayesian reversible-jump for epistasis analysis in genomic studies Marcio Balestre 1* and Claudio Lopes

More information

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES Saurabh Ghosh Human Genetics Unit Indian Statistical Institute, Kolkata Most common diseases are caused by

More information

. Also, in this case, p i = N1 ) T, (2) where. I γ C N(N 2 2 F + N1 2 Q)

. Also, in this case, p i = N1 ) T, (2) where. I γ C N(N 2 2 F + N1 2 Q) Supplementary information S7 Testing for association at imputed SPs puted SPs Score tests A Score Test needs calculations of the observed data score and information matrix only under the null hypothesis,

More information

A partial regression coefficient analysis framework to infer candidate genes potentially causal to traits in recombinant inbred lines

A partial regression coefficient analysis framework to infer candidate genes potentially causal to traits in recombinant inbred lines ARTICLE A partial regression coefficient analysis framework to infer candidate genes potentially causal to traits in recombinant inbred lines Jan Michael Yap 1 *, Ramil Mauleon 2, Eduardo Mendoza 1,3,

More information

Calculation of IBD probabilities

Calculation of IBD probabilities Calculation of IBD probabilities David Evans and Stacey Cherny University of Oxford Wellcome Trust Centre for Human Genetics This Session IBD vs IBS Why is IBD important? Calculating IBD probabilities

More information

Bayesian Inference of Interactions and Associations

Bayesian Inference of Interactions and Associations Bayesian Inference of Interactions and Associations Jun Liu Department of Statistics Harvard University http://www.fas.harvard.edu/~junliu Based on collaborations with Yu Zhang, Jing Zhang, Yuan Yuan,

More information

Causal Network Models for Correlated Quantitative Traits. outline

Causal Network Models for Correlated Quantitative Traits. outline Causal Network Models for Correlated Quantitative Traits Brian S. Yandell UW Madison October 2012 www.stat.wisc.edu/~yandell/statgen Jax SysGen: Yandell 2012 1 outline Correlation and causation Correlatedtraitsinorganized

More information

Calculation of IBD probabilities

Calculation of IBD probabilities Calculation of IBD probabilities David Evans University of Bristol This Session Identity by Descent (IBD) vs Identity by state (IBS) Why is IBD important? Calculating IBD probabilities Lander-Green Algorithm

More information

On the mapping of quantitative trait loci at marker and non-marker locations

On the mapping of quantitative trait loci at marker and non-marker locations Genet. Res., Camb. (2002), 79, pp. 97 106. With 3 figures. 2002 Cambridge University Press DOI: 10.1017 S0016672301005420 Printed in the United Kingdom 97 On the mapping of quantitative trait loci at marker

More information

Causal Model Selection Hypothesis Tests. in Systems Genetics

Causal Model Selection Hypothesis Tests. in Systems Genetics Causal Model Selection Hypothesis Tests in Systems Genetics Elias Chaibub Neto 1 Aimee T. Broman 2 Mark P Keller 2 Alan D Attie 2 Bin Zhang 1 Jun Zhu 1 Brian S Yandell 3,4 1 Sage Bionetworks, Seattle,

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Satoshi Kuriki and Xiaoling Dou (Inst. Statist. Math., Tokyo) ISM Cooperative

More information

Multiple linear regression S6

Multiple linear regression S6 Basic medical statistics for clinical and experimental research Multiple linear regression S6 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/42 Introduction Two main motivations for doing multiple

More information

MANY complex human diseases and traits of bio- tive corrections for multiple testing. Non-Bayesian model

MANY complex human diseases and traits of bio- tive corrections for multiple testing. Non-Bayesian model Copyright 2005 by the Genetics Society of America DOI: 10.1534/genetics.104.040386 Bayesian Model Selection for Genome-Wide Epistatic Quantitative Trait Loci Analysis Nengjun Yi,*,,1 Brian S. Yandell,

More information

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia Expression QTLs and Mapping of Complex Trait Loci Paul Schliekelman Statistics Department University of Georgia Definitions: Genes, Loci and Alleles A gene codes for a protein. Proteins due everything.

More information

A new simple method for improving QTL mapping under selective genotyping

A new simple method for improving QTL mapping under selective genotyping Genetics: Early Online, published on September 22, 2014 as 10.1534/genetics.114.168385 A new simple method for improving QTL mapping under selective genotyping Hsin-I Lee a, Hsiang-An Ho a and Chen-Hung

More information

Missing Data. On Missing Data and Interactions in SNP Association Studies. Missing Data - Approaches. Missing Data - Approaches. Multiple Imputation

Missing Data. On Missing Data and Interactions in SNP Association Studies. Missing Data - Approaches. Missing Data - Approaches. Multiple Imputation October, 6 @ U of British Columbia Missing Data On Missing Data Interactions in SNP Association Studies 5 SNPs Ingo Ruczinski Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

More information

1. what is the goal of QTL study?

1. what is the goal of QTL study? NSF UAB Course 008 Bayesian Interval Mapping Brian S. Yandell, UW-Madison www.stat.wisc.edu/~yandell/statgen overview: multiple QTL approaches Bayesian QTL mapping & model selection data examples in detail

More information

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6 Yamamoto et al. BMC Genetics 2014, 15:50 METHODOLOGY ARTICLE Open Access Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Quantitative genetics

Quantitative genetics Quantitative genetics Many traits that are important in agriculture, biology and biomedicine are continuous in their phenotypes. For example, Crop Yield Stemwood Volume Plant Disease Resistances Body Weight

More information

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB

Quantitative Genomics and Genetics BTRY 4830/6830; PBSB Quantitative Genomics and Genetics BTRY 4830/6830; PBSB.5201.01 Lecture 20: Epistasis and Alternative Tests in GWAS Jason Mezey jgm45@cornell.edu April 16, 2016 (Th) 8:40-9:55 None Announcements Summary

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

CS Homework 3. October 15, 2009

CS Homework 3. October 15, 2009 CS 294 - Homework 3 October 15, 2009 If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex Simma (asimma@eecs.berkeley.edu) for part 2. Also check the class website

More information