Arctic Armageddon, More Mathematics

Size: px
Start display at page:

Download "Arctic Armageddon, More Mathematics"

Transcription

1 Mathematics Undergraduate Colloquium University of Utah 11/14/2012 Arctic Armageddon, More Mathematics Ivan Sudakov

2 Doomsday

3 Climate Change Past Future Credit: Barnosky, et al., 2011 Credit: IPCC, 2007 Credit: Sun, et al., 2010 Credit: Eleseev, et al.,

4 Mean annual temperature in central Europe for the last 50 million years Credit: Korobeinikov and McNabb,

5 Climate is what you expect (Edward Lorenz, 1997) Climate Science Nonlinear Science 5

6 Developing of Nonlinear Approaches in Climate Science 6

7 A Bifurcation and the Butterfly Effect Abifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior The butterfly effect is the sensitive dependence on initial conditions, where a small change at one place in a deterministic nonlinear system can result in large differences to a later state The name of the effect, coined by Edward Lorenz, is derived from the theoretical example of a hurricane's formation being contingent on whether or not a distant butterfly had flapped its wings several weeks before 7

8 Simple Example Credit: Marsden and McCracken., 1976 Example: A hoop and a small ball Def. Let F t be a C 0 flow on a topological space M and let A be an invariant set; i.e., F t ( A) A for all t. We say A is stable (resp. asymptotically stable or an attractor) if for any neighborhood U of A there is a neighborhood V of A such that the flow lines (integral curves) x( x0, t) Ft ( x0) belong to U if x0 V (resp. Ft (V) A). t0 A is stable (resp. attracting) when an initial condition slightly perturbed from A remains near A (resp. tends towards A). 8

9 The Hopf (Poincaré Andronov Hopf) Bifurcation Another type of behavior that may occur is bifurcation to periodic orbits. This means that there are curves of the form : IP such that ( 0 ) p( 0) and ( 0 ) is on a closed orbit of the flow of x. The Hopf bifurcation is of this type. The appearance of the stable closed orbits (= periodic solutions) is interpreted as a "shift of stability" from the original stationary solution to the periodic one, i.e., a point near the original fixed point now is attracted to and becomes indistinguishable from the closed orbit. Credit: Marsden and McCracken.,

10 Mean annual temperature in central Europe for the last 50 million years Credit: Korobeinikov and McNabb,

11 Credit: Korobeinikov and McNabb, 2001 u v V const the solar radiation intensity k have been chosen as a bifurcation parameter 11

12 p(t) is the total precipitation (snowfall s(t) plus rainfall r(t)) rate); γ v, γ m are the latent heats of vaporization and melting for water; W(p) is the heat spent on work to transport the water of mass p from the ocean onto the land. dq dt O dv( t) s m dt s (t) is the rate of snowfall on the land; m (t) is the rate at which the ice and snow reserves melt; L L E p W ( p) l O q O, q L are the heat contents of the reservoirs O and L; E O, E L the rates of change of thermal energy of the reservoirs O and L; l O, l L the rates of change of radiant energy (to atmosphere); dq dt E v p v m s m O m l L 12

13 Korobeinikov McNabb Theorem If b( a v c)( C C O O C L ) t b a c v t a v 0, then the climate system admits a supercritical Hopf bifurcation of the equilibrium Q 1 to a stable closed orbit, with the solar radiation intensity k as the bifurcation parameter. If, then the equilibrium Q 1 is stable for all k > 0. The equilibrium Q 2 is unstable for all k > 0. 0 Here Q 1 and Q 1 two equilibria of the climate system; С O is the total mean heat capacity of the oceans water and С L is the total mean heat capacity of the land * reservoir;,, a, b, c, t - the physical parameters; γ v - the latent heats of vaporization. 13

14 The Climate System as a System of Reservoirs A basic feature of this system is it has possibilities for the occurrence of a supercritical Hopf bifurcation In this model the bifurcation is triggered by an increase of the solar radiation intensity This research demonstrate that a Hopf bifurcation in a model of the global climate system could (or rather must) cause dramatic changes in the global climate similar to those observed throughout the Pliocene and the Pleistocene 14

15 The Basic Researches in Tipping Points Lenton, T.M. Tipping elements in the Earth's climate system / T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, H.J. Schellnhuber // Proceedings of the National Academy of Science of USA V.105 (6). P Thompson, J.M.T. Predicting climate tipping as a noisy bifurcation: a review / J.M.T. Thompson, J. Sieber // Int J. Bif. Chaos V. 21(2). P

16 Simple Tipping Point Definitions A tipping point is a critical threshold at which the future state of a system can be qualitatively altered by a small change in forcing A tipping element is a part of the Earth system (at least sub-continental in scale) that has a tipping point Abrupt climate change is the subset of tipping point change which occurs faster than its cause Tipping point change also includes transitions that are slower than their cause (in both cases the rate is determined by the system itself). In either case the change in state may be reversible or irreversible 16

17 Formal Tipping Point Definitions sub-system Ʃ is a tipping element if there exists a control parameter ρ with a critical value ρ crit, at which a small parameter variation (δρ> 0) leads to a qualitative change in a system feature (F), i.e., F eq ( ) F ( ) crit eq crit F abrupt climate change: when the climate system is forced to cross some threshold, triggering a transition to a new state at a rate determined by the climate system itself and faster than the cause, which is a case of bifurcation (~tipping point) 17

18 Credit: Thompson, et al., 2010 Using Lenton s definitions, Thompson & Sieber were adapted the bifurcation theory to the climate tipping point concept 18

19 Map of potential policy-relevant tipping elements in the climate system 19

20 20

21 Anthropogenic Impact on the Permafrost Regions: Gas and Reindeer Husbandry 21

22 Permafrost as a Storage Photos by Brouchkov 22

23 Problems for the Infrastructure Yakutsk, Russia, 2006 Cherski, Russia,

24 CH 4 Emission from Permafrost Photo by K.Walker Arctic Armageddon Needs More Science Less Hype (R. Kerr; Science, 2010) Photo by K.Walker 24

25 Climate System Feedback Credit: 25

26 26

27 Extended Goody s Radiative-Convective Atmospheric Model v t ( v ) v v P 1( 0) z, ( v ) 3 t Rayleigh Bénard convection in a gravity field v 0 2 C t (v ) C dc b C 0 Boundary conditions for gas velocity v( x, y, z, t) v( x, y, z, t) 0 ( x, y, z, t) ( x, y, z, t) 0 z C C z z z z ( x, y, z, t) zh z 0 zh ( x, y, z, t) ( x, y, ( x, y,0, t)) 0 z zh Boundary conditions for temperature field Boundary conditions for GHG concentration 0 0 ( C) C 1 0 v =(u, v, w) - vector gas velocity, θ temperature, P pressure. We add an equation for greenhouse gas concentration C; α - radiation absorption coefficient 27

28 New Bifurcations in Goody s Model We are linearized the main equations (for small deviations θ, C) at zero state T z T t C t K CT0, d C b C, 0 Boundary conditions ( x, y, z) r0t ( x, y,0), 0 z C z ( x, y, z) z C zh 0, ( x, y, z) z zh v 0, T0 ( z), C C 0, ( x, y, z) T( x, y, z). 0 z. 0 We seek solutions T ( x, y, z) exp( t), C ( x, y, z) exp( t), where λ is complex spectral parameter. So, the spectral problem is: T KT 3 0T 3 1T 0, d b0. h kt sinh( kt h) 3 K fk ( z, )cosh( kt ( z h)) dz This is nonlinear equation should be resolved for each k and have roots depending (k) 0 k c Re( k; ) 0 0 We consider as a bifurcation parameter. For each we can find such that Re ( k; ) 0 for and for c c 28

29 Critical Value c T b d 0 It is the formula for a critical level of GHG emission T TC 1 It is introduced a new parameter of extended Goody s model. This defines a dependence of radiation absorption coefficient on GHG concentration Credit: Sudakov and Vakulenko, 2012 Dependence of c / on GHG diffusion coefficient Dependence potential / c on Global warming 29

30 Methane Hydrate Gun Elementary computation with real parameters implies that β c should be very great (that we observed now) to create a catastrophic bifurcation. It should be increased minimum in times to attain the critical level Only a sharp change of emission under temperature (e.g., methane hydrate gun) leads to a catastrophe 30

31 Bistable Regime S() For a sufficiently large greenhouse gas emission from the soil this system becomes bistable Credit: Sudakov and Vakulenko, 2012 T s,k (surface temperature) This toy planet is sinking slowly into a homogeneous greenhouse gas fog 31

32 The soviet cartoon: Hedgehog in the Fog 32

Long-Term Global Climate Dynamics: A Hopf Bifurcation Causing Recurrent Ice Ages

Long-Term Global Climate Dynamics: A Hopf Bifurcation Causing Recurrent Ice Ages JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 5(4), 201 214 Copyright c 2001, Lawrence Erlbaum Associates, Inc. Long-Term Global Climate Dynamics: A Hopf Bifurcation Causing Recurrent Ice Ages

More information

Science of Global Warming and Climate Change

Science of Global Warming and Climate Change Science of Global Warming and Climate Change Part 1 Science Dr. David H. Manz, P. Eng. University of Calgary May 2015 Weather vs. Climate Weather happens day to day (moment to moment) best forecast is

More information

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile Climate models René D. Garreaud Departement of Geophysics Universidad de Chile www.dgf.uchile.cl/rene My first toy model A system of coupled, non-linear algebraic equations X (t) = A X (t-1) Y (t) B Z

More information

Chapter 2. Changes in Sea Level Melting Cryosphere Atmospheric Changes Summary IPCC (2013)

Chapter 2. Changes in Sea Level Melting Cryosphere Atmospheric Changes Summary IPCC (2013) IPCC (2013) Ice is melting faster (sea ice, glaciers, ice sheets, snow) Sea level is rising More ocean heat content More intense rainfall More severe drought Fewer frosts More heat waves Spring is arriving

More information

Let s make a simple climate model for Earth.

Let s make a simple climate model for Earth. Let s make a simple climate model for Earth. What is the energy balance of the Earth? How is it controlled? ó How is it affected by humans? Energy balance (radiant energy) Greenhouse Effect (absorption

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

Summary. The Ice Ages and Global Climate

Summary. The Ice Ages and Global Climate The Ice Ages and Global Climate Summary Earth s climate system involves the atmosphere, hydrosphere, lithosphere, and biosphere. Changes affecting it operate on time scales ranging from decades to millions

More information

Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Khatiwala, et.al.

Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Khatiwala, et.al. Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change Questions What are the characteristics of the unforced Lorenz system? What

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

What is Climate Change?

What is Climate Change? Lecture 1: An Overview of the Issue of Climate Change Global Warming in the Past 100 Years What do we know about the global warming Uncertainties in science How policy cope with the uncertainties in science

More information

Supporting Information for Feedback Temperature Dependence Determines the Risk of High Warming

Supporting Information for Feedback Temperature Dependence Determines the Risk of High Warming GEOPHYSICAL RESEARCH LETTERS Supporting Information for eedback Temperature Dependence Determines the Risk of High Warming Jonah Bloch-Johnson 1, Raymond T. Pierrehumbert 1, and Dorian S. Abbot 1 Contents

More information

Mathematics of Our Ice Dependent World

Mathematics of Our Ice Dependent World http://www.mathclimate.org Mathematics of Our Ice Dependent World http://mpe2013.org Ivan Sudakov http://www.math.utah.edu/~sudakov Predictions from the Bulgarian prophet Baba Vanga 2033 - all of the polar

More information

Lecture 1: An Overview of the Issue of Climate Change

Lecture 1: An Overview of the Issue of Climate Change Lecture 1: An Overview of the Issue of Climate Change What do we know about the global warming Uncertainties in science How policy cope with the uncertainties in science What is Climate Change? Climate

More information

ATM S 111, Global Warming Climate Models

ATM S 111, Global Warming Climate Models ATM S 111, Global Warming Climate Models Jennifer Fletcher Day 27: July 29, 2010 Using Climate Models to Build Understanding Often climate models are thought of as forecast tools (what s the climate going

More information

Early warning of climate tipping points Tim Lenton

Early warning of climate tipping points Tim Lenton Early warning of climate tipping points Tim Lenton With thanks to John Schellnhuber, Valerie Livina, Vasilis Dakos, Marten Scheffer Outline Tipping elements Early warning methods Tests and application

More information

The Role of Mathematics in Understanding the Earth s Climate. Andrew Roberts

The Role of Mathematics in Understanding the Earth s Climate. Andrew Roberts The Role of Mathematics in Understanding the Earth s Climate Andrew Roberts Outline What is climate (change)? History of mathematics in climate science How do we study the climate? Dynamical systems Large-scale

More information

Monitoring Climate Change from Space

Monitoring Climate Change from Space Monitoring Climate Change from Space Richard Allan (email: r.p.allan@reading.ac.uk twitter: @rpallanuk) Department of Meteorology, University of Reading Why Monitor Earth s Climate from Space? Global Spectrum

More information

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Klimaänderung Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Vorlesung WS 2017/18 LMU München 7. Wolken und Aerosole Contents of IPCC 2013 Working

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Thermodynamic Efficiency and Entropy Production in the Climate System

Thermodynamic Efficiency and Entropy Production in the Climate System Thermodynamic Efficiency and Entropy Production in the Climate System Valerio Lucarini University of Reading, Reading, UK v.lucarini@reading.ac.uk Reading, April 21st 2010 1 Thermodynamics and Climate

More information

Climate Change: Global Warming Claims

Climate Change: Global Warming Claims Climate Change: Global Warming Claims Background information (from Intergovernmental Panel on Climate Change): The climate system is a complex, interactive system consisting of the atmosphere, land surface,

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

Global Energy Balance: Greenhouse Effect

Global Energy Balance: Greenhouse Effect Global Energy Balance: Greenhouse Effect Atmospheric Composition & Structure Physical Causes of Greenhouse Effects Chapter 3: 44 48. Atmospheric Composition Why does water vapor vary so much? Saturation

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Future risk of tipping points

Future risk of tipping points Future risk of tipping points Tim Lenton (t.m.lenton@exeter.ac.uk) Thanks to Chris Boulton, Valerie Livina, Vasilis Dakos, Marten Scheffer, John Schellnhuber Outline Tipping points Early warning Taster

More information

Key Feedbacks in the Climate System

Key Feedbacks in the Climate System Key Feedbacks in the Climate System With a Focus on Climate Sensitivity SOLAS Summer School 12 th of August 2009 Thomas Schneider von Deimling, Potsdam Institute for Climate Impact Research Why do Climate

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki 19.9.2012 Outline Some basic questions and answers about climate change How are projections of climate

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES

HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES Bill Langford University Professor Emeritus Department of Mathematics and Statistics University of Guelph, Canada Presented to the BioM&S Symposium

More information

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out Lecture 2: Earth s Climate System Components of the Climate System terrestrial radiation Atmosphere Ocean solar radiation Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What

More information

Can Arctic winter sea ice disappear abruptly?

Can Arctic winter sea ice disappear abruptly? Can Arctic winter sea ice disappear abruptly? In a new study, Sebastian Bathiany and his colleagues Dirk Notz, Thorsten Mauritsen, Victor Brovkin and Gaby Raedel from MPI-M have examined the loss of Arctic

More information

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011 Computer Modeling of the Atmosphere & Climate System has revolutionized Weather Forecasting and

More information

Lecture 2: Earth s Climate System

Lecture 2: Earth s Climate System Lecture 2: Earth s Climate System terrestrial radiation solar radiation Atmosphere Ocean Solid Earth Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What comes in What goes

More information

Chapter 6: Modeling the Atmosphere-Ocean System

Chapter 6: Modeling the Atmosphere-Ocean System Chapter 6: Modeling the Atmosphere-Ocean System -So far in this class, we ve mostly discussed conceptual models models that qualitatively describe the system example: Daisyworld examined stable and unstable

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Surface Energy Balance 1. Factors affecting surface energy balance 2. Surface heat storage 3. Surface

More information

ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April. 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume.

ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April. 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume. ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume. 2. The Earth-Sun distance varies from its mean by ±1.75%

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh SAGES Scottish Alliance for Geoscience, Environment & Society Modelling Climate Change Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh Climate Modelling Climate

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

water Plays dominant role in radiation All three phases emit and absorb in longwave radiation

water Plays dominant role in radiation All three phases emit and absorb in longwave radiation 4.,4. water Plays dominant role in radiation All three phases emit and absorb in longwave radiation Some shortwave (solar) radiation is absorbed by all phases of water Principal role in the shortwave radiation

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

The science and impact of climate change.

The science and impact of climate change. The science and impact of climate change. University of Puerto Rico-Mayaguez The National Science foundation sponsored: "Coastal Area Climate Change Education (CACCE) Partnership". Mayaguez, Puerto Rico

More information

Factors and processes controlling climate variations at different time scales: supporting documents

Factors and processes controlling climate variations at different time scales: supporting documents Factors and processes controlling climate variations at different time scales: supporting documents Camille Risi LMD/IPSL/CNRS 3 july 2012 Outline Goals understand factors and processes controlling climate

More information

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline Estimating Climate Sensitivity From Past Climates Outline Zero-dimensional model of climate system Climate sensitivity Climate feedbacks Forcings vs. feedbacks Paleocalibration vs. paleoclimate modeling

More information

Computer Models of the Earth s Climate

Computer Models of the Earth s Climate Computer Models of the Earth s Climate DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES MATH DAY, 3-25-13 Climate Models Climate Models Climate Models Mathematical model: uses equations to describe

More information

Global Energy Balance Climate Model. Dr. Robert M. MacKay Clark College Physics & Meteorology

Global Energy Balance Climate Model. Dr. Robert M. MacKay Clark College Physics & Meteorology Global Energy Balance Climate Model Dr. Robert M. MacKay Clark College Physics & Meteorology rmackay@clark.edu (note: the value of 342 W/m 2 given in this figure is the solar constant divided by 4.0 (1368/4.0).

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2017-2018) G. Vladilo The Earth is the only planet of the Solar System with

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

Future Climate Change

Future Climate Change Future Climate Change How do you know whether to trust a prediction about the future? All predictions are based on global circulation models (GCMs, AOGCMs) - model accuracy is verified by its ability to

More information

Recent Developments in the Theory of Glacial Cycles

Recent Developments in the Theory of Glacial Cycles Recent Developments in the Theory of Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics October 6, 010 Hansen, et al, Target atmospheric CO: Where should humanity aim? Open

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

Intergovernmental Panel on Climate Change Founded Provides science assessments. Policy-relevant, not policy-prescriptive. Major reports: 1990,

Intergovernmental Panel on Climate Change Founded Provides science assessments. Policy-relevant, not policy-prescriptive. Major reports: 1990, Intergovernmental Panel on Climate Change Founded 1988. Provides science assessments. Policy-relevant, not policy-prescriptive. Major reports: 1990, 1995, 2001, 2007. Highly regarded, endorsed by many

More information

Climate vs Weather J. J. Hack/A. Gettelman: June 2005

Climate vs Weather J. J. Hack/A. Gettelman: June 2005 Climate vs Weather J. J. Hack/A. Gettelman: June 2005 What is Climate? J. J. Hack/A. Gettelman: June 2005 Characterizing Climate Climate change and its manifestation in terms of weather (climate extremes)

More information

The Planck Blackbody Equation and Atmospheric Radiative Transfer

The Planck Blackbody Equation and Atmospheric Radiative Transfer The Planck Blackbody Equation and Atmospheric Radiative Transfer Roy Clark Ventura Photonics There appears to be a lot of confusion over the use of the terms blackbody absorption and equilibrium in the

More information

Observed State of the Global Climate

Observed State of the Global Climate WMO Observed State of the Global Climate Jerry Lengoasa WMO June 2013 WMO Observations of Changes of the physical state of the climate ESSENTIAL CLIMATE VARIABLES OCEANIC ATMOSPHERIC TERRESTRIAL Surface

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS. Class notes pp 57-61

TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS. Class notes pp 57-61 TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS Class notes pp 57-61 When one tugs at a single thing in nature, one finds it attached to the rest of the world. ~ John Muir p 57 Our

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Total: 50 pts Absorption of IR radiation O 3 band ~ 9.6 µm Vibration-rotation interaction of CO 2 ~

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Northern New England Climate: Past, Present, and Future. Basic Concepts

Northern New England Climate: Past, Present, and Future. Basic Concepts Northern New England Climate: Past, Present, and Future Basic Concepts Weather instantaneous or synoptic measurements Climate time / space average Weather - the state of the air and atmosphere at a particular

More information

Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded.

Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded. AGS Productions (2009) Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded. Theory: A hypothesis becomes a theory when it can explain and predict

More information

HYDROSPHERE NOTES. Water cycle: The continuous movement of water into the air, onto land, and then back to water sources.

HYDROSPHERE NOTES. Water cycle: The continuous movement of water into the air, onto land, and then back to water sources. Hon Environmental Science HYDROSPHERE NOTES The Hydrosphere and the Water Cycle: Water cycle: The continuous movement of water into the air, onto land, and then back to water sources. Evaporation: the

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Undergraduate Research in Conceptual Climate Modeling

Undergraduate Research in Conceptual Climate Modeling Undergraduate Research in Conceptual Climate Modeling Gareth E. Roberts Cara Donovan Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA, USA 2018 SIAM Conference on

More information

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1. Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform

More information

Global Warming: The known, the unknown, and the unknowable

Global Warming: The known, the unknown, and the unknowable Global Warming: The known, the unknown, and the unknowable Barry A. Klinger Jagadish Shukla George Mason University (GMU) Institute of Global Environment and Society (IGES) January, 2008, George Mason

More information

Equation for Global Warming

Equation for Global Warming Equation for Global Warming Derivation and Application Contents 1. Amazing carbon dioxide How can a small change in carbon dioxide (CO 2 ) content make a critical difference to the actual global surface

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object Example: Sunlight warms your face without necessarily heating the air Shorter waves carry more energy

More information

Water Vapor Multiplier of Carbon Dioxide

Water Vapor Multiplier of Carbon Dioxide Water Vapor Multiplier of Carbon Dioxide Harvey S. H. Lam October 10, 007 Abstract The temperature rise of the earth due to the direct greenhouse effects of atmospheric carbon dioxide can be amplified

More information

Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively.

Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively. Predictability is the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively. The ability to make a skillful forecast requires both that

More information

Some remarks on climate modeling

Some remarks on climate modeling Some remarks on climate modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Selected overheads by Doug Nychka Outline Hierarchy of atmospheric modeling strategies

More information

Exam Physics of Climate

Exam Physics of Climate Exam Physics of Climate Time allowed: 120 minutes You are allowed to use all online class materials, as well as graded problem sets and computer (EdGCM) labs. 1. [50 points] You are the science officer

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2016-2017) G. Vladilo The Earth is the only planet of the Solar System with

More information

Science Challenges of a Changing Climate

Science Challenges of a Changing Climate Science Challenges of a Changing Climate Julia Slingo Met Office Chief Scientist Global Warming Fact or Fiction? Future changes will be outside anything experienced over the last 1000 years Global Warming

More information

Sea Level Rise in Connecticut A Risk-Informed Approach

Sea Level Rise in Connecticut A Risk-Informed Approach GZA GeoEnvironmental, Inc. CAFM Conference October 25, 2017 Proactive By Design. Our Company Commitment Proactive By Design. Our Company Commitment Sea Level Rise in Connecticut A Risk-Informed Approach

More information

Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return

Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return James Hansen 4 November 2013 Geneva, Switzerland Climate Sensitivity, Feedbacks, Tipping Points, Irreversible

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE WATER IN THE ATMOSPHERE I. Humidity A. Defined as water vapor or moisture in the air (from evaporation and condensation). B. The atmosphere gains moisture from the evaporation of water from oceans, lakes,

More information

11/2/18. SIO15-18: Lecture15: The Atmosphere and Climate. SIO15-18: Lecture15: The Atmosphere and Climate. source: wikipedia

11/2/18. SIO15-18: Lecture15: The Atmosphere and Climate. SIO15-18: Lecture15: The Atmosphere and Climate. source: wikipedia source: wikipedia 1 2 climate: average long-term condition; controlled by location regional to global weather: short-term condition; controlled by atmospheric anomalies local to regional climate: I live

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

Lecture 8: Climate Modeling

Lecture 8: Climate Modeling Lecture 8: Climate Modeling How to Build a Climate Model The climate is governed by many complex physical, chemical, and biological processes and their interactions. Building a climate model needs to consider

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Original (2010) Revised (2018)

Original (2010) Revised (2018) Section 1: Why does Climate Matter? Section 1: Why does Climate Matter? y Global Warming: A Hot Topic y Data from diverse biological systems demonstrate the importance of temperature on performance across

More information

Earth s Heat Budget. What causes the seasons?

Earth s Heat Budget. What causes the seasons? Earth s Heat Budget Solar Energy and the global Heat Budget Transfer of heat drives weather and climate Ocean circulation Should we talk about this? What causes the seasons? Before you answer, think. What

More information

A Tutorial on Climate Change Science: The. 4 th National Climate Assessment CLIMATE SCIENCE. Don Wuebbles

A Tutorial on Climate Change Science: The. 4 th National Climate Assessment CLIMATE SCIENCE. Don Wuebbles CLIMATE SCIENCE S P E C I A L R E P O R T A Tutorial on Climate Change Science: The Fourth National Climate Assessment Volume I 4 th National Climate Assessment Don Wuebbles Department of Atmospheric Sciences

More information

Major climate change triggers

Major climate change triggers Major climate change triggers Variations in solar output Milankovitch cycles Elevation & distribution of continents Ocean interactions Atmospheric composition change (CO 2 and other volcanic gasses) Biological

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Radiative-Convective Instability

Radiative-Convective Instability Radiative-Convective Instability Kerry Emanuel, Allison Wing, and Emmanuel Vincent Massachusetts Institute of Technology Self-Aggregation of Deep Moist Convection Cloud Clusters Tropical Cyclone Genesis

More information

Atmosphere - Part 2. High and Low Pressure Systems

Atmosphere - Part 2. High and Low Pressure Systems Atmosphere - Part 2 High and Low Pressure Systems High Pressure vs. Low Pressure H regions : cool air sinks, increasing the air density, thus resulting in an area of high pressure L regions: warm air rises,

More information

The of that surrounds the Earth. Atmosphere. A greenhouse that has produced the most global. Carbon Dioxide

The of that surrounds the Earth. Atmosphere. A greenhouse that has produced the most global. Carbon Dioxide Name: Date: # Weather and Climate Unit Review Directions: Complete this packet to help you prepare for your unit test by filling in the blanks to complete the definitions. Then if no picture is provided,

More information