The Mollifier Theorem

Size: px
Start display at page:

Download "The Mollifier Theorem"

Transcription

1 The Mollifier Theorem Definition of the Mollifier The function Tx Kexp 1 if x x 0 if x 1, x R n where the constant K is chosen such that R n Txdx 1, is a test function on Rn. Note that Tx vanishes, together with all its derivatives as x 1, so Tx is infinitely differentiable and has compact support. The graph of Tx is sketched in the following figure..for n 1 and 0, let The Mollifier Function S x 1 T x and P x T x. Then S x 0 and P x 0 for all x S x 0 and P x 0 for x R S x dx 1 0, S 0 as 0, R P x dx 0 as 0, P 0 K/e 0, Evidently, S x becomes thinner and higher as tends to zero but the area under the graph is constantly equal to one. On the other hand, P x has constant height but grows thinner as tends to zero. These test functions can be used as the seeds from which an infinite variety of other test functions can be constructed by using a technique called regularization which we will now describe. For n 1 we have S x 1 n T x and P x T x. 1

2 For U a bounded open set in R n, and for u L 1 loc U, define for any 0 and any x U x U : distx,u, J ux S x y uy dy z S z ux z dz z 1 S 1z ux z dz. 1.1a 1.1b 1.1c We refer to J ux as the mollified ux. This mollified function, J ux, is a smoothed version of the original function, ux. Properties of the Mollifier Note first that J ux is infinitely differentiable; i.e., for any 0 and any x U, it is clear from (1.1a) that i.e., J ux e i J ux S x e i y S x y uy dy J ux e i J ux xi S x y uy dy as 0. Since S x is infinitely differentiable, it follows that J ux is infinitely differentiable on the open set U. It is evident from (1.1a) that for 1 p, 0, and x U, J ux S x y 11/p S x y 1/p uy dy. Then, using Holder s inequality, we get J ux p S x y dy p1 S x y uy p dy and since R S x dx 1 0, J ux p dx S x y uy p dy dx W uy p S x ydx dy W uy p dy for open sets W U, and V W. This result is just that assertion that J u LpV u L pw for V W U 1.2 Next, use (1.1c) to write J ux ux z 1 S 1zux z uz dz. If the function u ux is, in fact, continuous on U, then this last result shows that max V J ux ux max V ux z uz 0 as 0; 1.3 i.e., J ux converges uniformly to ux for x when ux is continuous on.u. For u L p loc U, W U, and arbitrary 0, use the fact that the continuous functions 2

3 are dense in L pw to choose v CW such that uv LpW. Then for V W, J uu LpV J uj v LpV J v v LpV v u L pv uv LpW J v v LpV v u L pw 2 J v v LpV It follows now from (1.3) that for u L p loc U, V U, J uu L p V 0 as We can summarize these results in the following, Theorem (Local Approximation) Suppose U is open and bounded in R n, 1 p, and for 0, let U denote the subset x U : distx,u. (a) For every 0, u L p loc U implies J u C U (b) (i) u CU implies u converges to u uniformly on compact subsets of U; i.e., J uu CV max V J ux ux 0 for all V U (ii) u converges to u in L p loc U; i.e., u L p loc U implies that for all V W U, J u L p V u L p W (c) u converges to u in W k,p loc U; Result (c) follows from (b) by induction. and J uu L p V 0 as 0 Corollary (Global Approximation) Suppose U has a smooth boundary, and 1 p. (a) For every 0, (b) u L p U implies that J u L p U u L p U u L p U implies J u C U L p U. and J uu L p U 0 as 0 (c) u W k,p U implies that there exists functions m C U W k,p U such that m u k,p 0 as m. The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in Evans). Weak Equals Strong For U a bounded open set in R n, we define v vx to be the weak derivative of order, of u ux, x U if U ux x dx 1 U vxx dx for all C c U 3

4 Similarly, we define v vx to be the strong L p derivative of order, of u ux, x U if for any V U, there exists a sequence n C c U such that n u p dx 0 and n v p dx 0, as n. Using mollifiers, we can show that these two notions are equivalent. Suppose first that v vx is the weak derivative of order, of u ux. Then, since S C c U, J ux x S x y uy dy 1 y S x y uy dy S x y vy dy J vx (by definition of weak derivative) Now apply 1.4 to write J uu p dx 0 and J uv p dx J v v p dx 0, as n. Thus every weak derivative is a strong L p derivative. Conversely, suppose v vx is the strong L p derivative of order, of u ux with n u p dx 0 and n v p dx 0, as n, for arbitrary V U, and n C c U. Then for any C c U, u n dx u dx n dx u dx 1 n dx u dx 1 vdx 1 v n dx Then it follows that u dx 1 vdx C 1 n u p dx C 2 n v p dx which implies that every strong L p derivative is a weak derivative. 4

5 Weyl s Lemma Weyl s lemma is a famous result that asserts that for U a bounded open set in R n, if u ux is harmonic in U, (i.e., u C 2 U and 2 ux 0, x U ) then ux is infinitely differentiable in U. To see why this result is true, recall that every harmonic function has the mean value property. That is, x U, r, ux uy dŝy 1 Brx uy dsy. nr n1 A n Brx Then J ux S x y uy dy 1 n T x y uy dy 1 T r n 0 uy dsy dr ux Brx 0 ux S B0 y dy ux. na n n T r r n1 dr But this says that 0, x U, J ux ux. Since J ux is infinitely differentiable on U, it follows that ux is infinitely differentiable on U although u need not even be continuous on the closure, Ū. 5

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Friedrich symmetric systems

Friedrich symmetric systems viii CHAPTER 8 Friedrich symmetric systems In this chapter, we describe a theory due to Friedrich [13] for positive symmetric systems, which gives the existence and uniqueness of weak solutions of boundary

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

2. Function spaces and approximation

2. Function spaces and approximation 2.1 2. Function spaces and approximation 2.1. The space of test functions. Notation and prerequisites are collected in Appendix A. Let Ω be an open subset of R n. The space C0 (Ω), consisting of the C

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Unbounded operators on Hilbert spaces

Unbounded operators on Hilbert spaces Chapter 1 Unbounded operators on Hilbert spaces Definition 1.1. Let H 1, H 2 be Hilbert spaces and T : dom(t ) H 2 be a densely defined linear operator, i.e. dom(t ) is a dense linear subspace of H 1.

More information

α u x α 1 2 xα d 1 xα 2

α u x α 1 2 xα d 1 xα 2 Chapter 2 Areviewofanalysis 2.1 A few basic function spaces Let us rapidly review the most basic function spaces that we will need. In the sequel, denotes an open subset of R d. The canonical scalar product

More information

************************************* Partial Differential Equations II (Math 849, Spring 2019) Baisheng Yan

************************************* Partial Differential Equations II (Math 849, Spring 2019) Baisheng Yan ************************************* Partial Differential Equations II (Math 849, Spring 2019) by Baisheng Yan Department of Mathematics Michigan State University yan@math.msu.edu Contents Chapter 1.

More information

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Instructions: Answer all of the problems. Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Definitions (2 points each) 1. State the definition of a metric space. A metric space (X, d) is set

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0)

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0) Mollifiers and Smooth Functions We say a function f from C is C (or simply smooth) if all its derivatives to every order exist at every point of. For f : C, we say f is C if all partial derivatives to

More information

Methods on Nonlinear Elliptic Equations

Methods on Nonlinear Elliptic Equations Wenxiong Chen and Congming Li Methods on Nonlinear Elliptic Equations SPIN AIMS internal project number, if known Monograph September 22, 2008 AIMS Preface In this book we intend to present basic materials

More information

A class of domains with fractal boundaries: Functions spaces and numerical methods

A class of domains with fractal boundaries: Functions spaces and numerical methods A class of domains with fractal boundaries: Functions spaces and numerical methods Yves Achdou joint work with T. Deheuvels and N. Tchou Laboratoire J-L Lions, Université Paris Diderot École Centrale -

More information

SOLUTION OF POISSON S EQUATION. Contents

SOLUTION OF POISSON S EQUATION. Contents SOLUTION OF POISSON S EQUATION CRISTIAN E. GUTIÉRREZ OCTOBER 5, 2013 Contents 1. Differentiation under the integral sign 1 2. The Newtonian potential is C 1 2 3. The Newtonian potential from the 3rd Green

More information

The Relativistic Heat Equation

The Relativistic Heat Equation Maximum Principles and Behavior near Absolute Zero Washington University in St. Louis ARTU meeting March 28, 2014 The Heat Equation The heat equation is the standard model for diffusion and heat flow,

More information

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3) M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Sergey E. Mikhailov Brunel University West London, Department of Mathematics, Uxbridge, UB8 3PH, UK J. Math. Analysis

More information

HOMEOMORPHISMS OF BOUNDED VARIATION

HOMEOMORPHISMS OF BOUNDED VARIATION HOMEOMORPHISMS OF BOUNDED VARIATION STANISLAV HENCL, PEKKA KOSKELA AND JANI ONNINEN Abstract. We show that the inverse of a planar homeomorphism of bounded variation is also of bounded variation. In higher

More information

Ratios of harmonic functions

Ratios of harmonic functions Ratios of harmonic functions Eugenia Malinnikova NTNU (Trondheim, Norway) joint work with A. Logunov (St.Petersburg/Tel Aviv) Harmonic Analysis, Complex Analysis, Spectral Theory and all that Bedlewo,

More information

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY 0.1. Vector Bundles and Connection 1-forms. Let E X be a complex vector bundle of rank r over a smooth manifold. Recall the following abstract

More information

FINAL REVIEW Answers and hints Math 311 Fall 2017

FINAL REVIEW Answers and hints Math 311 Fall 2017 FINAL RVIW Answers and hints Math 3 Fall 7. Let R be a Jordan region and let f : R be integrable. Prove that the graph of f, as a subset of R 3, has zero volume. Let R be a rectangle with R. Since f is

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

CHAPTER 2. Laplace s equation

CHAPTER 2. Laplace s equation 18 CHAPTER 2 Laplace s equation There can be but one option as to the beauty and utility of this analysis by Laplace; but the manner in which it has hitherto been presented has seemed repulsive to the

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

Lectures on. Sobolev Spaces. S. Kesavan The Institute of Mathematical Sciences, Chennai.

Lectures on. Sobolev Spaces. S. Kesavan The Institute of Mathematical Sciences, Chennai. Lectures on Sobolev Spaces S. Kesavan The Institute of Mathematical Sciences, Chennai. e-mail: kesh@imsc.res.in 2 1 Distributions In this section we will, very briefly, recall concepts from the theory

More information

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see SIAM J. DISCRETE MATH. Vol. 31, No. 1, pp. 335 382 c 2017 Society for Industrial and Applied Mathematics PARTITION CONSTRAINED COVERING OF A SYMMETRIC CROSSING SUPERMODULAR FUNCTION BY A GRAPH ATTILA BERNÁTH,

More information

arxiv: v1 [math.ap] 25 Jul 2012

arxiv: v1 [math.ap] 25 Jul 2012 THE DIRICHLET PROBLEM FOR THE FRACTIONAL LAPLACIAN: REGULARITY UP TO THE BOUNDARY XAVIER ROS-OTON AND JOAQUIM SERRA arxiv:1207.5985v1 [math.ap] 25 Jul 2012 Abstract. We study the regularity up to the boundary

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

Sobolev spaces. May 18

Sobolev spaces. May 18 Sobolev spaces May 18 2015 1 Weak derivatives The purpose of these notes is to give a very basic introduction to Sobolev spaces. More extensive treatments can e.g. be found in the classical references

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Economics 204 Fall 2012 Problem Set 3 Suggested Solutions

Economics 204 Fall 2012 Problem Set 3 Suggested Solutions Economics 204 Fall 2012 Problem Set 3 Suggested Solutions 1. Give an example of each of the following (and prove that your example indeed works): (a) A complete metric space that is bounded but not compact.

More information

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Chapter 2 Laplace Equation Yung-Hsiang Huang 207.07.07. Mimic the proof for Theorem 3.. 2. Proof. I think we should assume u C 2 (Ω Γ). Let W be an open

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Distance between two k-sets and Path-Systems Extendibility

Distance between two k-sets and Path-Systems Extendibility Distance between two k-sets and Path-Systems Extendibility December 2, 2003 Ronald J. Gould (Emory University), Thor C. Whalen (Metron, Inc.) Abstract Given a simple graph G on n vertices, let σ 2 (G)

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

MA651 Topology. Lecture 9. Compactness 2.

MA651 Topology. Lecture 9. Compactness 2. MA651 Topology. Lecture 9. Compactness 2. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ Remarks. 1. So far we have seen that holomorphic is equivalent to analytic. Thus, if f is complex differentiable in an open set, then it is infinitely many times complex differentiable in that set. This

More information

Conservation law equations : problem set

Conservation law equations : problem set Conservation law equations : problem set Luis Silvestre For Isaac Neal and Elia Portnoy in the 2018 summer bootcamp 1 Method of characteristics For the problems in this section, assume that the solutions

More information

Fact Sheet Functional Analysis

Fact Sheet Functional Analysis Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

More information

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate A survey of Lihe Wang s paper Michael Snarski December 5, 22 Contents Hölder spaces. Control on functions......................................2

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

Vector fields Lecture 2

Vector fields Lecture 2 Vector fields Lecture 2 Let U be an open subset of R n and v a vector field on U. We ll say that v is complete if, for every p U, there exists an integral curve, γ : R U with γ(0) = p, i.e., for every

More information

Euler Equations: local existence

Euler Equations: local existence Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 207 222 PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Fumi-Yuki Maeda and Takayori Ono Hiroshima Institute of Technology, Miyake,

More information

Technical Results on Regular Preferences and Demand

Technical Results on Regular Preferences and Demand Division of the Humanities and Social Sciences Technical Results on Regular Preferences and Demand KC Border Revised Fall 2011; Winter 2017 Preferences For the purposes of this note, a preference relation

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi-)norms

More information

Introduction to Sobolev Spaces

Introduction to Sobolev Spaces Introduction to Sobolev Spaces Lecture Notes MM692 2018-2 Joa Weber UNICAMP December 23, 2018 Contents 1 Introduction 1 1.1 Notation and conventions...................... 2 2 L p -spaces 5 2.1 Borel and

More information

Math 5588 Final Exam Solutions

Math 5588 Final Exam Solutions Math 5588 Final Exam Solutions Prof. Jeff Calder May 9, 2017 1. Find the function u : [0, 1] R that minimizes I(u) = subject to u(0) = 0 and u(1) = 1. 1 0 e u(x) u (x) + u (x) 2 dx, Solution. Since the

More information

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET WEILIN LI AND ROBERT S. STRICHARTZ Abstract. We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski

More information

Partial regularity for fully nonlinear PDE

Partial regularity for fully nonlinear PDE Partial regularity for fully nonlinear PDE Luis Silvestre University of Chicago Joint work with Scott Armstrong and Charles Smart Outline Introduction Intro Review of fully nonlinear elliptic PDE Our result

More information

The De Giorgi-Nash-Moser Estimates

The De Giorgi-Nash-Moser Estimates The De Giorgi-Nash-Moser Estimates We are going to discuss the the equation Lu D i (a ij (x)d j u) = 0 in B 4 R n. (1) The a ij, with i, j {1,..., n}, are functions on the ball B 4. Here and in the following

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

Solution. 1 Solution of Homework 7. Sangchul Lee. March 22, Problem 1.1

Solution. 1 Solution of Homework 7. Sangchul Lee. March 22, Problem 1.1 Solution Sangchul Lee March, 018 1 Solution of Homework 7 Problem 1.1 For a given k N, Consider two sequences (a n ) and (b n,k ) in R. Suppose that a n b n,k for all n,k N Show that limsup a n B k :=

More information

Notes on Integrable Functions and the Riesz Representation Theorem Math 8445, Winter 06, Professor J. Segert. f(x) = f + (x) + f (x).

Notes on Integrable Functions and the Riesz Representation Theorem Math 8445, Winter 06, Professor J. Segert. f(x) = f + (x) + f (x). References: Notes on Integrable Functions and the Riesz Representation Theorem Math 8445, Winter 06, Professor J. Segert Evans, Partial Differential Equations, Appendix 3 Reed and Simon, Functional Analysis,

More information

Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn Snorre H. Christiansen November 10, 2016

Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn Snorre H. Christiansen November 10, 2016 Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn 2016 Snorre H. Christiansen November 10, 2016 1 2 Contents 1 Introduction 5 2 Notations for differential operators 7 3 Generalities

More information

Analysis III Theorems, Propositions & Lemmas... Oh My!

Analysis III Theorems, Propositions & Lemmas... Oh My! Analysis III Theorems, Propositions & Lemmas... Oh My! Rob Gibson October 25, 2010 Proposition 1. If x = (x 1, x 2,...), y = (y 1, y 2,...), then is a distance. ( d(x, y) = x k y k p Proposition 2. In

More information

Sobolev Spaces 27 PART II. Review of Sobolev Spaces

Sobolev Spaces 27 PART II. Review of Sobolev Spaces Sobolev Spaces 27 PART II Review of Sobolev Spaces Sobolev Spaces 28 SOBOLEV SPACES WEAK DERIVATIVES I Given R d, define a multi index α as an ordered collection of integers α = (α 1,...,α d ), such that

More information

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X : MATH 337 Metric Spaces Dr. Neal, WKU Let X be a non-empty set. The elements of X shall be called points. We shall define the general means of determining the distance between two points. Throughout we

More information

Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 5 Sobolev Spaces

Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 5 Sobolev Spaces Partial Differential Equations, nd Edition, L.C.Evans Chapter 5 Sobolev Spaces Shih-Hsin Chen, Yung-Hsiang Huang 7.8.3 Abstract In these exercises always denote an open set of with smooth boundary. As

More information

LECTURE 3 Functional spaces on manifolds

LECTURE 3 Functional spaces on manifolds LECTURE 3 Functional spaces on manifolds The aim of this section is to introduce Sobolev spaces on manifolds (or on vector bundles over manifolds). These will be the Banach spaces of sections we were after

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Notes on Sobolev Spaces A. Visintin a.a

Notes on Sobolev Spaces A. Visintin a.a Notes on Sobolev Spaces A. Visintin a.a. 2017-18 Contents: 1. Hölder spaces. 2. Regularity of Euclidean domains. 3. Sobolev spaces of positive integer order. 4. Sobolev spaces of real integer order. 5.

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Lebesgue Integration on R n

Lebesgue Integration on R n Lebesgue Integration on R n The treatment here is based loosely on that of Jones, Lebesgue Integration on Euclidean Space We give an overview from the perspective of a user of the theory Riemann integration

More information

HOMEWORK # 3 SOLUTIONS

HOMEWORK # 3 SOLUTIONS HOMEWORK # 3 SOLUTIONS TJ HITCHMAN. Exercises from the text.. Chapter 2.4. Problem 32 We are to use variation of parameters to find the general solution to y + 2 x y = 8x. The associated homogeneous equation

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

Elementary Theory and Methods for Elliptic Partial Differential Equations. John Villavert

Elementary Theory and Methods for Elliptic Partial Differential Equations. John Villavert Elementary Theory and Methods for Elliptic Partial Differential Equations John Villavert Contents 1 Introduction and Basic Theory 4 1.1 Harmonic Functions............................... 5 1.1.1 Mean Value

More information

Lecture No 2 Degenerate Diffusion Free boundary problems

Lecture No 2 Degenerate Diffusion Free boundary problems Lecture No 2 Degenerate Diffusion Free boundary problems Columbia University IAS summer program June, 2009 Outline We will discuss non-linear parabolic equations of slow diffusion. Our model is the porous

More information

is a weak solution with the a ij,b i,c2 C 1 ( )

is a weak solution with the a ij,b i,c2 C 1 ( ) Thus @u @x i PDE 69 is a weak solution with the RHS @f @x i L. Thus u W 3, loc (). Iterating further, and using a generalized Sobolev imbedding gives that u is smooth. Theorem 3.33 (Local smoothness).

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

Local and Non-Local Dirichlet Forms on the Sierpiński Carpet

Local and Non-Local Dirichlet Forms on the Sierpiński Carpet Local and Non-Local Dirichlet Forms on the Sierpiński Carpet Alexander Grigor yan and Meng Yang Abstract We give a purely analytic construction of a self-similar local regular Dirichlet form on the Sierpiński

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Hartogs Theorem: separate analyticity implies joint Paul Garrett  garrett/ (February 9, 25) Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ (The present proof of this old result roughly follows the proof

More information

Nonlinear aspects of Calderón-Zygmund theory

Nonlinear aspects of Calderón-Zygmund theory Ancona, June 7 2011 Overture: The standard CZ theory Consider the model case u = f in R n Overture: The standard CZ theory Consider the model case u = f in R n Then f L q implies D 2 u L q 1 < q < with

More information

A new proof of Gromov s theorem on groups of polynomial growth

A new proof of Gromov s theorem on groups of polynomial growth A new proof of Gromov s theorem on groups of polynomial growth Bruce Kleiner Courant Institute NYU Groups as geometric objects Let G a group with a finite generating set S G. Assume that S is symmetric:

More information

Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models

Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models February 15, 2008 Joint work with Yuval Peres Internal DLA with Multiple Sources Finite set of points x 1,...,x k Z d.

More information

Some Notes on Elliptic Regularity

Some Notes on Elliptic Regularity Some Notes on Elliptic Regularity Here we consider first the existence of weak solutions to elliptic problems of the form: { Lu = f, u = 0, (1) and then we consider the regularity of such solutions. The

More information

Free energy estimates for the two-dimensional Keller-Segel model

Free energy estimates for the two-dimensional Keller-Segel model Free energy estimates for the two-dimensional Keller-Segel model dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine in collaboration with A. Blanchet (CERMICS, ENPC & Ceremade) & B.

More information

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Matthew Begué, Tristan Kalloniatis, & Robert Strichartz October 3, 2010 Construction of SC The Sierpinski Carpet, SC, is constructed

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem MATH 8.52 COUSE NOTES - CLASS MEETING # 9 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem. epresentation Formula

More information

Notes on Distributions

Notes on Distributions Notes on Distributions Functional Analysis 1 Locally Convex Spaces Definition 1. A vector space (over R or C) is said to be a topological vector space (TVS) if it is a Hausdorff topological space and the

More information

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle TD M EDP 08 no Elliptic equations: regularity, maximum principle Estimates in the sup-norm I Let be an open bounded subset of R d of class C. Let A = (a ij ) be a symmetric matrix of functions of class

More information

THE DIRICHLET PROBLEM

THE DIRICHLET PROBLEM THE DIRICHLET PROBLEM TSOGTGEREL GANTUMUR Abstract. We present here two approaches to the Dirichlet problem: The classical method of subharmonic functions that culminated in the works of Perron and Wiener,

More information