Momentum and Collisions

Size: px
Start display at page:

Download "Momentum and Collisions"

Transcription

1 Momentum and Collisions Vocabulary linear momemtum second law of motion isolated system elastic collision inelastic collision completly inelastic center of mass center of gravity 9-1 Momentum and Its Relation to Force Another quantity that is conserved is linear momentum and angular momentum and electric charge In this chapter we deal with more than one object linear momentum of an object is defined as the product of its mass and its velocity it is represented by p The relationship is given by the equation Equation Box 9-1 Since velocity is a vector then so is momentum the direction of momentum is the direction of velocity The unit of momentum is SI Units kg m/s- there is no special name for this unit The more momentum an object has the harder it is to stop it and the greater effect it will have if it is brought to rest by impact or collision A force is required to change the momentum of an object, whether it is to increase the momentum, to decrease it, or to change its direction The second law of motion- for system of objects- the rate of change of momentum of an object is equal to the net force applied to it We can write this as an equation Equation Box 9-2 Then is we take the relationship of momentum we obtain this equation 1 RoessBoss

2 Equation Box 9-3 It is important to know situations where the mass may change like rockets 9-2 Conservation of Momentum under certain circumstances momentum is a conserved quantity The sum of the momentum before and after are the same when it is conserved therefore we can write it as the momentum before = momentum after Equation Box 9-4 That is the total vector momentum of the system is conserved It stays constant It is closely connected to Newton s Laws of motion when the net external force on a system is zero, the total momentum remains constant The law of conservation of momentum- the total momentum of an isolated system of bodies remains constant an isolated system is one in which no external forces act- the only forces acting are those between objects of the system If a net external force acts on a system, then the law of conservation of momentum will not apply however if the system can be redefined so as to include the other objects exerting these forces, then the conservation of momentum principle can apply The importance of the momentum concept is that momentum is conserved under quite general conditions although the law of conservation of momentum follows from Newton s second law it is in fact more general than Newton s laws In the atom world- newtons laws fail- law of conservation, energy, angular momentum, and electric charge hold true 9-3 Collisions and Impulse In a collision of two ordinary objects, both objects are deformed, often considerable, because of the large forces involved 2 RoessBoss

3 Force usually jumps from zero at the moment of contact to a very large value within a very short tim and then returns abruptly to zero again Using Newtons Second Law F= p/t we can rearrange and then take it at an infinitesimal time we will obtain the following equation Equation Box 9-5 J is impulse- this is the integral of the force over the time interval Thus the change in the momentum is equal to the impulse acting on it The units for impulse are the same as momentum kg m/s (or N s) Impulse is the area under the time versus Force curve 9-4 Conservation of Energy and Momentum in Collisions during most collisions we usually do not know how the collision force varies over time, and so analysis using Newton s second law becomes difficult or impossible we can still determine a lot about the motion after a collision, given the initial motion, by making use of the conservation laws for momentum and energy as long as there are no external forces then it is conserved The moment that two objects contact one another there is interaction If all the momentum before and after is conserved then the interaction was an elastic collision- no sticking Equation Box 9-6 In the macroscopic world there is always some exchange of heat= in the atomic level there is not Even when the kinetic energy is not conserved, the total energy is of course always conserved Collisions in which kinetic energy is not conserved are said to be inelastic collisions The kinetic energy that is lost is changed into other forms of energy Equation Box RoessBoss

4 9-5 Elastic Collisions in one dimension We now apply the conservation laws for momentum and kinetic energy to an elastic collision between two small objects that collide head on, so all the motion in in line For conservation of momentum we have Equation Box 9-8 Because the collision is assumed to be elastic, kinetic energy is conserved Equation Box 9-9 In any elastic head on collision, the relative speed of the two objects after the collision has the same magnitude as before (but opposite direction), no matter what the masses are 9-6 Inelastic Collisions collisions in which kinetic energy is not conserved are called inelastic collisions some of the initial kinetic energy in such collisions is transformed into other types of energy, thermal or potential energy final kinetic energy is less than the initial energy the inverse can happen when potential energy such as chemical or nuclear is released Explosives are examples of this If two objects stick together as a result of the collision then this is considered inelastic collision Basically they couple together when they collide together On the side that they stick together we add the masses together 9-7 Collisions in Two or Three Dimensions conservation of momentum and energy can also be applied to collisions in two or three dimensions, and the vector nature of momentum is especially important we apply the same ideas with the vector rules just with all the dimensions 9-8 Center of Mass (CM) The point where rotation can occur is called the center of mass (CM) 4 RoessBoss

5 The general motion of an extended body (or system of bodies) can be considered as the sum of the translational motion of the CM plus rotational, vibrational, or other types of motion about the CM With rotation along the CM you get Rotation and Translational motion To determine the distance of the CM you can apply the following math Equation Box 9-10 The concept is similar to the center of mass and the center of gravity CG is that point at which the force of gravity can be considered to act Gravity acts on all the different parts or particles of a body, but for purposes of determining the translational motion of the body as a whole, we can assume the entire weight of the body For symmetrically shaped bodies- it is the geometric center 9-9 Center of Mass and Translational Motion The sum of all the forces acting on the system is equal to the total mass of the system times the acceleration of its center of mass (Newtons second law for a system) The center of mass of a system of particles (or bodies) with total mass M moves like a single particle of mass M acted upon by the same net external force 9-10 Systems of Variable Mass; Rocket Propulsion When it comes to masses that change- you apply calculus to the same formulas You have to take times to infinitesimally small units 5 RoessBoss

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

Chapter 7- Linear Momentum

Chapter 7- Linear Momentum Chapter 7- Linear Momentum Old assignments and midterm exams (solutions have been posted on the web) can be picked up in my office (LB-212) All marks, including assignments, have been posted on the web.

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

PS113 Chapter 7. Impulse and Momentum

PS113 Chapter 7. Impulse and Momentum PS113 Chapter 7 Impulse and Momentum 1 The impulse-momentum theorem There are many situations in which the force acting on a object is not constant, but varies with time. The resulting motion can be simply

More information

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0.

spacecraft mass = kg xenon ions speed = m s 1 Fig. 2.1 Calculate the mass of one xenon ion. molar mass of xenon = 0. 1 (a) A solar-powered ion propulsion engine creates and accelerates xenon ions. The ions are ejected at a constant rate from the rear of a spacecraft, as shown in Fig. 2.1. The ions have a fixed mean speed

More information

Chapter 7 Linear Momentum

Chapter 7 Linear Momentum Chapter 7 Linear Momentum Units of Chapter 7 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy and Momentum in Collisions Elastic Collisions in One

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects Chapter 9 Linear Momentum and Collisions This chapter is about interaction between TWO objects 1 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard General Physics How hard would a puck have to be shot to be able to knock

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

Physics 10 Lecture 6A. "And in knowing that you know nothing, that makes you the smartest of all. --Socrates

Physics 10 Lecture 6A. And in knowing that you know nothing, that makes you the smartest of all. --Socrates Physics 10 Lecture 6A "And in knowing that you know nothing, that makes you the smartest of all. --Socrates Momentum Which is harder to stop a small ball moving at 1 m/s or a car moving at 1 m/s? Obviously

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum P H Y S I C S Chapter 9: Collisions, CM, RP Since impulse = change in momentum, If no impulse is exerted on an object, the momentum of the object will not change. If no external forces act on a system,

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

7-6 Inelastic Collisions

7-6 Inelastic Collisions 7-6 Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force Momentum is a vector symbolized by the symbol p, and is defined as: It is a vector and has units of: (kg m/s) or (Ns) The rate of change of momentum is

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Schedule HW #5 is due Friday Quiz #2 is due 9/29 Lab #2 is due Monday Midterm 1 is 10/2 in the classroom. Class 6 and Collisions Relative Velocity Last Class Natural motion is straight-line

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

Work and Energy. Work joule Hooke s Law Spring Equilibrium kinetic energy work energy principle translational kinetic energy

Work and Energy. Work joule Hooke s Law Spring Equilibrium kinetic energy work energy principle translational kinetic energy Work and Energy Vocabulary Work joule Hooke s Law Spring Equilibrium kinetic energy work energy principle translational kinetic energy 7-1 Work done by a constant force We will now also discuss the alternative

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity Physics Notes Ch. 6 Momentum and Collisions I. Momentum - inertia in motion equal to mass times velocity Momentum describes a given object s motion Q: So can a company truly have momentum like my investment

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Describing motion: Kinematics in one dimension

Describing motion: Kinematics in one dimension Describing motion: Kinematics in one dimension Scientist Galileo Galilei Issac Newton Vocabulary Mechanics Kinematics Dynamics Translational Motion Particle Frame of Reference Coordinate axes Position

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 Lesson Description In this lesson we: Learn that an object s momentum is the amount of motion it has due to its mass and velocity. Show that

More information

Σp before ± I = Σp after

Σp before ± I = Σp after Transfer of Momentum The Law of Conservation of Momentum Momentum can be transferred when objects collide. The objects exert equal and opposite forces on each other, causing both objects to change velocity.

More information

Chapter 6 - Linear Momemtum and Collisions

Chapter 6 - Linear Momemtum and Collisions Name Date Chapter 6 - Linear Momemtum and Collisions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the SI unit of momentum? A) N/s B)

More information

Momentum and Impulse

Momentum and Impulse Momentum and Impulse Momentum in Sports - Momentum is a commonly used term in sports. - A team that has a lot of momentum is really on the move and is going to be hard to stop. - Momentum is a physics

More information

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left Momentum A ball bounces off the floor as shown. The direction of the impulse on the ball,, is... A: B: C: D: straight up straight down to the right to the left This is also the direction of Momentum A

More information

Bumper Cars. Question

Bumper Cars. Question Bumper Cars 1 You are riding on the edge of a spinning playground merry-goround. If you pull yourself to the center of the merry-go-round, what will happen to its rotation? A. It will spin faster. B. It

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse Momentum in Sports Momentum is a commonly used term in sports. A team that has a lot of momentum is really on the move and is going to be hard to stop. Momentum is a physics

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Review of Forces and Conservation of Momentum

Review of Forces and Conservation of Momentum Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 6 Review of Forces and Conservation of Momentum Slide 1 of 22 Vector Addition and Subtraction Vectors are added head to tail Note: a+b = b+a Vectors

More information

Unit 6: Linear Momentum

Unit 6: Linear Momentum Unit 6: Linear Momentum The concept of linear momentum is closely tied to the concept of force in fact, Newton first defined his Second Law not in terms of mass and acceleration, but in terms of momentum.

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

Part Two: Earlier Material

Part Two: Earlier Material Part Two: Earlier Material Problem 1: (Momentum and Impulse) A superball of m 1 = 0.08kg, starting at rest, is dropped from a height falls h 0 = 3.0m above the ground and bounces back up to a height of

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Chapter 4: Dynamics. Newton s Laws

Chapter 4: Dynamics. Newton s Laws Chapter 4: Dynamics Newton s Laws What if we all jumped at once? Newton s 1st Law Objects with mass have Inertia: the tendency to stay at rest (or moving!) The more mass an object has, the more difficult

More information

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum Linear Momentum (Ch 9) The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product of the mass and velocity: p = m v

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

Lesson 4 Momentum and Energy

Lesson 4 Momentum and Energy Lesson 4 Momentum and Energy Introduction: Connecting Your Learning The previous lessons concentrated on the forces that cause objects to change motion. Lesson 4 will introduce momentum and energy, as

More information

Chapter 9: Momentum and Conservation. Newton s Laws applied

Chapter 9: Momentum and Conservation. Newton s Laws applied Chapter 9: Momentum and Conservation Newton s Laws applied Dynamics of Physics Dynamics are the CAUSES of CHANGE in Physics. Recall that position is changed by velocity. Velocity is changed by acceleration.

More information

Momentum. Edexcel GCE. Core Mathematics M1

Momentum. Edexcel GCE. Core Mathematics M1 Edexcel GCE Core Mathematics M1 Momentum Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

2015 AQA A Level Physics. Momentum and collisions

2015 AQA A Level Physics. Momentum and collisions 2015 AQA A Level Physics Momentum and collisions 9/22/2018 Momentum An object having mass and velocity has MOMENTUM. Momentum (symbol p ) is simply given by the formula: Momentum = Mass x Velocity (in

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 7-1: MOMENTUM AND ITS RELATION TO FORCE LSN 7-2: CONSERVATION OF MOMENTUM LSN 7-3: COLLISIONS AND IMPULSE Big Idea(s): The interactions of an object

More information

Momentum. Lily C., Emma S., Lauren Z., Lionel H.

Momentum. Lily C., Emma S., Lauren Z., Lionel H. Momentum Lily C., Emma S., Lauren Z., Lionel H. Equations and Definitions p = mv Momentum(kg-m/s)=mass(kg) [velocity(m/s)] System- set of objects that interact with each other Isolated system- system in

More information

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75 Collisions Conservation of Momentum Elastic and inelastic collisions Serway 9.3-9.4 For practice: Chapter 9, problems 10, 11, 23, 70, 75 Momentum: p = mv Impulse (a vector) is defined as F t (for a constant

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

This Week. 9/5/2018 Physics 214 Fall

This Week. 9/5/2018 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 9/5/2018 Physics 214 Fall 2018 1 Momentum What

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Applied Physics I (Phys 182)

Applied Physics I (Phys 182) Applied Physics I (Phys 182) Dr. Joseph J. Trout E-ail: joseph.trout@drexel.edu Cell: (610)348-6495 Office: Disque 902 1 Moentu Ipulse Conservation of Moentu Explosions Inelastic Collisions Elastic Collisions

More information

Chapter 9. Linear Momentum

Chapter 9. Linear Momentum Chapter 9 Linear Momentum Linear Momentum Conservation of Linear Momentum Kinetic Energy of a System Collisions Collisions in Center of Mass Reference Frame MFMcGraw-PHY 45 Chap09Ha-Momentum-Revised-10//01

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Copy down this Momentum table

Copy down this Momentum table Copy down this Momentum table Objects P before (kg*m/s) P after (kg*m/s) Object 1 Object 2 Total Announcements Quiz on Monday (All content from this week) Momentum Objectives (Mom. and Energy Unit) 1.

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

Lecture Outlines Chapter 9. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 9. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 9 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 7 Lecture Pearson Physics Linear Momentum and Collisions Prepared by Chris Chiaverina Chapter Contents Momentum Impulse Conservation of Momentum Collisions Momentum How can the effect of catching

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d!

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d! Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

All moving objects have what Newton called a quantity of motion.

All moving objects have what Newton called a quantity of motion. MOMEMTUM MOMENTUM MOMEMTUM MOMENTUM All moving objects have what Newton called a quantity of motion. What is this quantity of motion? Today we call it momentum. Momentum is a characteristic of a moving

More information

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 ame: Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this figure. What is the normal force acting on

More information

Q8.3. Wednesday, March 9, Pearson Education, Inc.

Q8.3. Wednesday, March 9, Pearson Education, Inc. Q8.3 A 3.00-kg rifle fires a 0.00500-kg bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on

More information

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be 1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be equal to the initial mass of the starting rocket. Now

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Chap. 8: Collisions and Momentum Conservation

Chap. 8: Collisions and Momentum Conservation Chap. 8: Collisions and Momentum Conservation 1. System in Collision and Explosion C.M. 2. Analysis of Motion of System (C.M.) Kinematics and Dynamics Conservation between Before and After a) b) Energy

More information

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision. Text: Chapter 9 Unit 5: Momentum NAME: Problems (p. 229-240) #1: 18, 20, 27, 31, 37 (momentum & impulse) #2: 40, 42, 45, 46, 100 (conservation of momentum) #3: 49, 103, 123, 129 (collisions) Vocabulary:

More information

Solving Momentum Problems

Solving Momentum Problems Solving Momentum Problems Momentum: For lack of a better definition, momentum is a measure of the oomph that an object has due to its motion. The more mass an object has and the more speed it has the more

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information