EXPERIMENT 8 A SIMPLE TITRATION

Size: px
Start display at page:

Download "EXPERIMENT 8 A SIMPLE TITRATION"

Transcription

1 EXPERIMENT 8 A SIMPLE TITRATION Structure 8.1 Introduction Objectives 8.2 Titration Types of Indicators Types of Titrations Standard Solution 8.3 Titrimetric Experiment: Determination of the strength of given Sodium Hydroxide Solution Principle Requirements Procedure Observations Calculations Result 8.4 Summary 8.1 INTRODUCTION Titrimetric analysis or volumetric analysis is an important chemical method of analysis for determination of the concentration of various solutions. Titrimetric analysis is based on quantitative performance of suitable chemical reactions. Therefore it is a quantitative method of analysis. Titrimetric analysis is performed by accurately measuring the volume of a standard solution which is required to completely react with a known volume of an unknown solution. Therefore, it is also known as volumetric analysis. Laboratory technicians are required to perform a number of titrations in the laboratory. In this experiment, you will perform a titration of oxalic acid with sodium hydroxide. Objectives After performing this experiment, you should be able to: I prepare a standard solution, perform a titration of oxalic acid with sodium hydroxide, determine the concentration of sodium hydroxide solution, perform any other titration provided proper instructions are given, determine end-point in a titration, and classify various types of titrations. 8.2 TITRATION In titrimetric analysis, one determines the volume of a standard solution which is required to react quantitatively with a known volume of the other solution, the concentration of which is to be determined. For this purpose, an aliquot of the solution to be estimated is pipetted out and is transferred into a conical flask. The standard solution is added dropwise from a burette to the solution in the conical flask.

2 Basic Experiments in Chemistry The conical flask is continuously shaken to enable the two solutions to mix thorougldy. Standard solution (Unit 7 of Block 2) is added till the two solutions react quantitatively. This process is called tiration. The solution in the conical flask is called the titrand and the one in the burette is called the titrant. The total volume of titrant used in the reaction is called the titre. We have said above that in a titration, the titrant is added till it reacts quantitatively with the titrand. Such a stage, at which the quantities of titrant and titrand are in their stoichiometric proportions (in terms of equivalents or moles), is called the equivalence point. A question arises now, as to how do we know that the equivalence point has been reached? At what stage shall we stop adding the solution from the burette? Essentially we need some substance which can indicate this stage by a change in a physical property like colour. A substance which is used to indicate the equivalence point of a titration through a colour change is called an indicator. Equivalence point so obtained is called end point. It is not necessary that the end point is coincident with the equivalence point, because of the delay in getting the indicator to show the change, and other factors. Ideally end point and equivalence point should be as close as possible. The indicator, to be used in a given titration, would depend on the nature of the chemical reaction involved between the two reacting solutions. The basic requirement for an indicator is that it should have distinctly different colours before and after the end point because we need to know the end point visually. If no visual indicator is available, the detection of equivalence point can often be achieved by following the course of the tihation by measuring the potential difference between an indicator electrode md a reference electrode or the change in the conductivity of the solution Types of Indicators The indicators can be of three types depending upon their usage: i) Internal indicators: These have to be addeq! into the reaction solutian. Examples are: phenolphthalein, methyl oranpe, diphenylamine, etc. ii) iii) External indicators: These are not added into the solution. The indicator is kept out on a plate. A drop of the solution being titrated is taken out with the help of a rod and put on the indicator. A change in colour indicates the end point. Potassium ferricyanide is one such example. Self-indicators: Sometimes either the titrand or the titrant changes its colour at the end point and acts as a self-indicator. The example is potassium permanganate used in permmgmatometry Types of Titrations Depending upon the nature of the chemical reaction involved in a titration, the latter can be classified into the following types: i) Acid-base titrations or Neutralisation titrations: The reaction in which an acid reacts with a base to give salt and water is called a neutralisation reaction and the titration involving such a reaction is called an acid-base titration or a neutralisation titration. An example is the reaction between NaOH and HCI : NaOH + HC1 ---b NaCl + H20

3 The indicators used in these titrations depend upon the ph at the end point, the familiar examples are phenolphthalein and methyl orange. Experiment 8 t ii) Oxidation-Reduction or Redox titrations: Titrations involving oxidation-reduction reactions, i.e., those in which one component gets oxidised while the other gets reduced are known as redox titrations. An example is the titration between oxalic acid and potassium permanganate in acidic medium, in permanganatometry. In this case, potassium permanganate gets reduced to ~ n while ~ oxalic + acid gets oxidised to CO2 and water. In this titration, potassium permanganate acts as a self-indicator. The following equation represents the reaction: Titrations involving potassium dichromate (Chromatometry) and iodine (iodometry) are also examples of redox titrations. iii) Precipitation titrations: In certain reactions, when the two components react, a precipitate is formed. The end point is indicated by the completion of precipitation. Such reactions are termed as precipitation reactions and the tirations as the precipitation titrations; an example is the titration between potassium chloride and silver nitrate as per the following equation:.. Titrations involving AgN03 are also called argentometric titrations. iv) Coslplexometric titrations: A complexation reaction involves the replacement of one or more of the coordinated solvent molecules, which are coordianted to a central metal ion, M, by some other groups. The groups getting attached to the central ion are known as ligands, L. M(H20), + nl =+ ML, + nhzo The titration involving such type of a reaction is called a complexometric titration. For example, determination of hardness of water using ethylenediaminete&aacetic acid (EDTA) as the complexing agent. The indicator used in thr case is eriochrome black T Standard Solution A standard solution is defined as the one whose concentration (strength) is known accurately, i.e., we know exactly how much of the solute is dissolved in a known volume of the solution. A standard solution may be prepared by dissolving an accurately weighed, pure stable solid (solute) in an appropriate solvent. Preparation of a standard solution is generally the first step in any quantitative experiment, so it is important to know how to prepare a sta~dard solution. Primary and Secondary Standards In titrimetry, certain chemicals are used frequently in defined concentrations as reference solutions. Such substances are classified as primary standards or secondary standards. A primary standard is a compound of sufficient purity

4 Basic Experiments in Chemistry ' from which a standard solution can be prepared by weighing a quantity of it directly, followed by dilution to give a definite volume of the solution. The following specifications have to be satisfied for a substance to qualify as a primary standard: 1. It must be easily available and easy to preserve. 2. It should not be hygroscopic nor should it be otherwise affected by air. 3. It should be readily soluble in the given solvent. 4. The reaction with a standard solution should be stoichiometric. 5. The titration error should be negligible. Few available primary standards for acid-base, redox and comlexometric titrations are given in Table 8.1. Table 8.1: Some primary standards. S.No. 1. Compound Potassium hydrogen phthalate (KHP) Formula unit CsHs04K Relative molar mass, M, Type of titration Acid-base 2. Anhydrous sodium carbonate Na2COj Acid-base 3. I I I I Sodium Salt of EDTA Na2HZCIOH1208N2.2HZ Complexometric 4. Copper(I1) sulphate CuS04.5H Iodometric I I I 1 Potassium dichromate I I I I Arsenic(II1) oxide Potassium iodate K2Cr207 I I I I I I I Sodium oxalate As20; KIO3 NazCz Redox Redox Redox Redox 9. "' Fendus-ammonium FeS04.(NH4)2S04.6H Redox sulphate I I,- r-- I I 10. Oxalic acid (COOH)7.2H20 63.OO Redox/acid- base I 1 Solutions prepared from the primary standards are called primary standard solutions. Substances which do not satisfy all the above conditions, are known as secondary standards. In such cases a direct preparation of a standard solution is not possible. Examples are alkali hydroxides and various inorganic acids. These substances cannot be obtained in pure form. Therefore, concentration of these can be determined by titrating them against primary standard solutions. This process is called standardisation and the solution so standardised is called a secondary standard solution:

5 Preparation of a Standard Solution Experiment 8 To prepare a standard solution of volume, v cm3, of known molarity, M mol dm", the mass of the solute required, m g, of molar mass M, can be calculated as follows: Mass of the solute (m) = M.M,.V 1000 g The solute is then weighed on an analytical balance, transferred into a standard flask and dissolved first in a small quantity of the solvent, the solution is then made up to the mark and shaken thoroughly to get a homogeneous solution. In preparing a standard solution whose concentration is, say, around 0.1 M, the amount of the substance weighed need not be exactly equal to that corresponding to 0.1 M. It can be slightly less or more, but the weighing must be accurate. From the weight of the solute actually taken, molarity of the solution can be calculated using Eq TITRIMETRIC EXPERIMENT: DETERMINATION OF THE STRENGTH OF GIVEN SODIUM HYDROXIDE SOLUTION Having learnt about titration in general, types of titrations and indicators, you would now like to learn how you would do an experiment, make observations, record data and calculate the result. It is also important to examine the result critically, compare it with known or expected value, look for the sources of error so that improvement can be made. We will illustrate all this in the following example. Of course, you will have to perform various experiments according to the procedure given in each case. We consider here a simple titration involving a weak acid and a strong base, viz. oxalic acid and NaOH, using phenolphthalein as the indicator Principle! Sodium hydroxide is not a primary standard. Therefore, it should be standardised with a suitable primary standard such as oxalic acid. Sodium hydroxide reacts with oxalic acid according to the following equation:. From the above reaction, you can see that sodium hydroxide reacts with oxalic acid in 2: 1 molar ratio. Hence No. of molesof oxalicacid No. of molesof sodium hydroxide 2 where 1111 = molarity of oxalic acid Vl = volume of oxalic acid taken MZ = molarity of sodium hydroxide

6 Basic Experiments in Chemistry V2 = volume of sodium hydroxide taken A slight excess of sodium hydroxide at the end point imparts a distinct pink colour to the solution, when phenolphthalein is used as an indicator Requirements Apparatus Chemicals Analytical balance 1 No. Oxalic acid Beaker 400 c d capacity 1 No. Sodium hydroxide solution Burette 50 cm3 capacity 1 No. (approximately MI10) Burette stand 1 No. Phenolphthalein indicator Conical flask 250 cm3 capacity 1 No. Funnel small 1 No. Pipette 20 cm3 capacity 1 No. Volumetric flask 250 cm3 capacity 1 No. Wash bottle 1 No. Weighing bottle 1 No Procedure 1. Preparation of a standard solution of oxalic acid As the concentration of the given sodium hydroxide solution is approximately 0.1 M, you will have to prepare a standard solution of oxalic acid of about 0.05 M concentration. As the molar mass of oxalic acid is 63, you will require g of oxalic acid for preparing 250 cm3 of 0.05 M solution. This can be calculated as shown below. m = MxM,xV = 0.05 mol dm-3 x g mol-' x 0.25 dm3 = g In Unit 2 of this course, you have studied the handling of different types of analytical balances. Weigh out an empty weighing bottle on an analytical balance and record its mass. Then weigh out the weighing bottle with about 1.60 g of pure oxalic acid accurate1 and record the mass in your note book. Then transfer the solid to a 250 cm Y clean volumetric flask through a glass funnel. Weigh the weighing bottle again accurately and record its mass. Dissolve the solid in cm3 of distilled or deionised water. Make the solution up to the mark wi!h distilled water. Stopper the flask and shake it well to make the solution homogeneous. 2. Standardisation of sodium hydroxide solution First collect the sodium hydroxide solution in a 250 cm3 bottle from your counsellor. Take a clean burette. Rinse the burette with sodium hydroxide solution and fill it up with this solution. Note the initial reading of the burette and record it in the observation Table 8.2 under the initial readin column. Pipette out 2fl cm3 of standard oxalic acid solution into a 250 cm Q conical flakk. Add one or two drops of phenolphthalein indicator. Titrate this solition by slowly adding small amounts of sodium hydroxide solutioa from the burette and continuously shaking the conical flask. Continue adding sodium hydroxide solution until a permanent pink colour appears. This indicates the end point of the titration. Note the burette reading and record it in the observation Table 8.2

7 under the 'final reading' column. The difference of the two readings gives the volume of NaOH used. Experiment 8 t Repeat the titration to get at least two concordant readings to ensure a correct and exact measurement. Record your readings in Table 8.1 and calculate the strength of sodium hydroxide solution. This solution now can be used to determine the strength of other acid solutions Observations Approximate mass of the weighing bottle Mass of weighing bottle + oxalic acid =rnl =... g =m2=... g I I i Mass of weighing bottle after transferring oxalic acid = m3 = g Molar mass (Mr) of oxalic acid = 63.0 g mol-' Volume of oialic acid solution prepared = 250 cm3 = 0.25 dm3 Table 8.2: Titration of oxalie acid with sodium hydroxide solution r S.No. Volume of oxalic Burette Reading Volume of NaOH in acid cm3 (Final-Initial) vt Initial Final v cm cm cm Calculations m Molarity of oxalic acid solution MI = - Mr. V Volume of oxalic acid taken Vl = 20.0 cm3 Volume of sodium hydroxide used = V2 cm3 Molarity of sodium hydroxide solution = M2 Using Eq. 8.2, - (m2 -m3) " 4 mol dm- 63

8 Basic Experiments inshemistry Result Molarity of sodium hydroxide solution = mol dm SUMMARY In this experiment, you have performed the following: prepared a standard solution of oxalic acid, performed an acidimetric titration of a standard solution of oxalic acid against a sodium hydroxide solution, determined the strength of the sodium hydroxide solution.

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator.

EXPERIMENT. Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. EXPERIMENT AIM Estimate the strength of given sodium carbonate solution by titrating it against HCl solution using methyl orange as indicator. Approximately M/40 HCl solution is provided. Prepare your

More information

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6

not to be republished NCERT YOU are already aware that a substance is analysed to establish its qualitative TITRIMETRIC ANALYSIS UNIT-6 UNIT-6 TITRIMETRIC ANALYSIS YOU are already aware that a substance is analysed to establish its qualitative and quantitative chemical composition. Thus, chemical analysis can be categorised as qualitative

More information

Unit 3 Chemistry - Volumetric Analysis

Unit 3 Chemistry - Volumetric Analysis Unit 3 Chemistry Volumetric Analysis Volumetric analysis is a quantitative chemical analysis used to determine the unknown concentration of one reactant [the analyte] by measuring the volume of another

More information

EXPT. 4 DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID

EXPT. 4 DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID EXPT. DETERMINATION OF pka OF ORTHOPHOSPHORIC ACID Structure.1 Introduction Objectives.2 Principle.3 Requirements. Solutions Provided.5 Procedure.6 Observations and Calculations.7 Result.1 INTRODUCTION

More information

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g STOICHIOMETRY II Stoichiometry in chemical equations means the quantitative relation between the amounts of reactants consumed and product formed in chemical reactions as expressed by the balanced chemical

More information

EXPERIMENT 15 ESTIMATION OF MAGNESIUM AND. HP Y, etc. Structure

EXPERIMENT 15 ESTIMATION OF MAGNESIUM AND. HP Y, etc. Structure EXPERIMENT 15 1 ESTIMATION OF MAGNESIUM AND 1 CALCIUM IONS IN A MIXTURE BY COMPLEXOMETRY Structure 15.1 Introduction Objectives 15.2 'Principle 15.3 Requirements 15.4 Procedure 15.5 Obse~ations 15.6 Calculations

More information

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER Structure 8.1 Introduction Objectives 8. Principle 8.3 Requirements 8.4 Solutions Provided 8.5 Procedure 8.6 Observations

More information

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

INORGANIC CHEMISTRY (LAB MANUAL)

INORGANIC CHEMISTRY (LAB MANUAL) REDOX TITRATIONS Titrations involving oxidizing and reducing agents are termed as oxidationreduction or redox titrations. The phenomenon of oxidation and reduction plays an important role in our day-to-day

More information

Mearns Castle High School. Advanced Higher Chemistry. Stoichiometry

Mearns Castle High School. Advanced Higher Chemistry. Stoichiometry Mearns Castle High School Advanced Higher Chemistry Stoichiometry Stoichiometry This section of Unit 2 relies on the ability to write formulae and balanced equations correctly. Any reaction in which the

More information

General Information 1

General Information 1 General Information 1 1.1 CLEANING F VLUMETRIC GLASSWARE All the volumetric glassware (Burette, Pipette, Volumetric flasks etc) must be perfectly clean, free from dust and greasy impurities. Unreliable

More information

Chapter 9. Volumetric Analysis

Chapter 9. Volumetric Analysis Chapter 9 Volumetric Analysis The terms volumetric analysis, titrimetry and titration are used interchangeably to describe a procedure which analyses chemicals in solution by accurate volume measurement.

More information

Volumetric analysis involving acids and alkalis

Volumetric analysis involving acids and alkalis Chapter 19 Volumetric analysis involving acids and alkalis 19.1 Standard solutions 19.2 Acid-alkali titrations 19.3 Calculations on volumetric analysis 19.4 Writing a laboratory report on volumetric analysis

More information

(a) What name is given to this method? (1) (b) Which piece of apparatus should be used to measure the 25.0cm 3 of KOH?

(a) What name is given to this method? (1) (b) Which piece of apparatus should be used to measure the 25.0cm 3 of KOH? 1 This apparatus can be used in a method to find the volume of sulfuric acid required to neutralise a solution of potassium hydroxide (KOH). burette containing 0.100mol/dm 3 H 2 SO 4 conical flask 25.0cm

More information

chemrevise.org 22/08/2013 Titrations N Goalby Chemrevise.org Titrations

chemrevise.org 22/08/2013 Titrations N Goalby Chemrevise.org Titrations Titrations N Goalby Chemrevise.org Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done

More information

Techniques for Volumetric Analysis

Techniques for Volumetric Analysis Techniques for Volumetric Analysis Volumetric analysis involves measuring the volumes of two solutions that react together. The basic principles are as follows. The solution to be analysed contains an

More information

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions Partner: Alisa 1 March 2012 Preparation and Properties of Buffer Solutions Purpose: The purpose of this experiment is to compare the ph effect on buffered and non-buffered solutions as well as making a

More information

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS UNIT 5 ACIDS, BASES AND SALTS PART 2 TITRATIONS, INDICATORS AND THE PH SCALE Contents 1. The ph scale 2. Indicators 3. Acid-Base Titrations Key words: acidic, alkaline, neutral, ph, indicator, litmus,

More information

NCEA Chemistry 2.1 Quantitative Analysis AS 91161

NCEA Chemistry 2.1 Quantitative Analysis AS 91161 NCEA Chemistry 2.1 Quantitative Analysis AS 91161 What is this NCEA Achievement Standard? When a student achieves a standard, they gain a number of credits. Students must achieve a certain number of credits

More information

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Unit 7: Chemistry Practical Examination (SET A) Monday 8 May 2017

More information

Volumetric Analysis: Acids & Bases OL

Volumetric Analysis: Acids & Bases OL Name: Volumetric Analysis 1. Concentrations of Solutions Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity), g/l and also in % (v/v)

More information

NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST ¼ HOURS

NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST ¼ HOURS NAME INDEX NUMBER CANDIDATE SIGNATURE DATE.. 233/2/ CHEMISTRY PAPER 3 (PRACTICALS) JULY/AUGUST 2018 2 ¼ HOURS INSTRUCTIONS TO CANDIDATES. (a) Write your name and index number in the spaces provided above.

More information

Concentration of Solutions

Concentration of Solutions Concentration of Solutions 1 of 27 Boardworks Ltd 2016 Concentration of Solutions 2 of 27 Boardworks Ltd 2016 Measuring concentrations 3 of 27 Boardworks Ltd 2016 It is not enough to say that one concentration

More information

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride Naming salts A salt is any compound formed by the neutralisation of an acid by a base. The name of a salt has two parts. The first part comes from the metal, metal oxide or metal carbonate. The second

More information

Exercise 6: Determination of Hardness of Water

Exercise 6: Determination of Hardness of Water Fundamentals of Analytical Chemistry, CHC014011L Exercise 6: Determination of Hardness of Water Introduction: Hardness in water is generally caused by the presence of dissolved calcium and magnesium carbonates

More information

Molarity of Acetic Acid in Vinegar A Titration Experiment

Molarity of Acetic Acid in Vinegar A Titration Experiment Molarity of Acetic Acid in Vinegar A Titration Experiment Introduction Vinegar is prepared commercially in two steps, both requiring microorganisms. The first step is the production of ethyl alcohol, C

More information

Form 4 Chapter 7: Acid and Bases

Form 4 Chapter 7: Acid and Bases Form 4 Chapter 7: Acid and Bases The ph Scale Properties Acids Alkalis Physical. Substances that ionized in water to produce hydrogen ions.. Sour taste.. Turn blue litmus paper red. 4. Give a ph value

More information

LC-Learn. Leaving Cert Chemistry Notes Higher Level Volumetric Analysis

LC-Learn. Leaving Cert Chemistry Notes Higher Level Volumetric Analysis Lving Cert Chemistry Notes Higher Level Volumetric Analysis Powered By: Volumetric Analysis Essential Theory A standard solution is a solution whose concentration is accurately known. A primary standard

More information

LAB 8: DETERMINATION OF ACETIC ACID CONTENT IN VINEGAR

LAB 8: DETERMINATION OF ACETIC ACID CONTENT IN VINEGAR LAB 8: DETERMINATIN F AETI AID NTENT IN VINEGAR Lab format: This lab is designed for delivery using the Remote Web-based Science Laboratory (RWSL) or a lab kit. INTRDUTIN In an acid-base titration, the

More information

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55 Suggested answers to in-text activities and unit-end exercises In-text activities Discussion (page 117) Some possible ways for minimizing possible sources of error in the experiment: Add a slight excess

More information

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq)

mohd faisol mansor/chemistry form 4/chapter 7 CHAPTER 7 ACIDS AND BASES HCl (g) H 2 O H + (aq) + Cl - (aq) NaOH(s) H 2 O Na + (aq) + OH - (aq) CHAPTER 7 ACIDS AND BASES Arrhenius Theory An acid is a chemical compound that produces hydrogen ions, H + or hydroxonium ions H3O + when dissolve in water. A base defined as a chemical substance that

More information

9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet

9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet 9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet This experiment will allow you to calculate a value for K sp, and also to see the common

More information

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems Name: Date: AP Chemistry Titrations - Volumetric Analysis Term Volumetric analysis Burette Pipette titrate titre aliquot end point equivalence point indicator primary standard standardisation secondary

More information

FACTFILE: GCSE CHEMISTRY: UNIT 2.6

FACTFILE: GCSE CHEMISTRY: UNIT 2.6 FACTFILE: GCSE CHEMISTRY: UNIT Quantitative Chemistry Learning outcomes Students should be able to:.1 calculate the concentration of a solution in mol/dm 3 given the mass of solute and volume of solution;.2

More information

Write the ionic equation for this neutralisation reaction. Include state symbols.

Write the ionic equation for this neutralisation reaction. Include state symbols. Q1.Sodium hydroxide neutralises sulfuric acid. The equation for the reaction is: 2NaOH + H 2 SO 4 Na 2 SO 4 + 2H 2 O (a) Sulfuric acid is a strong acid. What is meant by a strong acid? (b) Write the ionic

More information

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV Exercise 0 TITRATION Theory: In chemistry a solution is a homogeneous mixture composed of two or more substances. In such a mixture:a solute is dissolved in another substance, known as a solvent. An aqueous

More information

Volumetric Analysis Acids & Bases HL

Volumetric Analysis Acids & Bases HL Name: Volumetric Analysis 1. Concentrations of Solutions 3. Volumetric Analysis Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity),

More information

Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate

Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate Standardization of Hydrochloric Acid by Anhydrous Sodium Carbonate Procedures Weigh about 1.0-1.5 g of anhydrous sodium carbonate powder accurately in a watch glass. Transfer the solid totally into a 250

More information

EDTA forms a colourless complex with free metal ions. Metal ion (Ca 2+ or Mg 2+ ) + EDTA

EDTA forms a colourless complex with free metal ions. Metal ion (Ca 2+ or Mg 2+ ) + EDTA Expt. No. : 01 Date : ESTIMATION OF HARDNESS OF WATER BY EDTA METHOD AIM: To determine the hardness of given water sample by EDTA method. APPARATUS: Burette, Pipette, Conical Flask, Beakers, Wash Bottle

More information

9.1 Qualitative Analysis

9.1 Qualitative Analysis Chemistry Form 4 Page 44 Ms. R. Buttigieg Test for positive Ions (Cations) 9.1 Qualitative Analysis 1) Flame Tests Nichrome wire is dipped in concentrated hydrochloric acid, then in the salt being tested.

More information

Set 4 Marking Scheme: Acid Bases & Salts 2010

Set 4 Marking Scheme: Acid Bases & Salts 2010 Set 4 Marking Scheme: Acid Bases & Salts 00 ACID AND BASES PAPER : STRUCTURE (a) Neutralisation KOH + H SO 4 K SO 4 + H O Correct formulae of reactants and products Balanced equation i. H +, OH -, K +

More information

Unit of Pressure (P):Pa Unit of Volume (V): m 3 Unit of Temp (T): K n= moles R = Converting temperature. C K add 273

Unit of Pressure (P):Pa Unit of Volume (V): m 3 Unit of Temp (T): K n= moles R = Converting temperature. C K add 273 1.2 Calculations The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

More information

BE 2 ND SEMESTER PREACTICAL

BE 2 ND SEMESTER PREACTICAL BE 2 ND SEMESTER PREACTICAL QUANTITATIVE INORGANIC ANALYSIS Syllabus 1. Estimation of Fe 2+ by standard KMnO4 2. Estimation of Fe 3+ by standard K2Cr2O7 3. Estimation of Cu 2+ by iodometric method Experiment

More information

GE 6163 CHEMISTRY LAB MANUAL

GE 6163 CHEMISTRY LAB MANUAL VALLIAMMAI ENGINEERING COLLEGE S.R.M NAGAR, KATTANKULATHUR 603 203 Department of Chemistry (2015-2016) GE 6163 CHEMISTRY LAB MANUAL Step I : Standardization of sodium thiosulphate Titration I (Standard

More information

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Experiment 8 Introduction to Volumetric Techniques I. Objectives Experiment 8 Introduction to Volumetric Techniques I Objectives 1. To learn the proper technique to use a volumetric pipette. 2. To learn the proper technique to use a volumetric flask. 3. To prepare a

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

4.6 Describing Reactions in Solution

4.6 Describing Reactions in Solution 4.6 Describing Reactions in Solution The overall or formula equation for this reaction: K 2 CrO(aq) Ba(NO 3 ) 2 (aq) BaCrO 4 (s) 2KNO 3 (aq) Although the formula equation shows the reactants and products

More information

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT A7: VINEGAR TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration of a solution

More information

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done with neutralisation reactions, but

More information

1 Atoms, molecules and stoichiometry try

1 Atoms, molecules and stoichiometry try 1 Atoms, molecules and stoichiometry try DEFINITION: Relative atomic mass (Ar) is the average mass of one atom compared to one twelfth of the mass of one atom of carbon-12 DEFINITION: Relative Isotopic

More information

At a high temperature, calcium oxide reacts with carbon to form calcium carbide, CaC,.

At a high temperature, calcium oxide reacts with carbon to form calcium carbide, CaC,. - ~~Y---~--------'~ '~~L ~ U A-NT, T""?t11 VE. ~ G.-8~Q,-C---,- \ p ic ---,kf r~ ~,,-,----:-r ----"-,. " At a high temperature, calcium oxide reacts with carbon to form calcium carbide, CaC,. CaO(s) +

More information

NCEA Chemistry 2.1. Quantitative Analysis AS The Mole. What does this Internal Assessment involve?

NCEA Chemistry 2.1. Quantitative Analysis AS The Mole. What does this Internal Assessment involve? NCEA Chemistry 2.1 Quantitative Analysis AS 91161 What does this Internal Assessment involve? Carry out quantitative analysis, including an acid-base titration Demonstrate comprehensive understanding involves:

More information

The method used to determine the concentration of a known substance using another, standard, solution.

The method used to determine the concentration of a known substance using another, standard, solution. Titrations What are titrations? The neutralisation reaction between an acid and a base can be very useful. If an acidic solution of known concentration (a standard solution) is added to a basic (alkaline)

More information

SPECIFICATION & TEST PROCEDURE SODIUM SALICYLATE Technical. Molecular weight : Reference : In-house

SPECIFICATION & TEST PROCEDURE SODIUM SALICYLATE Technical. Molecular weight : Reference : In-house Page 1 of 8 Molecular Formula : C 7 H 5 NaO 3 CAS Registry No. : [54 21 7] Molecular weight : 160.10 Reference : In-house Other names : Benzoic acid, 2 hydroxy, mono sodium salt, Mono sodium salicylate.

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution In this experiment, you will determine the molarity and percent

More information

Unit 3(b) Practical Examination

Unit 3(b) Practical Examination Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature General Certificate of Education June 2002 Advanced Subsidiary Examination CHEMISTRY Unit 3(b) Practical Examination CHM3/P

More information

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration

More information

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid Titrating Acid In this lab you will first determine the concentration of sodium hydroxide in a stock solution that you prepare. You will then use that stock sodium hydroxide solution to titrate a solution

More information

CHEMISTRY LABORATORY - I

CHEMISTRY LABORATORY - I The Great Chemist ALFRED NOBEL CHEMISTRY LABORATORY - I -1- WORK SHEET Titration 1 : Standardization of AgNO 3 Standard Sodium chloride Vs AgNO 3 Sl.No Vol.of Sodium chloride V 1 (ml) Burette reading (ml)

More information

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments:

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments: C4 TITRATIONS Question Practice Name: Class: Date: Time: 97 minutes Marks: 96 marks Comments: GCSE CHEMISTRY ONLY Page of 3 Sodium hydroxide neutralises sulfuric acid. The equation for the reaction is:

More information

Laboratory Manual. Revised by Prof. S. N. Dindi M.Sc., Ph.D. Department of Chemistry GITAM Institute of Technology G I T A M

Laboratory Manual. Revised by Prof. S. N. Dindi M.Sc., Ph.D. Department of Chemistry GITAM Institute of Technology G I T A M Engineering Chemistry Laboratory Manual Revised by Prof. S. N. Dindi M.Sc., Ph.D. Department of Chemistry GITAM Institute of Technology G I T A M (Declared as Deemed to be University U/s 3 of the UGC Act

More information

Chemistry 301 Test #1

Chemistry 301 Test #1 Name: KEY Pledge: I have neither given nor received aid on this test Chemistry 301 Test #1 Point Total: 100 pts possible 8 pts 1. In 2-4 sentences, explain the fundamental basis of quantitative analysis

More information

Practical Examination 2 (Part B Practical Test)

Practical Examination 2 (Part B Practical Test) OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE CHEMISTRY Practical Examination 2 (Part B Practical Test) 2816/03/TEST Friday 28 JANUARY 2005 Afternoon 1 hour 30 minutes Candidates answer on the question

More information

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. THE MOLE CONCEPT III Applying Moles to Chemical Solutions ADEng. Programme Chemistry for Engineers Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College Main

More information

General Instructions

General Instructions General Instructions 1. Study theory behind the experiment before attending the Laboratory. 2. Keep the work bench and sink (wash basin) neat and clean. Do not allow used filter papers, broken pieces of

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

Core practical 11: Find the amount of iron in an iron tablet using redox titration

Core practical 11: Find the amount of iron in an iron tablet using redox titration Core practical 11 Teacher sheet Core practical 11: To perform a redox titration involving Fe 2+ (aq) and MnO4 (aq) Specification links Use eye protection. Practical techniques 1, 4, 5, 11 CPAC 1a, 2a,

More information

5.1.2 How Far? Equilibrium

5.1.2 How Far? Equilibrium 5.1.2 How Far? Equilibrium Equilibrium constant Kc Kc = equilibrium constant For a generalised reaction ma + nb pc + qd [ C] p [D] q m,n,p,q are the stoichiometric balancing [ A] m [B] n numbers A,B,C,D

More information

Step 2 Calculate the concentration to the correct number of significant figures.

Step 2 Calculate the concentration to the correct number of significant figures. Q1. Calculate the molarity of these solutions: a 1.5 mol of HCl dissolved in 3.0 L of solution b 0.64 g of H 2 SO 4 dissolved in 500 ml of solution c 2.1 g of NaHCO 3 dissolved in 1.00 L of solution A1.

More information

CHEMISTRY CORE PRACTICALS

CHEMISTRY CORE PRACTICALS CHEMISTRY CORE PRACTICALS Science (9-1) Combined Science / Chemistry Core Practicals www.chemistryinfo.co.uk Modified 23/03/2018 (MJB) Core Practical INDEX Paper 1 Paper 2 CP1a: Topic: 2.11 Investigate

More information

MBOONI WEST SUB - COUNTY JOINT EVALUATION TEST

MBOONI WEST SUB - COUNTY JOINT EVALUATION TEST NAME.... DATE INDEX NO........ SIGNATURE.... 233/3 CHEMISTRY PRACTICAL PAPER 3 JULY/AUGUST, 2014 TIME: 2¼ HOURS. MBOONI WEST SUB - COUNTY JOINT EVALUATION TEST Kenya Certificate of Secondary Education.

More information

NOTE: YOU WILL BE USING THIS SOLUTION IN BOTH, THIS EXPERIMENT AND EXP 12B. IF YOU WASTE THE SOLUTION YOU MAY RUN OUT BEFORE YOU HAVE FINISHED EXP 12B

NOTE: YOU WILL BE USING THIS SOLUTION IN BOTH, THIS EXPERIMENT AND EXP 12B. IF YOU WASTE THE SOLUTION YOU MAY RUN OUT BEFORE YOU HAVE FINISHED EXP 12B EXPERIMENT 12 A: STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION OBJECTIVE: Sodium hydroxide solution of about 0.2 M is prepared in order to be used in Exp 12B. The solution is then standardized, that is,

More information

Chemistry Laboratory - II. Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6262-CHEMISTRY LABORATORY - II E NG

Chemistry Laboratory - II. Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6262-CHEMISTRY LABORATORY - II E NG Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. All Branches : I Year / II Semester GE6262-CHEMISTRY LABORATORY - II E NG 1 ANNA UNIVERSITY - CHENNAI GE6262 - CHEMISTRY LABORATORY

More information

Environmental Engineering Laboratory

Environmental Engineering Laboratory COURSE NO. Environmental Engineering Laboratory Course Introduction Experiment No.1 Experiment No.2 Experiment No.3 Experiment No.4 Experiment No.5 Experiment No.6 Experiment No.7 Experiment No.8 Experiment

More information

Experiment 20: Analysis of Vinegar. Materials:

Experiment 20: Analysis of Vinegar. Materials: Experiment 20: Analysis of Vinegar Materials: graduated cylinder 6 M NaOH: Dilute Sodium Hydroxide 1000 ml Florence Flask & stopper KHC 8 H 4 O 4 : Potassium Hydrogen Phthalate (KHP) 125 ml Erlenmeyer

More information

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3

burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 1 Crystals of sodium sulphate-10-water, Na 2 SO 4.10H 2 O, are prepared by titration. burette filled with sulphuric acid conical flask 25.0 cm 3 of sodium hydroxide(aq) concentration 2.24 mol / dm 3 (a)

More information

using simple distillation and paper chromatography practical to obtain a

using simple distillation and paper chromatography practical to obtain a 2.11 Core practical: Investigate the composition of inks using simple distillation and paper chromatography Paper 1 & 2 Topic 1 What do you need to be able to do? Practical: Description Investigate the

More information

Unit of Pressure (P):Pa Unit of Volume (V): m 3 Unit of Temp (T): K n= moles R = Converting temperature. C K add 273

Unit of Pressure (P):Pa Unit of Volume (V): m 3 Unit of Temp (T): K n= moles R = Converting temperature. C K add 273 1.2 Calculations The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

More information

Lab Manual. of Engineering Chemistry

Lab Manual. of Engineering Chemistry Lab Manual of Engineering Chemistry 1 1 Determination of Total Hardness of Water by Complexometric Titration with EDTA I Water Analysis 2 Determination of Chloride ion in a given Water sample by Argentometric

More information

Volumetric Analysis: Redox

Volumetric Analysis: Redox Name: Volumetric Analysis Objectives 3. Volumetric Analysis carry out a potassium manganate(vii)/ammonium iron(ii) sulfate titration determine the amount of iron in an iron tablet carry out an iodine/thiosulfate

More information

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6163-CHEMISTRY LABORATORY - I E NG

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. All Branches GE6163-CHEMISTRY LABORATORY - I E NG Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. All Branches : I Year / I Semester GE6163-CHEMISTRY LABORATORY - I E NG ANNA UNIVERSITY: CHENNAI SYLLABUS R 2013 GE6163 - CHEMISTRY

More information

Jawaharlal Nehru Engineering College,

Jawaharlal Nehru Engineering College, PRINCIPAL HOD LAB INCHARG Dr.S. D. Deshmukh MGM S Dr.V.M.Arole S.N.Deshmukh Jawaharlal Nehru Engineering College, PRINCIPAL HOD LAB INCHARG N-6, CIDCO, Aurangabad. Dr.S. LAB D. Deshmukh MANUAL Dr.V.M.Arole

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0014911874* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/33 Advanced Practical Skills 1 May/June 2012

More information

GETTING THE END POINT TO APPROXIMATE. Two hours

GETTING THE END POINT TO APPROXIMATE. Two hours Chem 1312 Handout Experiment ONE Laboratory Time Required Special Equipment and Supplies Objective Safety First Aid GETTING THE END POINT TO APPROXIMATE THE EQUIVALENCE POINT Two hours Balance Potassium

More information

# 12 ph-titration of Strong Acids with Strong Bases

# 12 ph-titration of Strong Acids with Strong Bases # 12 ph-titration of Strong Acids with Strong Bases Purpose: A strong acid solution is titrated with a strong base solution. A titration curve is then used to determine the endpoint and find the concentration

More information

She carries out two experiments.

She carries out two experiments. 1 A student investigates the reaction of aqueous sodium hydroxide with two different aqueous solutions of hydrochloric acid, solution X and solution Y. She carries out two experiments. Experiment 1 Using

More information

ANALYTICAL CHEMISTRY LABORATORY MANUAL 2

ANALYTICAL CHEMISTRY LABORATORY MANUAL 2 ANALYTICAL CHEMISTRY LABORATORY MANUAL 2 Ankara University Faculty of Pharmacy Department of Analytical Chemistry Analytical Chemistry Practices Contents INTRODUCTION TO QUANTITATIVE ANALYSIS... 2 VOLUMETRIC

More information

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Pre-Laboratory Assignments Reading: Textbook Chapter 16 Chapter 17:1-3 This Laboratory Handout Pre-Laboratory Assignments: Complete

More information

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Acid Base Titration Experiment ACID - BASE TITRATION LAB ACID - BASE TITRATION LAB MATERIALS and CHEMICALS Burette 50 ml Burette clamp Ring stand Stirring rod Plastic funnel Beakers (50 ml, 100 ml, 400 ml) Graduated cylinder (25 ml, 50 ml) 0.10 M NaOH 0.10 M

More information

Partner: Judy 29 March Analysis of a Commercial Bleach

Partner: Judy 29 March Analysis of a Commercial Bleach Partner: Judy 29 March 2012 Analysis of a Commercial Bleach Purpose: The purpose of this lab is to determine the amount of sodium hypochlorite (NaClO) in commercial bleach. This can be done by forming

More information

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes.

Edexcel GCSE Chemistry. Topic 3: Chemical changes. Acids. Notes. Edexcel GCSE Chemistry Topic 3: Chemical changes Acids Notes 3.1 Rec that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide ions Acids produce H + ions in

More information

KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018

KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018 1 Name:... Index No:. Candidate s signature Date KAKAMEGA NORTH SUBCOUNTY JOINT EXAMINATIONS KCSE TRIAL 2018 233/3 CHEMISTRY PAPER 3 (Practical) JULY 2018 2¼ Hours INSTRUCTIONS: Write your name and index

More information

Acid / Base Titrations

Acid / Base Titrations Acid / Base Titrations v051413_7pm Objectives: Determine the concentration of a base solution using an acid standard. Optional: Precipitate an ionic salt for percent yield determination using the standardized

More information

ENGINEERING CHEMISTRY LABORATORY MANUAL

ENGINEERING CHEMISTRY LABORATORY MANUAL ENGINEERING CHEMISTRY LABORATORY MANUAL For COMMON TO ALL BRANCHES (CSE, ECE, ME, CIVIL, EEE & IT) ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTE) (Approved by AICTE, Accredited

More information

*AC134* Chemistry. Assessment Unit AS 3. [AC134] wednesday 27 MAY, MORNING. assessing Module 3: Practical Examination Practical Booklet B

*AC134* Chemistry. Assessment Unit AS 3. [AC134] wednesday 27 MAY, MORNING. assessing Module 3: Practical Examination Practical Booklet B Centre Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2015 Chemistry Candidate Number Assessment Unit AS 3 assessing Module 3: Practical Examination Practical Booklet B [AC134] wednesday

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 1 ASC31 [ASC31] MONDAY 11 MAY,

More information

5. Formulae, equations and amounts of substance

5. Formulae, equations and amounts of substance 5. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there

More information