Sky demonstration of potential for ground layer adaptive optics correction

Size: px
Start display at page:

Download "Sky demonstration of potential for ground layer adaptive optics correction"

Transcription

1 Sky demonstration of potential for ground layer adaptive optics correction Christoph J. Baranec, Michael Lloyd-Hart, Johanan L. Codona, N. Mark Milton Center for Astronomical Adaptive Optics, Steward Observatory, 933 N. Cherry Ave., Tucson, AZ ABSTRACT Observations have been made at the Steward Observatory 1.55 m telescope of a four-star asterism in the constellation Serpens Cauda, using a Shack-Hartmann wavefront sensor. The stars are all within a 2 arcminute field, and range in apparent brightness from m v of 9.4 to 1.6. The instrument placed a 5 5 array of square subapertures across the pupil of the telescope, and had sufficient field of view to allow wavefront data to be recorded from all four stars simultaneously. Snapshots at 1/3 s exposure time were recorded, with no temporal coherence between exposures. We have reconstructed the first 2 Zernike modes from the slope data for each star. In a preliminary analysis, we show that the wavefront aberration in each star can be roughly halved by subtracting the average of the wavefronts from the other three stars. The averages represent estimates of the aberration introduced by the lowest few hundred meters of the atmosphere, so the result provides an early indication of the potential for image sharpening by compensation of boundary layer turbulence. Keywords: Wavefront sensors, adaptive optics, ground layer adaptive optics 1. INTRODUCTION Ground layer adaptive optics (GLAO) correction, first suggested by Rigaut 1, is a method for correcting the wavefront errors caused by turbulence close to the telescope. By averaging the wavefronts of multiple guide stars over a wide field of view, one can calculate an estimate of the errors introduced by the ground layer. Compensating this error with a deformable mirror conjugated close to the telescope s entrance pupil will partially correct the wavefronts from all objects in the field of view simultaneously. Numerical simulations 1,2,3 suggest that, when correctly implemented, this can be an effective technique for achieving modest correction over fields of view of perhaps 1 to 2 arcminutes. GLAO has yet to be demonstrated at any telescope, and its potential is very uncertain because the relative contributions to the wavefront aberration from turbulent boundary layers and those at high altitude are not generally well understood. The surest way to explore the potential is to measure explicitly and simultaneously the wavefront errors in several stars within some field, and to calculate the degree to which one star s wavefront can be estimated on the basis of measurements from the other stars. Ragazzoni, Marchetti, and Valente first attempted this at the Telescopio Nazionale Galilei 4, using the simple expedient of defocusing their camera to allow wavefront estimates to be computed. Here, we report the first effort to record multiple stellar wavefronts simultaneously using a specifically designed wavefront sensor, and preliminary results derived from the data. 2. EXPERIMENTAL DESIGN The goal of the experiment was to explore the feasibility of ground layer adaptive optics correction. For this purpose, the field of view for finding reference stars was restricted to 3 arcminutes. While this is much smaller than the field that simulations suggest may benefit from GLAO, it greatly eases constraints on the optical design of the wavefront sensor. To carry out this experiment, we then needed to find a collection of reasonably bright stars, m v > 11, within a ~3 arcminute field of view. We found such a set of stars in the constellation Serpens Cauda with visual magnitudes ranging from 9.4 to 1.6 with separations from a central star of 56 to 76 arcseconds. Figure 1 shows the relevant section of a DSS image.

2 Figure 1. Sky picture of target stars. Taken from DSS2/J/POSSII 2.1. Specifications and design of the WFS The main challenge in this experiment was to design an appropriate camera that could capture wavefront information from the multiple stars in the selected field simultaneously. We chose to design a wavefront sensor that could image multiple Shack-Hartmann patterns onto a single CCD chip. The camera was designed to cover a 2.5 arcminute square field of view with a minimum separation of 3 arcseconds between each star so the patterns would not overlap. The pupil was broken up into 5 by 5 subapertures, projecting to 31 cm squares on the primary mirror, of which 2 were illuminated, allowing us to sense 4 degrees of freedom. The final plate scale on the camera is 1.68 pixels per arcsecond. Figure 2. Zemax layout of WFS design showing simulated fields of target stars. From left to right, the optical components: Focal plane of telescope (1), where images of stars are formed, collimating lens (2) which images the pupil onto the lenslet array (3). Next is a field lens (4) that corrects aberrations and following is a relay system (5,6) which images the Shack-Hartmann spot patterns onto a CCD chip (7).

3 2.2. Implementation on the telescope The camera was designed to be used at the f/13.5 Cassegrain focus of Steward Observatory s 1.55 m Kuiper Telescope. The plate scale at best focus is 11 microns per arcsecond with a useful field of view diameter of at least 435 arcseconds. Typical seeing at the site, Mt. Bigelow, just north of Tucson, Arizona, is 1-2 arcseconds. Figure 3. The assembled wavefront sensor camera attached to the Cassegrain focus of the 1.55 m Kuiper Telescope. 3. DATA COLLECTION Observations using the wavefront sensor camera were done over the nights of June 12 th - 16 th, 3. The data used for analysis was taken from 1am to 3am on the morning of the 17th. During that time, a total of 625 frames of data from the sky in batches of 25 frames. After each set, the telescope was offset to the sky and 2 background frames were recorded, for a total of 5 background frames. The sky background was found to remain constant over the night so the mean of all the sky frames was used for background subtraction in the data analysis. Figure 4 shows an example of a single background subtracted data frame. Each frame had an exposure time of 31 milliseconds. There was a delay of ~2 seconds between each exposure, which means that successive frames were temporally uncorrelated.

4 Figure 4. An example data frame after background subtraction, showing the Shack-Hartmann patterns from the four stars in the selected field. The field shown is 2.5 arcminutes square. 4. DATA ANALYSIS AND WAVEFRONT RECONSTRUCTION 4.1. Data reduction / Centroid offset vector calculation In order to recover wavefront information from the data frames, the spots from each subaperture in the Shack- Hartmann patterns had to be accurately located. Using a correlation technique, each frame was convolved with a 2-D Gaussian of width 2 pixels. The coordinates of the spots were taken to be the peaks in the correlation. The zero offset position for the spot in each subaperture was assumed to be the average position of the corresponding batch of 25 frames. The zero offsets were then used to quantify the distortion seen in figure 4, and to compute an adjustment to the plate scale as a function of position on the camera. Finally, centroid offset vectors were calculated from the spot positions frame by frame by subtracting the zero offsets, and applying a correction for the measured distortion Ground layer estimation using a single subaperture The first analysis of the data was to estimate the ground layer contribution for a single subaperture. By measuring the centroid offset vectors for a single subaperture, we are effectively measuring the tip and tilt over a 31 cm square telescope. Given the separations of the stars, the overlap of the 31 cm beams from the central and outlying stars extends only to a height of ~1 m. Centroid data for the same subaperture in each of the three outer stars were averaged to give an estimate of the ground layer tilt, and subtracted from the centroid data for the central star. Figure 5 shows a comparison of the central star s centroid offset vector with and without subtraction of the ground layer

5 estimate for the first 91 frames of data. The RMS length of the offset vector has been reduced by a factor of 2.28 from.567 arcseconds in the uncorrected case to.249 arcseconds in the corrected case. Note also that the roughly circular distribution of the offset vectors around zero leads us to believe that the wavefront tilt errors are due largely to turbulence in the atmosphere rather than telescope wobble. Centroid Offset Positions - Frames 1-91 Subap (2,2) centroid offsets corrected centroid offsets 5 Y (.1 arcseconds ) X (.1 arcseconds ) Figure 5. Scatter plot of the centroid vector from a single 31-cm subaperture for the central star, with and without subtraction of the average tip-tilt computed from the three outer stars Ground layer estimation of full aperture using centroid offset vectors In an extension to the above analysis, the same type of correction was applied to all the subapertures instead of just one. Again we averaged the centroid offset vectors for each subaperture of the three outer stars and used this as a correction to the offsets, but this time we applied the correction to each of the stars in the field. We can see from table 1 the improvement in RMS centroid offset vector length over the entire aperture for each star. In this simplistic ground layer correction we can see that there is significant improvement in the wavefront slopes for each of the stars observed. Star Upper Left Central Right Lower Right Uncorrected Centroid Offset Vector (arcseconds) Corrected Centroid Offset Vector (arcseconds) Table 1. RMS centroid vector length over the entire aperture with and without subtraction of the ground layer estimate.

6 4.4. Wavefront reconstruction The next step was to calculate estimates of the wavefront, expressed as sets of low-order Zernike polynomial coefficients, using a reconstructor matrix derived from a numerical model of the imaging system. With just 2 illuminated subapertures, we restricted ourselves to 2 Zernike modes, so the reconstruction calculation remained slightly overdetermined. Figure 6 shows an example of the reconstructed optical path differences superimposed on the original sky image of our selected stars. Figure 6. Sky image with superimposed reconstructed phase maps from a single data frame. To compute a ground layer estimate, we averaged the Zernike polynomial coefficients of the three outer stars. These coefficients were then subtracted from the coefficients calculated for each individual wavefront. Figure 7 shows the calculated RMS Zernike polynomial coefficients in both the uncorrected and corrected cases. From the uncorrected data, we estimate that the seeing parameter r was about 11 cm at 5 nm. Over the four stars in the field there is modest improvement in wavefront error for all modes and all stars, with a total compensation for all 2 modes of about a factor of 2, from 818 nm to 445 nm. Upper Left Star Right Star Lower Right Star Central Star Zernike Order rms wavefront error rms wavefront error % Correction % Correction % Correction % Correction without correction (nm) with correction (nm) Total: Table 2. Correction by Zernike radial order in each star by subtraction of the mean wavefront measured from the three outlier stars.

7 8 7 RMS Zernike Polynomial Coefficients Over 11 Frames: Upper Left Star Uncorrected After Ground Layer Correction 8 7 RMS Zernike Polynomial Coefficients Over 11 Frames: Central Star Uncorrected After Ground Layer Correction 6 6 Coefficient in Nanometers Coefficient in Nanometers Zernike Mode Number Zernike Mode Number 8 7 RMS Zernike Polynomial Coefficients Over 11 Frames: Right Star Uncorrected After Ground Layer Correction RMS Zernike Polynomial Coefficients Over 11 Frames: Lower Right Star 8 Uncorrected After Ground Layer Correction Coefficient in Nanometers Coefficient in Nanometers Zernike Mode Number Zernike Mode Number Mode # Order Name Mode # Order Name 1 1 Tilt x 11 4 Secondary astigmatism y 2 1 Tilt y 12 4 Spherical 3 2 Astigmatism x 13 4 Secondary astigmatism x 4 2 Power 14 4 Tetrafoil x 5 2 Astigmatism y 15 5 Pentafoil y 6 3 Trefoil y 16 5 Secondary tetrafoil y 7 3 Coma y 17 5 Secondary coma y 8 3 Coma x 18 5 Secondary coma x 9 3 Trefoil x 19 5 Secondary tetrafoil x 1 4 Tetrafoil y 2 5 Pentafoil x Figure 7. Uncorrected and ground layer corrected RMS Zernike polynomial coefficients. 5. CONCLUSIONS AND FUTURE WORK Simulations have suggested that GLAO will improve rms wavefront error by about a factor of two, and this is borne out by the present results. One major limitation to this work is that we have no independent knowledge of the relative strength of the ground layer compared to other turbulence layers in the atmosphere. Despite this lack, an estimate can be obtained of the mean height of non-ground layer aberration from the angular decorrelation of the Zernike modes as a function of their radial order. We are modeling this now. A tomographic reconstruction algorithm will be used to estimate contributions from two layers assumed to be at this mean height, and the ground. This would represent the first validation of tomography with sky data, and if successful, will improve the estimates of the central star s wavefront.

8 In further experiments at the 1.55 m, the present camera will be replaced with one having a faster readout and lower read noise, allowing some degree of temporal coherence to be maintained between exposures. An upgraded optical system is also being designed to allow the wavefront sensor to be used at the 6.5 m MMT Observatory on Mt. Hopkins. There we will utilize another local 1.2 m telescope to obtain simultaneous measurements of the C n 2 profile via SCIDAR. From these data, we expect to measure the average fractional power in the ground layer aberration, and so to quantify the effectiveness of GLAO. We will also be able to anchor tomographic solutions for the 3-d aberration structure against the known turbulence profile. 6. ACKNOWLEDGEMENTS We are grateful for assistance from James Georges, Tom Stalcup, and Matt Rademacher. This work has been supported by the National Science Foundation under grant AST REFERENCES 1. F. Rigaut, Ground-Conjugate Wide Field Adaptive Optics for the ELTs, Proc. ESO Beyond Conventional Adaptive Optics, Venice, Mark R. Chun, Gains from a ground only adaptive optics system, Proc. SPIE Conference on Adaptive Optical System Technologies II, ed. Peter L. Wizinowich & D. Bonaccini, 4839, 94-98, Kona, HI, M. Lloyd-Hart, F. Wildi, G. Brusa, Lessons learned from the first adaptive secondary mirror, Proc. SPIE Conference on Astronomical Adaptive Optics Systems and Applications, ed. Robert K Tyson & M. Lloyd-Hart, 5169, San Diego, CA, R. Ragazzoni, E Marchetti, & G. Valente, Adaptive-optics corrections available for the whole sky, Nature, 43, 54-56,.

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus

Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus Patrick C. McGuire 1, Maud P. Langlois, Michael Lloyd Hart, Troy A. Rhoadarmer, J. Roger P. Angel

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS Michael Lloyd-Hart and Patrick McGuire Center for Astronomical Adaptive Optics, Steward Observatory, University of Arizona, Tucson,

More information

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope 1st AO4ELT conference, 08005 (2010) DOI:10.1051/ao4elt/201008005 Owned by the authors, published by EDP Sciences, 2010 Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths

More information

Early closed-loop results from the MMT's multi-laser guide star adaptive optics system

Early closed-loop results from the MMT's multi-laser guide star adaptive optics system Early closed-loop results from the MMT's multi-laser guide star adaptive optics system Michael Lloyd-Hart, Christoph Baranec, N. Mark Milton, and Thomas Stalcup Center for Astronomical Adaptive Optics,

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Simulations of E-ELT telescope effects on AO system performance Miska Le Louarn* a, Pierre-Yves Madec a, Enrico Marchetti a, Henri Bonnet a, Michael Esselborn a a ESO, Karl Schwarzschild strasse 2, 85748,

More information

A novel laser guide star: Projected Pupil Plane Pattern

A novel laser guide star: Projected Pupil Plane Pattern A novel laser guide star: Projected Pupil Plane Pattern Huizhe Yang a, Nazim Barmal a, Richard Myers a, David F. Buscher b, Aglae Kellerer c, Tim Morris a, and Alastair Basden a a Department of Physics,

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13893 NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Sebastian Rabien 1,a, Fernando

More information

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13437 Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Gérard Rousset 1a, Damien Gratadour 1, TIm J. Morris 2,

More information

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint)

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) AFRL-RD-PS-TP-2008-1008 AFRL-RD-PS-TP-2008-1008 Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) Robert Johnson 1 September

More information

Development of Field of View for Ground-based Optical Telescopes in Adaptive Optics Xiaochun Zhong 1, 2, a, Shujuan Wang 2, b, Zhiliang Huang 3, c

Development of Field of View for Ground-based Optical Telescopes in Adaptive Optics Xiaochun Zhong 1, 2, a, Shujuan Wang 2, b, Zhiliang Huang 3, c 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 2015) Development of Field of View for Ground-based Optical Telescopes in Adaptive Optics Xiaochun Zhong 1, 2, a,

More information

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor AOL Spring Wavefront Sensing The Shack Hartmann Wavefront Sensor system provides accurate, high-speed measurements of the wavefront shape and intensity distribution of beams by analyzing the location and

More information

The MMT f/5 secondary support system: design, implementation, and performance

The MMT f/5 secondary support system: design, implementation, and performance The MMT f/5 secondary support system: design, implementation, and performance S. Callahan *a, B. Cuerden b, D. Fabricant c, B. Martin b a MMT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson,

More information

Wide field astronomical image compensation with multiple laser-guided adaptive optics

Wide field astronomical image compensation with multiple laser-guided adaptive optics Invited Paper Wide field astronomical image compensation with multiple laser-guided adaptive optics Michael Hart, N. Mark Milton, Christoph Baranec, * Thomas Stalcup, Keith Powell, Eduardo Bendek, Don

More information

Wide-Field Image Compensation with Multiple Laser Guide Stars

Wide-Field Image Compensation with Multiple Laser Guide Stars Wide-Field Image Compensation with Multiple Laser Guide Stars Michael Hart, N. Mark Milton, Keith Powell Center for Astronomical Adaptive Optics, The University of Arizona, Tucson, AZ 85721 Christoph Baranec

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 96 Performance and Evaluation of Interferometric based Wavefront Sensors M.Mohamed Ismail1, M.Mohamed Sathik2 Research

More information

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot Wavefront Sensing using Polarization Shearing Interferometer A report on the work done for my Ph.D J.P.Lancelot CONTENTS 1. Introduction 2. Imaging Through Atmospheric turbulence 2.1 The statistics of

More information

Wavefront Sensing in Astronomy

Wavefront Sensing in Astronomy Wavefront Sensing in Astronomy by INAF Arcetri Observatory (Florence - Italy) ragazzoni@arcetri.astro.it Why WaveFront Sensing in Astronomy? Because most of visible and Near IR Astronomy is still made

More information

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application A.K.Saxena and J.P.Lancelot Adaptive Optics A Closed loop Optical system to compensate atmospheric turbulence

More information

I FINAL REPORT[ 15 MAY JUL 2006

I FINAL REPORT[ 15 MAY JUL 2006 REPORT DOCUMENTATION PAGE Form Approved REPORTDOCUMENTATIONPAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the

More information

Closed Loop Active Optics with and without wavefront sensors

Closed Loop Active Optics with and without wavefront sensors Closed Loop Active Optics with and without wavefront sensors P. Schipani 1, R. Holzlöhner 2, L. Noethe 2, A. Rakich 2,3, K. Kuijken 4, S. Savarese 1,5, M. Iuzzolino 1,5 1 INAF Osservatorio Astronomico

More information

Ground-Layer Adaptive Optics with Multiple Laser Guide Stars

Ground-Layer Adaptive Optics with Multiple Laser Guide Stars Ground-Layer Adaptive Optics with Multiple Laser Guide Stars Michael Hart, N. Mark Milton, Center for Astronomical Adaptive Optics, The University of Arizona, Tucson, AZ 85721 Christoph Baranec, Caltech

More information

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA Optical Spectroscopy with a Near Single-mode Fiber Feed and Adaptive Optics Jian Ge a, Roger Angel a, Chris Shelton b a Steward Observatory, The University of Arizona, Tucson, AZ 85721 USA b Keck Observatory,

More information

Sky Projected Shack-Hartmann Laser Guide Star

Sky Projected Shack-Hartmann Laser Guide Star Sky Projected Shack-Hartmann Laser Guide Star T. Butterley a, D.F. Buscher b, G. D. Love a, T.J. Morris a, R. M. Myers a and R. W. Wilson a a University of Durham, Dept. of Physics, Rochester Building,

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

Active Optics on the Baade 6.5-m (Magellan I) Telescope

Active Optics on the Baade 6.5-m (Magellan I) Telescope Active Optics on the Baade 6.5-m (Magellan I) Telescope Paul L. Schechter a,gregburley b, Charles L. Hull b, Matt Johns b, Buddy Martin c, Skip Schaller d, Stephen A. Shectman b, and Steven C. West e a

More information

Pupil matching of Zernike aberrations

Pupil matching of Zernike aberrations Pupil matching of Zernike aberrations C. E. Leroux, A. Tzschachmann, and J. C. Dainty Applied Optics Group, School of Physics, National University of Ireland, Galway charleleroux@yahoo.fr Abstract: The

More information

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics?

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics? Adaptive Optics Overview Phil Hinz (phinz@as.arizona.edu) What (Good) is Adaptive Optics? System Overview MMT AO system Atmospheric Turbulence Image Structure References: Adaptive Optics for Astronomical

More information

arxiv: v1 [astro-ph.im] 12 Jul 2018

arxiv: v1 [astro-ph.im] 12 Jul 2018 Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime G. Agapito a, C. Arcidiacono b, S. Esposito a a Osservatorio Astrofisico di Arcetri, INAF; b Osservatorio

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope Mem. S.A.It. Vol. 86, 436 c SAIt 2015 Memorie della Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope L. Schreiber 1, C. Arcidiacono 1, G. Bregoli 1, E. Diolaiti

More information

Deformable mirror fitting error by correcting the segmented wavefronts

Deformable mirror fitting error by correcting the segmented wavefronts 1st AO4ELT conference, 06008 (2010) DOI:10.1051/ao4elt/201006008 Owned by the authors, published by EDP Sciences, 2010 Deformable mirror fitting error by correcting the segmented wavefronts Natalia Yaitskova

More information

Performance Modeling of a Wide Field Ground Layer Adaptive Optics System

Performance Modeling of a Wide Field Ground Layer Adaptive Optics System Performance Modeling of a Wide Field Ground Layer Adaptive Optics System David R. Andersen 1,JeffStoesz 1, Simon Morris 2, Michael Lloyd-Hart 3, David Crampton 1, Tim Butterley 2, Brent Ellerbroek 4, Laurent

More information

Satellite and debris characterisation in LEO and GEO using adaptive optics

Satellite and debris characterisation in LEO and GEO using adaptive optics Satellite and debris characterisation in LEO and GEO using adaptive optics M. Copeland, F. Bennet, F. Rigaut, C. d Orgeville and V. Korkiakoski Research School of Astronomy and Astrophysics, Australian

More information

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica On behalf of the MAORY module Consortium Shaping E-ELT Science and Instrumentation workshop, ESO, 25

More information

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289 Error Budgets, and Introduction to Class Projects Lecture 6, ASTR 89 Claire Max UC Santa Cruz January 8, 016 Page 1 What is residual wavefront error? Telescope AO System Science Instrument Very distorted

More information

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Luzma Montoya, Iciar Montilla Instituto de Astrofísica de Canarias Edinburgh, 25-26/03/2014 AO Tomography Workshop The EST

More information

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant b) intensity changes: scintillation!i/i on the ground is proportional to h!", i.e. # h e -h/h this function has maximum at h = H = 8.5 km! scintillation comes mostly from high layers! seeing and scintillation

More information

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. 8.2.11 Star Test n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. Interpretation of the image is to a large degree a matter of

More information

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Guido Agapito a,c, Carmelo Arcidiacono b,c, and Simone Esposito a,c a INAF Osservatorio Astrofisico di Arcetri,

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

The AO and MCAO for the 4m European Solar Telescope

The AO and MCAO for the 4m European Solar Telescope The AO and MCAO for the 4m European Solar Telescope Thomas Berkefeld a and the EST AO group a Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany ABSTRACT We give an overview of the Adaptive Optics

More information

Figure measurement of a large optical flat with a Fizeau interferometer and stitching technique

Figure measurement of a large optical flat with a Fizeau interferometer and stitching technique Figure measurement of a large optical flat with a Fizeau interferometer and stitching technique Chunyu Zhao a, Robert A. Sprowl a, Michael Bray b, James H. Burge a a College of Optical Sciences, the University

More information

Alignment aberrations of the New Solar Telescope

Alignment aberrations of the New Solar Telescope Alignment aberrations of the New Solar Telescope Anastacia M. Manuel and James H. Burge College of Optical Sciences/University of Arizona 1630 East University Blvd., Tucson, AZ 85721, USA ABSTRACT The

More information

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization Publications of the Astronomical Society of the Pacific, 118:310 318, 006 February 006. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. The W. M. Keck Observatory Laser

More information

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization Publications of the Astronomical Society of the Pacific, 118:000 000, 006 February 006. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. The W. M. Keck Observatory Laser

More information

Progress of the MMT Adaptive optics program

Progress of the MMT Adaptive optics program Progress of the MMT Adaptive optics program F. Wildi (1), G. Brusa (1), A. Riccardi (2), R. Allen (3), M. Lloyd-Hart (1), D. Miller (1), B. Martin (3), R.Biasi (4), D. Gallieni (5) (1) Steward Observatory,

More information

First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope

First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope Shengqian Wang ( 王胜千 ) 1,2, **, Kai Wei ( 魏凯 ) 1,2, Wenjia Zheng ( 郑文佳 ) 1,2, and Changhui

More information

Layer-oriented adaptive optics for solar telescopes

Layer-oriented adaptive optics for solar telescopes Layer-oriented adaptive optics for solar telescopes Aglaé Kellerer Big Bear Solar Observatory, 40 386 North Shore Lane, Big Bear City, CA 92314-9672, USA kellerer@bbso.njit.edu First multi-conjugate adaptive-optical

More information

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory Wavefront reconstruction for adaptive optics Marcos van Dam and Richard Clare W.M. Keck Observatory Friendly people We borrowed slides from the following people: Lisa Poyneer Luc Gilles Curt Vogel Corinne

More information

Using a Membrane DM to Generate Zernike Modes

Using a Membrane DM to Generate Zernike Modes Using a Membrane DM to Generate Zernike Modes Author: Justin D. Mansell, Ph.D. Active Optical Systems, LLC Revision: 12/23/08 Membrane DMs have been used quite extensively to impose a known phase onto

More information

Final review of adaptive optics results from the pre-conversion MMT

Final review of adaptive optics results from the pre-conversion MMT Final review of adaptive optics results from the pre-conversion MMT M. Lloyd-Hart, R. Angel, T. Groesbeck, P. McGuire, D. Sandler a, D. McCarthy, T. Martinez, B. Jacobsen, T. Roberts, P. Hinz, J. Ge, B.

More information

arxiv:astro-ph/ v1 5 Nov 1999

arxiv:astro-ph/ v1 5 Nov 1999 Rayleigh scattering and laser spot elongation problems at ALFA arxiv:astro-ph/9911086v1 5 Nov 1999 E. Viard (eviard@eso.org), F. Delplancke (fdelplan@eso.org) and N. Hubin (nhubin@eso.org) European Southern

More information

ARIES: Arizona infrared imager and echelle spectrograph

ARIES: Arizona infrared imager and echelle spectrograph ARIES: Arizona infrared imager and echelle spectrograph D. W. McCarthy, J. Burge, R. Angel, J. Ge, R. Sarlot, B. Fitz-Patrick, and J. Hinz Steward Observatory, The University of Arizona, 933 N. Cherry

More information

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam Keck Adaptive Optics Note #385 Feasibility of LGS AO observations in the vicinity of Jupiter Stephan Kellner and Marcos van Dam Version 2: 25 July 2006 1 Introduction It has been proposed by Imke De Pater

More information

Achieving high resolution

Achieving high resolution Achieving high resolution Diffraction-limited performance with single telescopes with Adaptive Optics Or sparse aperture masking Use masks to sub-divide telescope primary into a numnber of subapertures

More information

Adaptive Optics for Satellite and Debris Imaging in LEO and GEO

Adaptive Optics for Satellite and Debris Imaging in LEO and GEO Adaptive Optics for Satellite and Debris Imaging in LEO and GEO M. Copeland, F. Bennet, A. Zovaro, F. Riguat, P. Piatrou and V. Korkiakoski Research School of Astronomy and Astrophysics, Australian National

More information

TMT Metrology study for M2 and M3

TMT Metrology study for M2 and M3 Consultants for Optical Metrology Tucson, Arizona 1 Introduction... 2 2 Requirements for optical test hardware... 3 3 Subaperture interferometry with stitching software... 4 3.1 Fizeau interferometry...

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE

SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE T. Rimmele, S. Hegwer, K. Richards, F. Woeger National Solar Observatory 1, Sunspot, NM-88349, USA J. Marino University of Florida, Gainesville,

More information

Alignment metrology for the Antarctica Kunlun Dark Universe Survey Telescope

Alignment metrology for the Antarctica Kunlun Dark Universe Survey Telescope doi:10.1093/mnras/stv268 Alignment metrology for the Antarctica Kunlun Dark Universe Survey Telescope Zhengyang Li, 1,2,3 Xiangyan Yuan 1,2 and Xiangqun Cui 1,2 1 National Astronomical Observatories/Nanjing

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

Opto-Mechanical Design of Altair, the Gemini Adaptive Optics System

Opto-Mechanical Design of Altair, the Gemini Adaptive Optics System Opto-Mechanical Design of Altair, the Gemini Adaptive Optics System Scott Roberts a, Gurjeet Singh Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council Canada

More information

Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle star... No more!

Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle star... No more! Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle li@le star... No more! Christoph U. Keller keller@strw.leidenuniv.nl Overview 1. The Power of Adaptive Optics 2. Atmospheric Turbulence

More information

Characterising daytime atmospheric conditions on La Palma

Characterising daytime atmospheric conditions on La Palma Adapting to the Atmosphere Conference 214 Journal of Physics: Conference Series 9 (21) 123 doi:1.188/1742-696/9/1/123 Characterising daytime atmospheric conditions on La Palma Matthew J. Townson 1, Aglaé

More information

Innovations in Gemini Adaptive Optics System Design

Innovations in Gemini Adaptive Optics System Design Header for SPIE use Innovations in Gemini Adaptive Optics System Design Glen Herriot, Simon Morris, Scott Roberts, Murray Fletcher, Leslie Saddlemyer, Gurjeet Singh, Jean-Pierre Véran, E. H. Richardson

More information

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW. Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

More information

Observing Techniques for Astronomical Laser Guide Star Adaptive Optics

Observing Techniques for Astronomical Laser Guide Star Adaptive Optics UCRL-JC-130702 PREPRINT Observing Techniques for Astronomical Laser Guide Star Adaptive Optics C.E. Max B. Macintosh S.S. Olivier D.T. Gavel H.W. Friedman This paper was prepared for submittal to the Society

More information

Adaptive optics for the 6.5 m MMT

Adaptive optics for the 6.5 m MMT Adaptive optics for the 6.5 m MMT M. Lloyd-Hart, F. Wildi, H. Martin, P. McGuire, M. Kenworthy, R. Johnson, B. Fitz-Patrick, G. Angeli, S. Miller, R. Angel Center for Astronomical Adaptive Optics, University

More information

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT Paolo Ciliegi INAF Osservatorio Astronomico di Bologna On behalf of the MAORY Consortium Science ELT Workshop Team Meeting ESO Garching, MPE Garching,

More information

Micro-fluctuations of Fried s parameter (r 0 )

Micro-fluctuations of Fried s parameter (r 0 ) Micro-fluctuations of Fried s parameter ( ) S. K. Saha and L. Yeswanth Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India e-mail: sks@iiap.res.in; sks@iiap.ernet.in The atmospheric

More information

Atmospheric Turbulence and its Influence on Adaptive Optics. Mike Campbell 23rd March 2009

Atmospheric Turbulence and its Influence on Adaptive Optics. Mike Campbell 23rd March 2009 Atmospheric Turbulence and its Influence on Adaptive Optics Mike Campbell 23rd March 2009 i Contents 1 Introduction 1 2 Atmospheric Turbulence 1 Seeing..................................................

More information

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Florence, Italy. May 013 ISBN: 978-88-908876-0-4 DOI: 10.1839/AO4ELT3.15991 CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Olivier Lardière 1a, Dave Andersen, Colin Bradley 1,Célia Blain

More information

Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer

Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer E. A. Lipman, M. Bester, W. C. Danchi, and C. H. Townes Space Sciences Laboratory and Department of Physics

More information

Wavefront aberration analysis with a multi-order diffractive optical element

Wavefront aberration analysis with a multi-order diffractive optical element Wavefront aberration analysis with a multi-order diffractive optical element P.A. Khorin 1, S.A. Degtyarev 1,2 1 Samara National Research University, 34 Moskovskoe Shosse, 443086, Samara, Russia 2 Image

More information

A STUDY OF PYRAMID WFS BEHAVIOUR UNDER IMPERFECT ILLUMINATION

A STUDY OF PYRAMID WFS BEHAVIOUR UNDER IMPERFECT ILLUMINATION Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13262 A STUDY OF PYRAMID WFS BEHAVIOUR UNDER IMPERFECT ILLUMINATION Valentina

More information

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova Telescopes & Adaptive Optics Roberto Ragazzoni INAF Astronomical Observatory of Padova PAST PAST FUTURE This is a simmetry line This object is drawn in a plane but it acctually reppresent a three dimensional

More information

2006 Pearson Education Inc, publishing as Addison-Wesley

2006 Pearson Education Inc, publishing as Addison-Wesley 2006 Pearson Education Inc, publishing as Addison-Wesley 1 KaPAO-Cam: A Pomona Adaptive Optics Camera The development of KaPAO-Cam is supported by a 4-year NSF MRI-R2 grant 0960343 Senior Design Team Senior

More information

Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror

Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror Lijun Zhu, Pang-Chen Sun, Dirk-Uwe Bartsch, William R. Freeman, and Yeshaiahu Fainman We investigate the

More information

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017 Lecture 7: Real Telescopes & Cameras Stephen Eikenberry 05 October 2017 Real Telescopes Research observatories no longer build Newtonian or Parabolic telescopes for optical/ir astronomy Aberrations from

More information

Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems

Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems Barbara Kruse, University of Arizona, College of Optical Sciences May 6, 2016 Abstract Background In multi-channel imaging systems,

More information

Phase Retrieval for the Hubble Space Telescope and other Applications Abstract: Introduction: Theory:

Phase Retrieval for the Hubble Space Telescope and other Applications Abstract: Introduction: Theory: Phase Retrieval for the Hubble Space Telescope and other Applications Stephanie Barnes College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 sab3@email.arizona.edu Abstract: James R.

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator. Kate Jackson. Carlos Correia

Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator. Kate Jackson. Carlos Correia Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator Kate Jackson a Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5CS Carlos Correia

More information

Distortion mapping correction in aspheric null testing

Distortion mapping correction in aspheric null testing Distortion mapping correction in aspheric null testing M. Novak, C. Zhao, J. H. Burge College of Optical Sciences, 1630 East University Boulevard, Tucson, AZ, 85721 ABSTRACT We describe methods to correct

More information

Static telescope aberration measurement using lucky imaging techniques

Static telescope aberration measurement using lucky imaging techniques DOI 10.1007/s10686-012-9291-4 ORIGINAL ARTICLE Static telescope aberration measurement using lucky imaging techniques Marcos López-Marrero Luis Fernando Rodríguez-Ramos José Gil Marichal-Hernández José

More information

Analysis of active alignment control of the Hobby-Eberly Telescope * Wide Field Corrector using Shack-Hartmann wavefront sensors

Analysis of active alignment control of the Hobby-Eberly Telescope * Wide Field Corrector using Shack-Hartmann wavefront sensors Analysis of active alignment control of the Hobby-Eberly Telescope * Wide Field Corrector using Shack-Hartmann wavefront sensors Hanshin Lee a,, Michael Hart b, Gary J. Hill a, and M. D. Rafal a a McDonald

More information

Comparison of Adaptive Optics Technologies for Gemini

Comparison of Adaptive Optics Technologies for Gemini Comparison of Adaptive Optics Technologies for Gemini.7.6.5 Strehl.4.3.2.1 Malcolm (APD, 56 act.) Francois (APD, 56 act.) Brent (5 e-, D/d=1) Francois (5 e-, D/d=9) 11 12 13 14 15 16 17 18 19 Brent Ellerbroek

More information

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 Adaptive Optics Status & Roadmap Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 1 Analysis CASIS: VLT MCAO Imager NACO upgrade Commissioning PAC The ESO Adaptive Optics

More information

Telescopes. To get there, we need to control a bunch of aberrations that degrade the wavefronts.

Telescopes. To get there, we need to control a bunch of aberrations that degrade the wavefronts. Telescopes We want to: 1.) build the largest telescope we can afford (or can get someone else to buy for us), 2.) design it to be efficient and 3.) at the same time shield the signal from unwanted contamination,

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Introduction to Adaptive Optics. Tim Morris

Introduction to Adaptive Optics. Tim Morris Introduction to Adaptive Optics Tim Morris Contents Definitions and introduction Atmospheric turbulence Components of an AO system Wavefront Sensing Wavefront Correction Turbulence Conjugation Laser Beacons

More information

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO David Buckley, SAAO 27 Feb 2012 1 Some other Telescope Parameters 1. Plate Scale This defines the scale of an image at the telescopes focal surface For a focal plane, with no distortion, this is just related

More information

Agenda Announce: Visions of Science Visions of Science Winner

Agenda Announce: Visions of Science  Visions of Science Winner 7. Telescopes: Portals of Discovery All of this has been discovered and observed these last days thanks to the telescope that I have [built], after having been enlightened by divine grace. Galileo Galilei

More information

Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy

Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy S.J. Weddell & R.Y. Webb University of Canterbury Electrical & Computer Engineering Christchurch, New Zealand steve.weddell@canterbury.ac.nz

More information

SOLAR ADAPTIVE OPTICS SYSTEM FOR 1-M NEW VACUUM SOLAR TELESCOPE

SOLAR ADAPTIVE OPTICS SYSTEM FOR 1-M NEW VACUUM SOLAR TELESCOPE Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13295 SOLAR ADAPTIVE OPTICS SYSTEM FOR 1-M NEW VACUUM SOLAR TELESCOPE Changhui Rao 1, Lei Zhu 1, Naiting Gu 1, Xuejun Rao 1, Lanqiang

More information

Satellite imaging with adaptive optics on a 1 m telescope

Satellite imaging with adaptive optics on a 1 m telescope Satellite imaging with adaptive optics on a 1 m telescope Francis Bennet, I. Price, F. Rigaut, M. Copeland Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611,

More information