MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

Size: px
Start display at page:

Download "MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck"

Transcription

1 MATH 8.52 COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations on a domain (i.e. open connected subset) Ω R n. Recall that (0.0.) The Laplace equation is def = n i= 2 i. (0.0.2) u(x) = 0, x Ω, while Poisson s equation is the inhomogeneous equation (0.0.3) u(x) = f(x). Functions u C 2 (Ω) verifying (0.0.2) are said to be harmonic. (0.0.2) and (0.0.3) are both secondorder, linear, constant coefficient PDEs. As in our study of the heat equation, we will need to supply some kind of boundary conditions to get a well-posed problem. But unlike the heat equation, there is no timelike variable, so there is no initial condition to specify!. Where does it come from?.. Basic examples. First example: set t u 0 in the heat equation, and (0.0.2) results. These solutions are known as steady state solutions to the heat equation. Second example: We start with Maxwell equations from electrodynamics. interest are E = (E (t, x, y, z), E 2 (t, x, y, z), E 3 (t, x, y, z)) is the electric field B = (B (t, x, y, z), B 2 (t, x, y, z), B 3 (t, x, y, z)) is the magnetic induction J = (J (t, x, y, z), J 2 (t, x, y, z), J 3 (t, x, y, z)) is the current density ρ is the charge density Maxwell s equations are The quantities of (..) (..2) t E B = J, E = ρ, t B + E = 0, B = 0.

2 2 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 Recall that is the curl operator, so that e.g. B = ( y B 3 z B 2, z B x B 3, x B 2 y B ). Let s look for steady-state solutions with t E = t B 0. Then equation (..2) implies that (..3) E = 0, so that by Poincaré s lemma on R 3, there exists a scalar-valued function φ(x, y, z) such that (..4) E(x, y, z) = φ(x, y, z). The function φ is called an electric potential. Plugging (..4) into the second of (..), and using the identity φ = φ, we deduce that (..5) φ(x, y, z) = ρ(x, y, z). This is exactly the Poisson equation (0.0.3) with inhomogeneous term f def = ρ. Thus, Poisson s equation is at the heart of electrostatics..2. Connections to complex analysis. Let z = x + iy (where x, y R) be a complex number, and let f(z) = u(z) + iv(z) be a complex-valued function (where u, v R). We recall that f is said to be differentiable at z 0 if f(z) f(z 0 ) (.2.) lim z z 0 z z 0 exists. If the limit exists, we denote it by f (z 0 ). A fundamental result of complex analysis is the following: f is differentiable at z 0 = x 0 + iy 0 (x 0, y 0 ) if and only if the real and imaginary parts of f verify the Cauchy-Riemann equations at z 0 : (.2.2) (.2.3) u x (x 0, y 0 ) = v y (x 0, y 0 ), u y (x 0, y 0 ) = v x (x 0, y 0 ). Differentiating (.2.2) and using the symmetry of mixed partial derivatives (we are assuming here that u(x, y) and v(x, y) are C 2 near (x 0, y 0 )), we have (.2.4) (.2.5) u def = u xx + u yy = v yx v xy = 0, v def = v xx + v yy = u yx + u xy = 0. Thus, the real and imaginary parts of a complex-differentiable function are harmonic! 2. Well-posed Problems Much like in the case of the heat equation, we are interested in well-posed problems for the Laplace and Poisson equations. Recall that well-posed problems are problems that i) have a solution; ii) the solutions are unique; and iii) the solution varies continuously with the data. Let Ω R n be a domain with a Lipschitz boundary, and let ˆN denote the unit outward normal vector to Ω. We consider the PDE (2.0.) u(x) = f(x), x Ω,

3 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 3 supplemented by some boundary conditions. The following boundary conditions are known to lead to well-posed problems: () Dirichlet data: specify a function g(x) defined on Ω such that u Ω (x) = g(x). (2) Neumann data: specify a function h(x) defined on Ω such that ˆNu(x) Ω (x) = h(x). (3) Robin-type data: specify a function h(x) defined on Ω such that ˆNu(x) Ω (x)+αu Ω (x) = h(x), where α > 0 is a constant. (4) Mixed conditions: for example, we can divide Ω into two disjoint pieces Ω = S D S N, where S N is relatively open in Ω, and specify a function g(x) defined on S D and a function h(x) defined on S N such that u SD (x) = g(x), ˆNu SN (x) = h(x). (5) Conditions at infinity: When Ω = R n, we can specify asymptotic conditions on u(x) as x. We will return to this kind of condition later in the course. 3. Uniqueness via the Energy Method In this section, we address the question of uniqueness for solutions to the equation (0.0.3), supplemented by suitable boundary conditions. As in the case of the heat equation, we are able to provide a simple proof based on the energy method. Theorem 3.. Let Ω R n be a smooth, bounded domain. Then under Dirichlet, Robin, or mixed boundary conditions, there is at most one solution of regularity u C 2 (Ω) C (Ω) to the Poisson equation (0.0.3). In the case of Neumann conditions, any two solutions can differ by at most a constant. Proof. If u and v are two solutions to (0.0.3) with the same boundary data, then we can subtract them (aren t linear PDEs nice?!...) to get a solution w def = u v to the Poisson equation with 0 data: (3.0.) w = 0. Let s perform the usual trick of multiplying (3.0.) by w, integrating over Ω, and integrating by parts via the divergence theorem: (3.0.2) 0 = Ω w w d n x = Ω w w d n x = Ω w 2 d n x + Ω w ˆNw dσ. In the case of Dirichlet data, w Ω = 0, so the last term in (3.0.2) vanishes. Thus, in the Dirichlet case, we have that (3.0.3) Ω w 2 = 0. Thus, w = 0 in Ω, and so w is constant in Ω. Since w is 0 on Ω, we have that w 0 in Ω, which shows that u v in Ω. Similarly, in the Robin case (3.0.4) Ω w ˆNw dσ = α Ω w 2 dσ 0,

4 4 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 which implies that (3.0.5) Ω w 2 = 0, and we can argue as before conclude that w 0 in Ω. Now in the Neumann case, we have that ˆNw Ω = 0, and we can argue as above to conclude that w is constant in Ω. But now we can t say anything about the constant, so the best we can conclude is that u = v + constant in Ω. 4. Mean value properties Harmonic functions u have some amazing properties. Some of the most important ones are captured in the following theorem, which shows that the pointwise values of u can be determined by its average over solid balls or their boundaries. Theorem 4. (Mean value properties). Let u(x) be harmonic in the domain Ω R n, and let B R (x) Ω be a ball of radius R centered at the point x. Then the following mean value formulas hold: n (4.0.a) u(x) = ω n R n u(y) d n y, BR (x) (4.0.b) u(x) = ω n R n u(σ) dσ, BR (x) where ω n is the area of B (0) R n, that is, the area of the boundary of the unit ball in R n. Remark Note that B R (x) = ωnrn n, where B R(x) denotes the n-dimensional volume of B R (x). Similarly, B R (x) = ω n R n, where B R (x) denotes the n -dimensional area of B R (x). Proof. Let s address the n = 2 case only; the proof is similar for other values of n. Let s also assume that x is the origin; as we will see, we will be able to treat the case of general x by reducing it to the origin. We will work with polar coordinates (r, θ) on R 2. For a ball of radius r, we have that the measure dσ corresponding to B r (0) is dσ = r dθ. Note also that along B r (0), we have that r u = u ˆN = ˆNu, where ˆN(σ) is the unit normal to B r (0). For any 0 r < R, we define g(r) def = 2πr u(σ) dσ = 2π B r(0) 2πr ru(r, θ) dθ = 2π (4.0.2) 2π u(r, θ) dθ. We now note that since u is continuous at 0, we have that (4.0.3) u(0) = lim r 0 + g(r). Thus, we would obtain (4.0.b) in the case x = 0 if we could show that g (r) = 0. Let s now show this. To this end, we calculate that g (r) = 2π 2π r u(r, θ) dθ = 2π (4.0.4) 2π ˆNu(r, θ) dθ = 2πr ˆN(σ) u(σ) dσ. B r(0)

5 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 5 By the divergence theorem, this last term is equal to (4.0.5) 2πr u(y) d 2 y. B r(0) But u = 0 since u is harmonic. Thus, we have shown that (4.0.6) g (r) = 0, and we have shown (4.0.b) for x = 0. To prove (4.0.a), we use polar coordinate integration and (4.0.b) (in the case x = 0) to obtain (4.0.7) u(0)r 2 /2 = 0 R ru(0) dr = R 2π 0 2π ru(r, θ) dθ dr = 2π u(y) d 2 y. B R (0) We have now shown (4.0.a) and (4.0.b) when x = 0. To obtain the corresponding formulas for non-zero x, define v(y) def = u(x + y), and note that y v(y) = ( y u)(x + y) = 0. Therefore, using what we have already shown, (4.0.8) u(x) = v(0) = 2 ω n R 2 v(y) d 2 y = BR (0) 2 ω 2 R 2 u(x + y) d 2 y = BR (0) which implies (4.0.a) for general x. We can similarly obtain (4.0.b) for general x. 2 ω 2 R 2 u(y) d 2 y, BR (x) 5. Maximum Principle Let s now discuss another amazing property verified by harmonic functions. The property, known as the strong maximum principle, says that most harmonic functions achieve their maximums and minimums only on the interior of Ω. The only exceptions are the constant functions. Theorem 5. (Strong Maximum Principle). Let Ω R n be a domain, and assume that u C(Ω) verifies the mean value property (4.0.a). Then if u achieves its max or min at a point p Ω, u must be constant on Ω. Therefore, if Ω is bounded and u C(Ω) is not constant, then for every x Ω, we have (5.0.) u(x) < max u(y), u(x) > min u(y). Proof. We give the argument for the min in the case n = 2. Suppose that u achieves its min at a point p Ω, and that u(p) = m. Let B(p) Ω be any ball centered at p, and let z be any point in B(p). Choose a small ball B r (z) of radius r centered z with B r (z) B(p). Note that by the definition of a min, we have that (5.0.2) u(z) m.

6 6 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 Using the assumption that the mean value property (4.0.a) holds, we conclude that (5.0.3) m = B(p) u(y) d 2 y = B(p) B(p) { u(y) d 2 y + Br(z) u(y) d 2 y} B(p)/Br(z) = B(p) { B r(z) u(z) + u(y) d 2 y} B(p)/Br(z) B(p) { B r(z) u(z) + m( B(p) B r (z) )}. Rearranging inequality (5.0.3), we conclude that (5.0.4) Combining (5.0.2) and (5.0.4), we conclude that (5.0.5) u(z) m. u(x) = m holds for all points x B(p). Therefore, u is locally constant at any point where it achieves its min. Since Ω is open and connected, we conclude that u(x) = m for all x Ω. The next corollary will allow us to compare the size of two solutions to Poisson s equation if we have information about the size of the source terms and about the values of the solutions on Ω. The proof is based on Theorem 5.. Corollary Let Ω R n be a bounded domain and let f C(Ω). Then the PDE (5.0.6) { u = 0, x Ω, u(x) = f(x), x Ω, has at most one solution u f C 2 (Ω) C(Ω). Furthermore, if u f and u g are the solutions corresponding to the data f, g C(Ω), then () (Comparison Principle) If f g on Ω and f g, then u f > u g in Ω. (2) (Stability Estimate) For any x Ω, we have that u f (x) u g (x) max f(y) g(y). Proof. We first prove the Comparison Principle. Let w = u f u g. Then by subtracting the PDEs, we see that w solves w = 0, x Ω, (5.0.7) { w(x) = f(x) g(x) 0, x Ω. Since w is harmonic, since f(x) g(x) 0 on Ω, and since f g, Theorem 5. implies that either w is a positive constant or that w is not constant and that for every x Ω, we have (5.0.8) This proves the Comparison Principle. w(x) > min f(y) g(y) 0.

7 MATH 8.52 COURSE NOTES - CLASS MEETING # 6 7 For the Stability Estimate, we perform a similar argument for both ±w, which leads to the estimates (5.0.9) w(x) > min (5.0.0) w(x) > min f(y) g(y) > max f(y) g(y), g(y) f(y) > max f(y) g(y). Combining (5.0.9) and (5.0.0), we deduce the Stability Estimate. The at most one statement of the corollary now follows directly from applying the Stability Estimate to w in the case f = g. address: jspeck@math.mit.edu

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem MATH 8.52 COUSE NOTES - CLASS MEETING # 9 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem. epresentation Formula

More information

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem

Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem MATH 85 COUSE NOTES - CLASS MEETING # 9 85 Introduction to PDEs, Fall 0 Professor: Jared Speck Class Meeting # 9: Poisson s Formula, Harnack s Inequality, and Liouville s Theorem epresentation Formula

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Spring 2017 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u =

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math EECE 3640 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial ifferential Equations «Viktor Grigoryan 3 Green s first identity Having studied Laplace s equation in regions with simple geometry, we now start developing some tools, which will lead

More information

Using Green s functions with inhomogeneous BCs

Using Green s functions with inhomogeneous BCs Using Green s functions with inhomogeneous BCs Using Green s functions with inhomogeneous BCs Surprise: Although Green s functions satisfy homogeneous boundary conditions, they can be used for problems

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16.

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16. Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math 16.364 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as heat

More information

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2)

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2) THE WAVE EQUATION () The free wave equation takes the form u := ( t x )u = 0, u : R t R d x R In the literature, the operator := t x is called the D Alembertian on R +d. Later we shall also consider the

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

GREEN S IDENTITIES AND GREEN S FUNCTIONS

GREEN S IDENTITIES AND GREEN S FUNCTIONS GREEN S IENTITIES AN GREEN S FUNCTIONS Green s first identity First, recall the following theorem. Theorem: (ivergence Theorem) Let be a bounded solid region with a piecewise C 1 boundary surface. Let

More information

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY MATH 22: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY When discussing separation of variables, we noted that at the last step we need to express the inhomogeneous initial or boundary data as

More information

Introduction and some preliminaries

Introduction and some preliminaries 1 Partial differential equations Introduction and some preliminaries A partial differential equation (PDE) is a relationship among partial derivatives of a function (or functions) of more than one variable.

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

ELECTROMAGNETIC SCATTERING FROM PERTURBED SURFACES. Katharine Ott Advisor: Irina Mitrea Department of Mathematics University of Virginia

ELECTROMAGNETIC SCATTERING FROM PERTURBED SURFACES. Katharine Ott Advisor: Irina Mitrea Department of Mathematics University of Virginia ELECTROMAGNETIC SCATTERING FROM PERTURBED SURFACES Katharine Ott Advisor: Irina Mitrea Department of Mathematics University of Virginia Abstract This paper is concerned with the study of scattering of

More information

Perron method for the Dirichlet problem.

Perron method for the Dirichlet problem. Introduzione alle equazioni alle derivate parziali, Laurea Magistrale in Matematica Perron method for the Dirichlet problem. We approach the question of existence of solution u C (Ω) C(Ω) of the Dirichlet

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

HARMONIC FUNCTIONS. x 2 + 2

HARMONIC FUNCTIONS. x 2 + 2 HARMONIC FUNCTIONS DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. Harmonic functions 1 1.1. Use of Harmonic mappings 1 1.2. Harmonic functions and holomorphicity 2 1.3. Harmonic

More information

Suggested Solution to Assignment 7

Suggested Solution to Assignment 7 MATH 422 (25-6) partial diferential equations Suggested Solution to Assignment 7 Exercise 7.. Suppose there exists one non-constant harmonic function u in, which attains its maximum M at x. Then by the

More information

Rudin Real and Complex Analysis - Harmonic Functions

Rudin Real and Complex Analysis - Harmonic Functions Rudin Real and Complex Analysis - Harmonic Functions Aaron Lou December 2018 1 Notes 1.1 The Cauchy-Riemann Equations 11.1: The Operators and Suppose f is a complex function defined in a plane open set

More information

2. Complex Analytic Functions

2. Complex Analytic Functions 2. Complex Analytic Functions John Douglas Moore July 6, 2011 Recall that if A and B are sets, a function f : A B is a rule which assigns to each element a A a unique element f(a) B. In this course, we

More information

u(0) = u 0, u(1) = u 1. To prove what we want we introduce a new function, where c = sup x [0,1] a(x) and ɛ 0:

u(0) = u 0, u(1) = u 1. To prove what we want we introduce a new function, where c = sup x [0,1] a(x) and ɛ 0: 6. Maximum Principles Goal: gives properties of a solution of a PDE without solving it. For the two-point boundary problem we shall show that the extreme values of the solution are attained on the boundary.

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

Laplace equation. In this chapter we consider Laplace equation in d-dimensions given by. + u x2 x u xd x d. u x1 x 1

Laplace equation. In this chapter we consider Laplace equation in d-dimensions given by. + u x2 x u xd x d. u x1 x 1 Chapter 6 Laplace equation In this chapter we consider Laplace equation in d-dimensions given by u x1 x 1 + u x2 x 2 + + u xd x d =. (6.1) We study Laplace equation in d = 2 throughout this chapter (excepting

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo CHAPTER 3 Analytic Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Harmonic Functions 1 Introduction

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ Remarks. 1. So far we have seen that holomorphic is equivalent to analytic. Thus, if f is complex differentiable in an open set, then it is infinitely many times complex differentiable in that set. This

More information

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5.

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5. VISCOSITY SOLUTIONS PETER HINTZ We follow Han and Lin, Elliptic Partial Differential Equations, 5. 1. Motivation Throughout, we will assume that Ω R n is a bounded and connected domain and that a ij C(Ω)

More information

Introduction to Electrostatics

Introduction to Electrostatics Chapter 1 Introduction to Electrostatics Problem Set #1: 1.5, 1.7, 1.12 (Due Monday Feb. 11th) 1.1 Electric field Coulomb showed experimentally that for two point charges the force is -proportionaltoeachofthecharges,

More information

ESTIMATES FOR THE MONGE-AMPERE EQUATION

ESTIMATES FOR THE MONGE-AMPERE EQUATION GLOBAL W 2,p ESTIMATES FOR THE MONGE-AMPERE EQUATION O. SAVIN Abstract. We use a localization property of boundary sections for solutions to the Monge-Ampere equation obtain global W 2,p estimates under

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Chapter 2 Laplace Equation Yung-Hsiang Huang 207.07.07. Mimic the proof for Theorem 3.. 2. Proof. I think we should assume u C 2 (Ω Γ). Let W be an open

More information

Class Meeting # 2: The Diffusion (aka Heat) Equation

Class Meeting # 2: The Diffusion (aka Heat) Equation MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 2: The Diffusion (aka Heat) Equation The heat equation for a function u(, x (.0.). Introduction

More information

6.3 Fundamental solutions in d

6.3 Fundamental solutions in d 6.3. Fundamental solutions in d 5 6.3 Fundamental solutions in d Since Lapalce equation is invariant under translations, and rotations (see Exercise 6.4), we look for solutions to Laplace equation having

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

THE DIRICHLET PROBLEM FOR THE LAPLACE OPERATOR

THE DIRICHLET PROBLEM FOR THE LAPLACE OPERATOR THE DIRICHLET PROBLEM FOR THE LAPLACE OPERATOR Stefano Meda Università di Milano-Bicocca c Stefano Meda 2013 ii A Francesco Contents I The Dirichlet problem via Perron s method 1 1 The classical Dirichlet

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

4.1. Dirichlet, Poisson and Neumann boundary value problems

4.1. Dirichlet, Poisson and Neumann boundary value problems Chapter 4 Laplace s equation 4.. Dirichlet, Poisson and Neumann boundary value problems The most commonly occurring form of problem that is associated with Laplace s equation is a boundary value problem,

More information

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics Fundamental Solutions and Green s functions Simulation Methods in Acoustics Definitions Fundamental solution The solution F (x, x 0 ) of the linear PDE L {F (x, x 0 )} = δ(x x 0 ) x R d Is called the fundamental

More information

CHAPTER 2. Laplace s equation

CHAPTER 2. Laplace s equation 18 CHAPTER 2 Laplace s equation There can be but one option as to the beauty and utility of this analysis by Laplace; but the manner in which it has hitherto been presented has seemed repulsive to the

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

MATH 124B Solution Key HW 05

MATH 124B Solution Key HW 05 7.1 GREEN S FIRST IENTITY MATH 14B Solution Key HW 05 7.1 GREEN S FIRST IENTITY 1. erive the 3-dimensional maximum principle from the mean value property. SOLUTION. We aim to prove that if u is harmonic

More information

1 Integration in many variables.

1 Integration in many variables. MA2 athaye Notes on Integration. Integration in many variables.. Basic efinition. The integration in one variable was developed along these lines:. I f(x) dx, where I is any interval on the real line was

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 1 Introduction You may have noticed that when we analyzed the heat equation on a bar of length 1 and I talked about the equation

More information

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET WEILIN LI AND ROBERT S. STRICHARTZ Abstract. We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

= 2 x y 2. (1)

= 2 x y 2. (1) COMPLEX ANALYSIS PART 5: HARMONIC FUNCTIONS A Let me start by asking you a question. Suppose that f is an analytic function so that the CR-equation f/ z = 0 is satisfied. Let us write u and v for the real

More information

Partial Differential Equations (TATA27)

Partial Differential Equations (TATA27) Partial Differential Equations (TATA7) David Rule Spring 9 Contents Preliminaries. Notation.............................................. Differential equations...................................... 3

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle TD M EDP 08 no Elliptic equations: regularity, maximum principle Estimates in the sup-norm I Let be an open bounded subset of R d of class C. Let A = (a ij ) be a symmetric matrix of functions of class

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková 29 Kragujevac J. Math. 31 (2008) 29 42. SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION Dagmar Medková Czech Technical University, Faculty of Mechanical Engineering, Department of Technical

More information

MATH 425, HOMEWORK 3 SOLUTIONS

MATH 425, HOMEWORK 3 SOLUTIONS MATH 425, HOMEWORK 3 SOLUTIONS Exercise. (The differentiation property of the heat equation In this exercise, we will use the fact that the derivative of a solution to the heat equation again solves the

More information

THE GREEN FUNCTION. Contents

THE GREEN FUNCTION. Contents THE GREEN FUNCTION CRISTIAN E. GUTIÉRREZ NOVEMBER 5, 203 Contents. Third Green s formula 2. The Green function 2.. Estimates of the Green function near the pole 2 2.2. Symmetry of the Green function 3

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Assignment 2 - Complex Analysis

Assignment 2 - Complex Analysis Assignment 2 - Complex Analysis MATH 440/508 M.P. Lamoureux Sketch of solutions. Γ z dz = Γ (x iy)(dx + idy) = (xdx + ydy) + i Γ Γ ( ydx + xdy) = (/2)(x 2 + y 2 ) endpoints + i [( / y) y ( / x)x]dxdy interiorγ

More information

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS Zhongwei Shen Abstract. Let L = diva be a real, symmetric second order elliptic operator with bounded measurable coefficients.

More information

SOLUTION OF POISSON S EQUATION. Contents

SOLUTION OF POISSON S EQUATION. Contents SOLUTION OF POISSON S EQUATION CRISTIAN E. GUTIÉRREZ OCTOBER 5, 2013 Contents 1. Differentiation under the integral sign 1 2. The Newtonian potential is C 1 2 3. The Newtonian potential from the 3rd Green

More information

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4) :23 /4/2000 TOPIC Characteristic functions This lecture begins our study of the characteristic function φ X (t) := Ee itx = E cos(tx)+ie sin(tx) (t R) of a real random variable X Characteristic functions

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

is a weak solution with the a ij,b i,c2 C 1 ( )

is a weak solution with the a ij,b i,c2 C 1 ( ) Thus @u @x i PDE 69 is a weak solution with the RHS @f @x i L. Thus u W 3, loc (). Iterating further, and using a generalized Sobolev imbedding gives that u is smooth. Theorem 3.33 (Local smoothness).

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Preliminary Exam 2018 Solutions to Morning Exam

Preliminary Exam 2018 Solutions to Morning Exam Preliminary Exam 28 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem. Consider the series n 2 (n log n) and n 2 (n(log n)2 ). Show that one converges and one diverges

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Aero III/IV Conformal Mapping

Aero III/IV Conformal Mapping Aero III/IV Conformal Mapping View complex function as a mapping Unlike a real function, a complex function w = f(z) cannot be represented by a curve. Instead it is useful to view it as a mapping. Write

More information

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi-)norms

More information

The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard Chapter 6 Harmonic Functions The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard 6.1 Definition and Basic Properties We will now spend a chapter on certain

More information

Harmonic Functions and Brownian motion

Harmonic Functions and Brownian motion Harmonic Functions and Brownian motion Steven P. Lalley April 25, 211 1 Dynkin s Formula Denote by W t = (W 1 t, W 2 t,..., W d t ) a standard d dimensional Wiener process on (Ω, F, P ), and let F = (F

More information

Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian

Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Luis Caffarelli, Sandro Salsa and Luis Silvestre October 15, 2007 Abstract We use a characterization

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

0, otherwise. Find each of the following limits, or explain that the limit does not exist.

0, otherwise. Find each of the following limits, or explain that the limit does not exist. Midterm Solutions 1, y x 4 1. Let f(x, y) = 1, y 0 0, otherwise. Find each of the following limits, or explain that the limit does not exist. (a) (b) (c) lim f(x, y) (x,y) (0,1) lim f(x, y) (x,y) (2,3)

More information

Harmonic Functions and Brownian Motion in Several Dimensions

Harmonic Functions and Brownian Motion in Several Dimensions Harmonic Functions and Brownian Motion in Several Dimensions Steven P. Lalley October 11, 2016 1 d -Dimensional Brownian Motion Definition 1. A standard d dimensional Brownian motion is an R d valued continuous-time

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

Sobolev spaces, Trace theorems and Green s functions.

Sobolev spaces, Trace theorems and Green s functions. Sobolev spaces, Trace theorems and Green s functions. Boundary Element Methods for Waves Scattering Numerical Analysis Seminar. Orane Jecker October 21, 2010 Plan Introduction 1 Useful definitions 2 Distributions

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information