Affected Sibling Pairs. Biostatistics 666

Size: px
Start display at page:

Download "Affected Sibling Pairs. Biostatistics 666"

Transcription

1 Affected Sibling airs Biostatistics 666

2 Today Discussion of linkage analysis using affected sibling pairs Our exploration will include several components we have seen before: A simple disease model IBD sharing probabilities Maximum likelihood The E-M algorithm A Hidden Markov model Linkage analysis with sibling pairs using Risch s Maximum LOD Score MLS Distribution of IBD in affected sibling pairs and Holman s ossible Triangle Constraint

3 Examplar Linkage Study Concannon et al 998 Nature Genetics, 9:9-96 Affected sibling pair study of type diabetes Chronic disease affecting ~ in 50 children 9 affected sibpairs for initial screen 467 affected sibpairs for follow-up Highest LOD score reaches 34. near HLA on chr. 6 At this locus, chromosomes carried by affected sibs are identical in 73% of pairs.

4 Examplar Linkage Study Results Concannon et al 998 Nature Genetics, 9:9-96

5 Single Locus Disease Model Allele frequencies p and -p enetrances f, f, f Useful in exploring behavior of linkage and association tests We used similar constructs to explore genetic association test power Simplification of reality, ignores other loci and the environment

6 Using enetrances Allele frequency p Genotype penetrances f, f, f revalence K robability of genotype given disease G ij D

7 airs of Individuals A genetic model can predict probability of sampling different affected relative pairs We will first consider some simple cases: Unrelated individuals arent-offspring pairs Monozygotic twins How much genetic material do these pairs share IBD?

8 Unrelated Individuals robability of affected pair of unrelateds a and b affected a affected b affected affected [ ] p f + p p f + p f K For related individuals, probability that both affected is greater or equal

9 Monozygotic Twins robability of affected pair of identical twins MZ pair affected G a K MZ is prevalence among MZ twins of an affected individual It is always greater than or equal to K λ MZ K MZ / K is the increase in risk for MZ twins of an affected individual For any single locus disease model, it is always greater than G p K λ f MZ MZ K K + p affected G b affected G p f + p f

10 arent Offspring airs robability of affected parent-offspring pair parent and child affected G G O G i j k, G O f G i, j, k f ij f f G ik O p K 3 f K λ K O O + p 3 f + p p f + p p f f + p p f f K o is the prevalence among offspring of an affected individual λ o is the increase in risk for offspring of affected individuals, between and λ MZ

11 oint of Situation robabilities of affected pairs for Unrelated Individuals Monozygotic Twins arent-offspring airs revalences K MZ and K O among twins and offspring of affected individuals Relative risks λ MZ and λ O summarizing changes in risk How to predict K R and λ R for other types of relatives?

12 Recurrence Risks vs IBD λ IBD λ MZ affected IBD with affected relative affected λ IBD λ O affected IBD with affected relative affected λ IBD 0 affected IBD 0 with affected relative affected

13 Affected Half-Siblings IBD sharing 0 alleles with probability 50% allele with probability 50% This gives K K K K K O O H O O H λ λ λ

14 Affected Sibpairs IBD sharing 0 alleles with probability 5% alleles with probability 50% alleles with probability 5% This gives λ S 4 λ MZ λo λmz λo

15 What does this have to do with linkage analysis? For a single locus model Siblings with IBD0 are like unrelateds Siblings with IBD are like parent offspring pairs Siblings with IBD are like identical twins The genetic model parameters and the relative risks they imply allow us to calculate expected IBD probabilities at a disease locus and compare these to null expectations where z 0 ¼, z ½, z ¼

16 Expected IBD sharing among affected siblings at the disease locus! z z z λ s λo 0.50 λ s λmz 0.5 λ s λ o λ s λ MZ for any genetic model

17 ossible Triangle Area covering all possible values for IBD sharing parameters z z 0 ¼, z ½ z 0

18 ossible Triangle z H 0 : z 0 ¼, z ½ The yellow triangle indicates possible true values for the sharing parameters for any genetic model. H z 0

19 Intuition: Affected Sibpair Linkage Analyses Consider affected sibling pairs Consider one genetic marker at a time Are paired genotypes more similar than expected?

20 Likelihood Based Linkage Test Depends on three parameters z 0, z, z robability of sharing 0, and alleles IBD Null likelihood uses z 0 ¼, z ½, z ¼ Alternative likelihood uses MLE for z 0, z, z Compare likelihoods with likelihood ratio test

21 otential Sib-air Likelihood Under the null hypothesis: L 4 n IBD0 n IBD 4 n IBD Under the alternative hypothesis L n IBD0 nibd nibd zˆ zˆ zˆ 0

22 In real life Markers are only partially informative IBD sharing is equivocal Uncertainty can only be partly reduced by examining relatives Need an alternative likelihood Should allow for partially informative data

23 For A Single Family L i IBD j AS Genotypesi IBD j j 0 j 0 z j w ij Risch 990 defines w ij Genotypes i IBD j We only need proportionate w ij

24 Likelihood and LOD Score ,z,z z the LOD evaluated at the MLEs of The MLSstatistic is ˆ ˆ ˆ log,, i i i i i i i i j ij j w w w w z w z w z LOD w z z z z L

25 w: Marker Genotype IBD State Relative IBD I II 0 a,b c,d 4p a p b p c p d 0 0 a,a b,c p a p b p c 0 0 a,a b,b p a p b 0 0 a,b a,c 4p a p b p c p a p b p c 0 a,a a,b p 3 a p b p a p b 0 a,b a,b 4p a p b p a p b +p a p b p a p b a,a a,a 4 p a 3 p a p a rior robability ¼ ½ ¼ These probabilities apply to pair of individuals, when no other genotypes in the family are known.

26 Example scoring for w ij / / In this case, relative weights depend on allele frequency.

27 More examples for scoring: w ij / / / / / / / / / / / / In these cases, multiple weights are non-zero but equal for each family.

28 How to maximize likelihood? If all families are informative Use sample proportions of IBD0,, If some families are uninformative Use an E-M algorithm At each stage generate complete dataset with fractional counts Iterate until estimates of LOD and z parameters are stable

29 Assigning artial Counts in E-M 0 0 k ik k ij j k i w z w z k IBD Genotypes AS k IBD j IBD Genotypes AS j IBD L j IBD Genotypes AS j IBD Genotypes j IBD

30 Example 5x 5x / / IBD? / / IBD / / Assume a bi-allelic marker where the two alleles have identical frequencies.

31 Example of E-M Steps arameters Equivocal Families Other z0 z z IBD0 IBD IBD IBD LOD LODi LODu

32 oint of Situation Noted that affected siblings are more likely to share two alleles identical by descent Derived a likelihood based linkage test that compares sharing probabilities to null defaults Let s examine these probabilities in more detail

33 Intuition: ossible Triangle Constraints Under the null True parameter values are ¼, ½, ¼ Estimates will wobble around this point Under the alternative True parameter values are within triangle Estimates will wobble around true point z H 0 : z 0 ¼, z ½ H Holmans 993 suggested we focus testing on searching for alternatives within the triangle These suggest a disease gene z 0

34 The possible triangle method. Estimate z 0, z, z without restrictions. If estimate of z > ½ then a Repeat estimation with z ½ b If this gives z 0 > ¼ then revert to null MLS0 3. If estimates imply z 0 > z then a Repeat estimation with z z o b If this gives z 0 > ¼ then revert to null MLS0 4. Otherwise, leave estimates unchanged.

35 ossible Triangle Holman's Example: IBD airs MLS 4. overall MLE 0.08,0.60,0.3 MLS 3.35 triangle MLE 0.0,0.50,0.40

36 MLS Combined With ossible Triangle Under null, true z is a corner of the triangle Estimates will often lie outside triangle Restriction to the triangle decreases MLS MLS threshold for fixed type I error decreases Under alternative, true z is within triangle Estimates will lie outside triangle less often MLS decreases less Overall, power should be increased

37 Example Type I error rate of 0.00 LOD of 3.0 with unrestricted method Risch 990 LOD of.3 with possible triangle constraint Holmans 993 For some cases, almost doubles power

38 Recommended Reading Holmans 993 Asymptotic roperties of Affected-Sib-air Linkage Analysis Am J Hum Genet 5: Introduces possible triangle constraint Good review of MLS method

39 Recommended Reading Risch 990 Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker olymorphism on Analysis of Affected Relative airs Am J Hum Genet 46:4-53 Introduces MLS method for linkage analysis Still, one of the best methods for analysis pair data Evaluates different sampling strategies Results were later corrected by Risch 99

40 Intuition For Multipoint Analysis IBD changes infrequently along the chromosome Neighboring markers can help resolve ambiguities about IBD sharing In the Risch approach, they might ensure that only one w is effectively non-zero

41 Ingredients for a multipoint model X X X 3 X M One ingredient will be the observed genotypes at each marker

42 Ingredients for a multipoint model X X X 3 X M X I X I X 3 I X M I 3 M I I I 3 I M Another ingredient will be the possible IBD states at each marker

43 Ingredients for a multipoint model X X X 3 X M X I X I X 3 I X M I 3 M I I I 3 I M I I I I 3 I... The final ingredient connects IBD states along the chromosome

44 The Likelihood of Marker Data L M M I Ii Ii X i Ii I I I M i i... General formulation, allows for any number of markers. Combined with Bayes Theorem can estimate probability of each IBD state at any marker.

45 X m I m IBD Sib CoSib 0 a,b c,d 4p a p b p c p d 0 0 a,a b,c p a p b p c 0 0 a,a b,b p a p b 0 0 a,b a,c 4p a p b p c p a p b p c 0 a,a a,b p 3 a p b p a p b 0 a,b a,b 4p a p b p a p b +p a p b p a p b 4 3 a,a a,a p a p a p a rior robability ¼ ½ ¼

46 I m + I m Depends on recombination fraction θ This is a measure of distance between two loci robability grand-parental origin of alleles changes between loci IBD state at marker IBD State at m ψ ψ-ψ ψ ψ-ψ -ψ +ψ ψ-ψ m ψ ψ-ψ -ψ ψ θ θ

47 The Likelihood of Marker Data... I I I M i i i M i i i M I X I I I L General, but slow unless there are only a few markers. How do we speed things up?

48 Example Consider two loci separated by θ 0. Each loci has two alleles, each with frequency.50 If two siblings are homozygous for the first allele at both loci, what is the probability that IBD at the first locus?

49 A Markov Model Re-organize the computation slightly, to avoid evaluating nested sum directly Three components: robability considering a single location robability including left flanking markers robability including right flanking markers Scale of computation increases linearly with number of markers

50 Left-Chain robabilities,..., I L I I I X I L I X X I L I m m m m m m m m m m m roceed one marker at a time. Computation cost increases linearly with number of markers.

51 Right-Chain robabilities,..., M M I m m m m m m m M m m m I R I I I X I R I X X I R m roceed one marker at a time. Computation cost increases linearly with number of markers.

52 Extending the MLS Method We just change the definition for the weights given to each configuration! j j j j j j j M j j j j j j I R I L I X I X X I X X I X w +

53 ossible Further Extensions Modeling error What components might have to change? Modeling other types of relatives What components might have to change? Modeling larger pedigrees What components might have to change?

54 Worked Example / / then 0.5, 0.50,z 0.5,z z If X p X IBD X p X IBD X p X IBD p p p X p IBD X w p IBD X w p IBD X w p

Modeling IBD for Pairs of Relatives. Biostatistics 666 Lecture 17

Modeling IBD for Pairs of Relatives. Biostatistics 666 Lecture 17 Modeling IBD for Pairs of Relatives Biostatistics 666 Lecture 7 Previously Linkage Analysis of Relative Pairs IBS Methods Compare observed and expected sharing IBD Methods Account for frequency of shared

More information

The Lander-Green Algorithm. Biostatistics 666 Lecture 22

The Lander-Green Algorithm. Biostatistics 666 Lecture 22 The Lander-Green Algorithm Biostatistics 666 Lecture Last Lecture Relationship Inferrence Likelihood of genotype data Adapt calculation to different relationships Siblings Half-Siblings Unrelated individuals

More information

Variance Component Models for Quantitative Traits. Biostatistics 666

Variance Component Models for Quantitative Traits. Biostatistics 666 Variance Component Models for Quantitative Traits Biostatistics 666 Today Analysis of quantitative traits Modeling covariance for pairs of individuals estimating heritability Extending the model beyond

More information

Calculation of IBD probabilities

Calculation of IBD probabilities Calculation of IBD probabilities David Evans University of Bristol This Session Identity by Descent (IBD) vs Identity by state (IBS) Why is IBD important? Calculating IBD probabilities Lander-Green Algorithm

More information

Calculation of IBD probabilities

Calculation of IBD probabilities Calculation of IBD probabilities David Evans and Stacey Cherny University of Oxford Wellcome Trust Centre for Human Genetics This Session IBD vs IBS Why is IBD important? Calculating IBD probabilities

More information

The universal validity of the possible triangle constraint for Affected-Sib-Pairs

The universal validity of the possible triangle constraint for Affected-Sib-Pairs The Canadian Journal of Statistics Vol. 31, No.?, 2003, Pages???-??? La revue canadienne de statistique The universal validity of the possible triangle constraint for Affected-Sib-Pairs Zeny Z. Feng, Jiahua

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

For 5% confidence χ 2 with 1 degree of freedom should exceed 3.841, so there is clear evidence for disequilibrium between S and M.

For 5% confidence χ 2 with 1 degree of freedom should exceed 3.841, so there is clear evidence for disequilibrium between S and M. STAT 550 Howework 6 Anton Amirov 1. This question relates to the same study you saw in Homework-4, by Dr. Arno Motulsky and coworkers, and published in Thompson et al. (1988; Am.J.Hum.Genet, 42, 113-124).

More information

Genotype Imputation. Biostatistics 666

Genotype Imputation. Biostatistics 666 Genotype Imputation Biostatistics 666 Previously Hidden Markov Models for Relative Pairs Linkage analysis using affected sibling pairs Estimation of pairwise relationships Identity-by-Descent Relatives

More information

AFFECTED RELATIVE PAIR LINKAGE STATISTICS THAT MODEL RELATIONSHIP UNCERTAINTY

AFFECTED RELATIVE PAIR LINKAGE STATISTICS THAT MODEL RELATIONSHIP UNCERTAINTY AFFECTED RELATIVE PAIR LINKAGE STATISTICS THAT MODEL RELATIONSHIP UNCERTAINTY by Amrita Ray BSc, Presidency College, Calcutta, India, 2001 MStat, Indian Statistical Institute, Calcutta, India, 2003 Submitted

More information

I Have the Power in QTL linkage: single and multilocus analysis

I Have the Power in QTL linkage: single and multilocus analysis I Have the Power in QTL linkage: single and multilocus analysis Benjamin Neale 1, Sir Shaun Purcell 2 & Pak Sham 13 1 SGDP, IoP, London, UK 2 Harvard School of Public Health, Cambridge, MA, USA 3 Department

More information

Statistical issues in QTL mapping in mice

Statistical issues in QTL mapping in mice Statistical issues in QTL mapping in mice Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Outline Overview of QTL mapping The X chromosome Mapping

More information

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia Expression QTLs and Mapping of Complex Trait Loci Paul Schliekelman Statistics Department University of Georgia Definitions: Genes, Loci and Alleles A gene codes for a protein. Proteins due everything.

More information

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8 The E-M Algorithm in Genetics Biostatistics 666 Lecture 8 Maximum Likelihood Estimation of Allele Frequencies Find parameter estimates which make observed data most likely General approach, as long as

More information

The Quantitative TDT

The Quantitative TDT The Quantitative TDT (Quantitative Transmission Disequilibrium Test) Warren J. Ewens NUS, Singapore 10 June, 2009 The initial aim of the (QUALITATIVE) TDT was to test for linkage between a marker locus

More information

Gene mapping in model organisms

Gene mapping in model organisms Gene mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Goal Identify genes that contribute to common human diseases. 2

More information

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES

MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES MODEL-FREE LINKAGE AND ASSOCIATION MAPPING OF COMPLEX TRAITS USING QUANTITATIVE ENDOPHENOTYPES Saurabh Ghosh Human Genetics Unit Indian Statistical Institute, Kolkata Most common diseases are caused by

More information

Lander-Green Algorithm. Biostatistics 666

Lander-Green Algorithm. Biostatistics 666 Lander-Green Algorith Biostatistics 666 Identity-by-Descent (IBD) A roerty o chroosoe stretches that descend ro the sae ancestor Two alleles are IBD i they descend ro the sae ounder chroosoe For a air

More information

Analytic power calculation for QTL linkage analysis of small pedigrees

Analytic power calculation for QTL linkage analysis of small pedigrees (2001) 9, 335 ± 340 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE for QTL linkage analysis of small pedigrees FruÈhling V Rijsdijk*,1, John K Hewitt

More information

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees:

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees: MCMC for the analysis of genetic data on pedigrees: Tutorial Session 2 Elizabeth Thompson University of Washington Genetic mapping and linkage lod scores Monte Carlo likelihood and likelihood ratio estimation

More information

DNA polymorphisms such as SNP and familial effects (additive genetic, common environment) to

DNA polymorphisms such as SNP and familial effects (additive genetic, common environment) to 1 1 1 1 1 1 1 1 0 SUPPLEMENTARY MATERIALS, B. BIVARIATE PEDIGREE-BASED ASSOCIATION ANALYSIS Introduction We propose here a statistical method of bivariate genetic analysis, designed to evaluate contribution

More information

Optimal Allele-Sharing Statistics for Genetic Mapping Using Affected Relatives

Optimal Allele-Sharing Statistics for Genetic Mapping Using Affected Relatives Genetic Epidemiology 16:225 249 (1999) Optimal Allele-Sharing Statistics for Genetic Mapping Using Affected Relatives Mary Sara McPeek* Department of Statistics, University of Chicago, Chicago, Illinois

More information

EXERCISES FOR CHAPTER 7. Exercise 7.1. Derive the two scales of relation for each of the two following recurrent series:

EXERCISES FOR CHAPTER 7. Exercise 7.1. Derive the two scales of relation for each of the two following recurrent series: Statistical Genetics Agronomy 65 W. E. Nyquist March 004 EXERCISES FOR CHAPTER 7 Exercise 7.. Derive the two scales of relation for each of the two following recurrent series: u: 0, 8, 6, 48, 46,L 36 7

More information

Relatedness 1: IBD and coefficients of relatedness

Relatedness 1: IBD and coefficients of relatedness Relatedness 1: IBD and coefficients of relatedness or What does it mean to be related? Magnus Dehli Vigeland NORBIS course, 8 th 12 th of January 2018, Oslo Plan Introduction What does it mean to be related?

More information

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda 1 Population Genetics with implications for Linkage Disequilibrium Chiara Sabatti, Human Genetics 6357a Gonda csabatti@mednet.ucla.edu 2 Hardy-Weinberg Hypotheses: infinite populations; no inbreeding;

More information

Lecture 6. QTL Mapping

Lecture 6. QTL Mapping Lecture 6 QTL Mapping Bruce Walsh. Aug 2003. Nordic Summer Course MAPPING USING INBRED LINE CROSSES We start by considering crosses between inbred lines. The analysis of such crosses illustrates many of

More information

The genomes of recombinant inbred lines

The genomes of recombinant inbred lines The genomes of recombinant inbred lines Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman C57BL/6 2 1 Recombinant inbred lines (by sibling mating)

More information

QTL mapping under ascertainment

QTL mapping under ascertainment QTL mapping under ascertainment J. PENG Department of Statistics, University of California, Davis, CA 95616 D. SIEGMUND Department of Statistics, Stanford University, Stanford, CA 94305 February 15, 2006

More information

Breeding Values and Inbreeding. Breeding Values and Inbreeding

Breeding Values and Inbreeding. Breeding Values and Inbreeding Breeding Values and Inbreeding Genotypic Values For the bi-allelic single locus case, we previously defined the mean genotypic (or equivalently the mean phenotypic values) to be a if genotype is A 2 A

More information

Prediction of the Confidence Interval of Quantitative Trait Loci Location

Prediction of the Confidence Interval of Quantitative Trait Loci Location Behavior Genetics, Vol. 34, No. 4, July 2004 ( 2004) Prediction of the Confidence Interval of Quantitative Trait Loci Location Peter M. Visscher 1,3 and Mike E. Goddard 2 Received 4 Sept. 2003 Final 28

More information

Linkage and Linkage Disequilibrium

Linkage and Linkage Disequilibrium Linkage and Linkage Disequilibrium Summer Institute in Statistical Genetics 2014 Module 10 Topic 3 Linkage in a simple genetic cross Linkage In the early 1900 s Bateson and Punnet conducted genetic studies

More information

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics 1 Springer Nan M. Laird Christoph Lange The Fundamentals of Modern Statistical Genetics 1 Introduction to Statistical Genetics and Background in Molecular Genetics 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

More information

Asymptotic properties of the likelihood ratio test statistics with the possible triangle constraint in Affected-Sib-Pair analysis

Asymptotic properties of the likelihood ratio test statistics with the possible triangle constraint in Affected-Sib-Pair analysis The Canadian Journal of Statistics Vol.?, No.?, 2006, Pages???-??? La revue canadienne de statistique Asymptotic properties of the likelihood ratio test statistics with the possible triangle constraint

More information

2. Map genetic distance between markers

2. Map genetic distance between markers Chapter 5. Linkage Analysis Linkage is an important tool for the mapping of genetic loci and a method for mapping disease loci. With the availability of numerous DNA markers throughout the human genome,

More information

The Admixture Model in Linkage Analysis

The Admixture Model in Linkage Analysis The Admixture Model in Linkage Analysis Jie Peng D. Siegmund Department of Statistics, Stanford University, Stanford, CA 94305 SUMMARY We study an appropriate version of the score statistic to test the

More information

Phasing via the Expectation Maximization (EM) Algorithm

Phasing via the Expectation Maximization (EM) Algorithm Computing Haplotype Frequencies and Haplotype Phasing via the Expectation Maximization (EM) Algorithm Department of Computer Science Brown University, Providence sorin@cs.brown.edu September 14, 2010 Outline

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Binary trait mapping in experimental crosses with selective genotyping

Binary trait mapping in experimental crosses with selective genotyping Genetics: Published Articles Ahead of Print, published on May 4, 2009 as 10.1534/genetics.108.098913 Binary trait mapping in experimental crosses with selective genotyping Ani Manichaikul,1 and Karl W.

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Backcross P 1 P 2 P 1 F 1 BC 4

More information

Resemblance between relatives

Resemblance between relatives Resemblance between relatives 1 Key concepts Model phenotypes by fixed effects and random effects including genetic value (additive, dominance, epistatic) Model covariance of genetic effects by relationship

More information

Resultants in genetic linkage analysis

Resultants in genetic linkage analysis Journal of Symbolic Computation 41 (2006) 125 137 www.elsevier.com/locate/jsc Resultants in genetic linkage analysis Ingileif B. Hallgrímsdóttir a,, Bernd Sturmfels b a Department of Statistics, University

More information

Use of hidden Markov models for QTL mapping

Use of hidden Markov models for QTL mapping Use of hidden Markov models for QTL mapping Karl W Broman Department of Biostatistics, Johns Hopkins University December 5, 2006 An important aspect of the QTL mapping problem is the treatment of missing

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

A Robust Identity-by-Descent Procedure Using Affected Sib Pairs: Multipoint Mapping for Complex Diseases

A Robust Identity-by-Descent Procedure Using Affected Sib Pairs: Multipoint Mapping for Complex Diseases Original Paper Hum Hered 001;51:64 78 Received: May 1, 1999 Revision received: September 10, 1999 Accepted: October 6, 1999 A Robust Identity-by-Descent Procedure Using Affected Sib Pairs: Multipoint Mapping

More information

Mapping QTL to a phylogenetic tree

Mapping QTL to a phylogenetic tree Mapping QTL to a phylogenetic tree Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman Human vs mouse www.daviddeen.com 3 Intercross

More information

On Computation of P-values in Parametric Linkage Analysis

On Computation of P-values in Parametric Linkage Analysis On Computation of P-values in Parametric Linkage Analysis Azra Kurbašić Centre for Mathematical Sciences Mathematical Statistics Lund University p.1/22 Parametric (v. Nonparametric) Analysis The genetic

More information

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA

Linkage analysis and QTL mapping in autotetraploid species. Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Linkage analysis and QTL mapping in autotetraploid species Christine Hackett Biomathematics and Statistics Scotland Dundee DD2 5DA Collaborators John Bradshaw Zewei Luo Iain Milne Jim McNicol Data and

More information

1.5.1 ESTIMATION OF HAPLOTYPE FREQUENCIES:

1.5.1 ESTIMATION OF HAPLOTYPE FREQUENCIES: .5. ESTIMATION OF HAPLOTYPE FREQUENCIES: Chapter - 8 For SNPs, alleles A j,b j at locus j there are 4 haplotypes: A A, A B, B A and B B frequencies q,q,q 3,q 4. Assume HWE at haplotype level. Only the

More information

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin CHAPTER 1 1.2 The expected homozygosity, given allele

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section 1. In the following cross, all genes are on separate chromosomes. A is dominant to a, B is dominant to b and D is dominant

More information

SOLUTIONS TO EXERCISES FOR CHAPTER 9

SOLUTIONS TO EXERCISES FOR CHAPTER 9 SOLUTIONS TO EXERCISES FOR CHPTER 9 gronomy 65 Statistical Genetics W. E. Nyquist March 00 Exercise 9.. a. lgebraic method for the grandparent-grandoffspring covariance (see parent-offspring covariance,

More information

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification,

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification, Likelihood Let P (D H) be the probability an experiment produces data D, given hypothesis H. Usually H is regarded as fixed and D variable. Before the experiment, the data D are unknown, and the probability

More information

QTL model selection: key players

QTL model selection: key players Bayesian Interval Mapping. Bayesian strategy -9. Markov chain sampling 0-7. sampling genetic architectures 8-5 4. criteria for model selection 6-44 QTL : Bayes Seattle SISG: Yandell 008 QTL model selection:

More information

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 Association Testing with Quantitative Traits: Common and Rare Variants Timothy Thornton and Katie Kerr Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 1 / 41 Introduction to Quantitative

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University kbroman@jhsph.edu www.biostat.jhsph.edu/ kbroman Outline Experiments and data Models ANOVA

More information

Methods for QTL analysis

Methods for QTL analysis Methods for QTL analysis Julius van der Werf METHODS FOR QTL ANALYSIS... 44 SINGLE VERSUS MULTIPLE MARKERS... 45 DETERMINING ASSOCIATIONS BETWEEN GENETIC MARKERS AND QTL WITH TWO MARKERS... 45 INTERVAL

More information

Univariate Linkage in Mx. Boulder, TC 18, March 2005 Posthuma, Maes, Neale

Univariate Linkage in Mx. Boulder, TC 18, March 2005 Posthuma, Maes, Neale Univariate Linkage in Mx Boulder, TC 18, March 2005 Posthuma, Maes, Neale VC analysis of Linkage Incorporating IBD Coefficients Covariance might differ according to sharing at a particular locus. Sharing

More information

Gamma frailty model for linkage analysis. with application to interval censored migraine data

Gamma frailty model for linkage analysis. with application to interval censored migraine data Gamma frailty model for linkage analysis with application to interval censored migraine data M.A. Jonker 1, S. Bhulai 1, D.I. Boomsma 2, R.S.L. Ligthart 2, D. Posthuma 2, A.W. van der Vaart 1 1 Department

More information

An applied statistician does probability:

An applied statistician does probability: An applied statistician does probability: It s not pretty Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman An applied statistician

More information

Simple, Robust Linkage Tests for Affected Sibs

Simple, Robust Linkage Tests for Affected Sibs Am. J. Hum. Genet. 6:8 4, 998 Simple, Robust Linkage Tests for Affected Sibs Alice S. Whittemore and I-Ping Tu Department of Health Research and Policy, Stanford University School of Medicine; and Stanford

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 4, Issue 1 2005 Article 11 Combined Association and Linkage Analysis for General Pedigrees and Genetic Models Ola Hössjer University of

More information

Case-Control Association Testing. Case-Control Association Testing

Case-Control Association Testing. Case-Control Association Testing Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits. Technological advances have made it feasible to perform case-control association studies

More information

Quantitative characters II: heritability

Quantitative characters II: heritability Quantitative characters II: heritability The variance of a trait (x) is the average squared deviation of x from its mean: V P = (1/n)Σ(x-m x ) 2 This total phenotypic variance can be partitioned into components:

More information

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power Proportional Variance Explained by QTL and Statistical Power Partitioning the Genetic Variance We previously focused on obtaining variance components of a quantitative trait to determine the proportion

More information

TOPICS IN STATISTICAL METHODS FOR HUMAN GENE MAPPING

TOPICS IN STATISTICAL METHODS FOR HUMAN GENE MAPPING TOPICS IN STATISTICAL METHODS FOR HUMAN GENE MAPPING by Chia-Ling Kuo MS, Biostatstics, National Taiwan University, Taipei, Taiwan, 003 BBA, Statistics, National Chengchi University, Taipei, Taiwan, 001

More information

Linkage Mapping. Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6.

Linkage Mapping. Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6. Linkage Mapping Reading: Mather K (1951) The measurement of linkage in heredity. 2nd Ed. John Wiley and Sons, New York. Chapters 5 and 6. Genetic maps The relative positions of genes on a chromosome can

More information

Inference on pedigree structure from genome screen data. Running title: Inference on pedigree structure. Mary Sara McPeek. The University of Chicago

Inference on pedigree structure from genome screen data. Running title: Inference on pedigree structure. Mary Sara McPeek. The University of Chicago 1 Inference on pedigree structure from genome screen data Running title: Inference on pedigree structure Mary Sara McPeek The University of Chicago Address for correspondence: Department of Statistics,

More information

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6

Eiji Yamamoto 1,2, Hiroyoshi Iwata 3, Takanari Tanabata 4, Ritsuko Mizobuchi 1, Jun-ichi Yonemaru 1,ToshioYamamoto 1* and Masahiro Yano 5,6 Yamamoto et al. BMC Genetics 2014, 15:50 METHODOLOGY ARTICLE Open Access Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent

More information

Lecture WS Evolutionary Genetics Part I 1

Lecture WS Evolutionary Genetics Part I 1 Quantitative genetics Quantitative genetics is the study of the inheritance of quantitative/continuous phenotypic traits, like human height and body size, grain colour in winter wheat or beak depth in

More information

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011

Lecture 6: Introduction to Quantitative genetics. Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Lecture 6: Introduction to Quantitative genetics Bruce Walsh lecture notes Liege May 2011 course version 25 May 2011 Quantitative Genetics The analysis of traits whose variation is determined by both a

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

theta H H H H H H H H H H H K K K K K K K K K K centimorgans

theta H H H H H H H H H H H K K K K K K K K K K centimorgans Linkage Phase Recall that the recombination fraction ρ for two loci denotes the probability of a recombination event between those two loci. For loci on different chromosomes, ρ = 1=2. For loci on the

More information

Linkage and Chromosome Mapping

Linkage and Chromosome Mapping Linkage and Chromosome Mapping I. 1 st year, 2 nd semester, week 11 2008 Aleš Panczak, ÚBLG 1. LF a VFN Terminology, definitions The term recombination ratio (fraction), Θ (Greek letter theta), is used

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

QTL Mapping I: Overview and using Inbred Lines

QTL Mapping I: Overview and using Inbred Lines QTL Mapping I: Overview and using Inbred Lines Key idea: Looking for marker-trait associations in collections of relatives If (say) the mean trait value for marker genotype MM is statisically different

More information

Case-Control Association Testing with Related Individuals: A More Powerful Quasi-Likelihood Score Test

Case-Control Association Testing with Related Individuals: A More Powerful Quasi-Likelihood Score Test Case-Control Association esting with Related Individuals: A More Powerful Quasi-Likelihood Score est imothy hornton and Mary Sara McPeek ARICLE We consider the problem of genomewide association testing

More information

Testing for Homogeneity in Genetic Linkage Analysis

Testing for Homogeneity in Genetic Linkage Analysis Testing for Homogeneity in Genetic Linkage Analysis Yuejiao Fu, 1, Jiahua Chen 2 and John D. Kalbfleisch 3 1 Department of Mathematics and Statistics, York University Toronto, ON, M3J 1P3, Canada 2 Department

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th Name: Date: Block: Chapter 6 Meiosis and Mendel Section 6.1 Chromosomes and Meiosis 1. How do gametes differ from somatic cells? Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

Computational Approaches to Statistical Genetics

Computational Approaches to Statistical Genetics Computational Approaches to Statistical Genetics GWAS I: Concepts and Probability Theory Christoph Lippert Dr. Oliver Stegle Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017 Lecture 2: Genetic Association Testing with Quantitative Traits Instructors: Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 29 Introduction to Quantitative Trait Mapping

More information

Backward Genotype-Trait Association. in Case-Control Designs

Backward Genotype-Trait Association. in Case-Control Designs Backward Genotype-Trait Association (BGTA)-Based Dissection of Complex Traits in Case-Control Designs Tian Zheng, Hui Wang and Shaw-Hwa Lo Department of Statistics, Columbia University, New York, New York,

More information

Lecture 1: Case-Control Association Testing. Summer Institute in Statistical Genetics 2015

Lecture 1: Case-Control Association Testing. Summer Institute in Statistical Genetics 2015 Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2015 1 / 1 Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits.

More information

SNP-SNP Interactions in Case-Parent Trios

SNP-SNP Interactions in Case-Parent Trios Detection of SNP-SNP Interactions in Case-Parent Trios Department of Biostatistics Johns Hopkins Bloomberg School of Public Health June 2, 2009 Karyotypes http://ghr.nlm.nih.gov/ Single Nucleotide Polymphisms

More information

Causal Graphical Models in Systems Genetics

Causal Graphical Models in Systems Genetics 1 Causal Graphical Models in Systems Genetics 2013 Network Analysis Short Course - UCLA Human Genetics Elias Chaibub Neto and Brian S Yandell July 17, 2013 Motivation and basic concepts 2 3 Motivation

More information

Learning gene regulatory networks Statistical methods for haplotype inference Part I

Learning gene regulatory networks Statistical methods for haplotype inference Part I Learning gene regulatory networks Statistical methods for haplotype inference Part I Input: Measurement of mrn levels of all genes from microarray or rna sequencing Samples (e.g. 200 patients with lung

More information

SNP Association Studies with Case-Parent Trios

SNP Association Studies with Case-Parent Trios SNP Association Studies with Case-Parent Trios Department of Biostatistics Johns Hopkins Bloomberg School of Public Health September 3, 2009 Population-based Association Studies Balding (2006). Nature

More information

p(d g A,g B )p(g B ), g B

p(d g A,g B )p(g B ), g B Supplementary Note Marginal effects for two-locus models Here we derive the marginal effect size of the three models given in Figure 1 of the main text. For each model we assume the two loci (A and B)

More information

Checking Pairwise Relationships. Lecture 19 Biostatistics 666

Checking Pairwise Relationships. Lecture 19 Biostatistics 666 Checkng Parwse Relatonshps Lecture 19 Bostatstcs 666 Last Lecture: Markov Model for Multpont Analyss X X X 1 3 X M P X 1 I P X I P X 3 I P X M I 1 3 M I 1 I I 3 I M P I I P I 3 I P... 1 IBD states along

More information

MCMC IN THE ANALYSIS OF GENETIC DATA ON PEDIGREES

MCMC IN THE ANALYSIS OF GENETIC DATA ON PEDIGREES MCMC IN THE ANALYSIS OF GENETIC DATA ON PEDIGREES Elizabeth A. Thompson Department of Statistics, University of Washington Box 354322, Seattle, WA 98195-4322, USA Email: thompson@stat.washington.edu This

More information

Legend: S spotted Genotypes: P1 SS & ss F1 Ss ss plain F2 (with ratio) 1SS :2 WSs: 1ss. Legend W white White bull 1 Ww red cows ww ww red

Legend: S spotted Genotypes: P1 SS & ss F1 Ss ss plain F2 (with ratio) 1SS :2 WSs: 1ss. Legend W white White bull 1 Ww red cows ww ww red On my honor, this is my work GENETICS 310 EXAM 1 June 8, 2018 I. Following are 3 sets of data collected from crosses: 1. Spotted by Plain gave all spotted in the F1 and 9 spotted and 3 plain in the F2.

More information

STAT 536: Genetic Statistics

STAT 536: Genetic Statistics STAT 536: Genetic Statistics Frequency Estimation Karin S. Dorman Department of Statistics Iowa State University August 28, 2006 Fundamental rules of genetics Law of Segregation a diploid parent is equally

More information

Covariance between relatives

Covariance between relatives UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE GENÉTICA LGN5825 Genética e Melhoramento de Espécies Alógamas Covariance between relatives Prof. Roberto Fritsche-Neto

More information