Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Size: px
Start display at page:

Download "Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ("

Transcription

1 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free for the pilot to ontrol, and what the inter-relationships are that determine the others. This onnetivity is in part mehanial, like the shaft power balane (Eq. 9 of Leture 18), but it also omes via flow ontinuity among omponents. This topi is usually relegated to the very end of the study of engine omponents, where it is introdued under the rubri of Component Mathing (Leture 31 in our NOTES). We find it advantageous to move most of it forward to this point. The prie to pay for the insight to be gained is the need to introdue one assumption at this point (to be justified later). This is the assumption that the stators leading to the turbine (the turbine nozzles are hoked. This means the mass flow rate an be written as # " +1 & Pt 4 (" ) A # & 4 (" m = m 4 = % = " )1) ( % ( (1) R T % ( t 4 $ " +1' $ ' Where A 4 is the effetive flow area of these nozzles. But in addition, we have already shown in Let. 18 that the exhaust nozzle is also hoked. Passing the same flow through two hoked apertures in series imposes very strong onstraints on the flow onditions. The flow an be expressed at the throat as and equating (1) and (), P A m = m = t (" ) () R T t 7 P t 7 T t 4 A = 4 (3) P t 4 T t 7 A 7 For a non-afterburning turbojet, P t 7 P t 5 and T t 7 = T t 5 A t = 4 (4) " t A 7 # and if the turbine is ideal, t = " t # $1, and we obtain (( )1) " A % ( +1 4 t = $ ' (5) # A 7 & 1

2 ( " A %( +1 and then t = $ 4 ' (6) # A 7 & This is a strong result: as long as both, the turbine nozzles and the exhaust throat remain hoked, the turbine maintains the same pressure and temperature ratios (same operating point), regardless of fuel flow, Mah number, altitude, et. We an now trae the variability of other quantities: (1) Compressor ratios. In terms of ϑ = T t4 /T to, Eq. (9) of Leture 18 gives / =1 + " (1# ) ; = " # # $1 t (7) Thus τ and π do vary, but only as a funtion of the single quantity ϑ: τ = τ (ϑ) for a given engine. () Mah number at ompressor inlet (M ). The flow at ompressor inlet is generally subsoni, so we express the flow rate there as m (M ) 1 m = m " +1 ' (" #1) $ " +1 P A & ) (M & ) (8) R T 1 " # 1 t & + M ) % ( = t m (M ) ; m ) = M The dimensionless flow funtion m (M ) inreases to a maximum of 1 when M = 1, then dereases again. Equating (8) to (1), we see that m (M ) P T A = t 4 t 4 P t T t 4 A 0 1 M # For an ideal ombustor, P t 4 = P, and so, using /# $1 t 3 = ", T t = T to, " /" #1 m (M ) = A 4 (9) $ A

3 Sine = (" ), we see now that M = M ( ) as well (the supersoni solution for M given m an be disregarded). (3) Dimensionless air flow. Returning to (8), we see that the dimensionless mass flow m m (10) # P A " & % to $ R T ( to ' (flow rate as a fration of what the ompressor would pass if its inlet were hoked), is one more a unique funtion of ϑ. This is very useful for saling from one operating ondition to another. (4) Fuel/air ratio. The ombustor heat balane is and using T t = T to and f m f /m, m f h = m p (T t 4 T t 3 ) = m p T t (" # ) (11) fh = " # ( ) (1) p T to so the quantity f /T to is another funtion of ϑ alone. But notie that f itself does depend on M o at a fixed T o. (5)Throat pressure (normalized) P 7 P = P P P P P t t 3 t 4 t 5 t1 7 P t P t 3 P t 4 P t 5 P t 7 P7 1 $ ' / "1 P P and = = t / "1 & ). Also 3 = = " # /# $1 t, 5 = = " # /# $1 t t ; Pt 7 $ "1 ' % +1( Pt Pt 4 &1 + #1) % ( whih is yet another funtion of ϑ alone. P 7 $ ' = & " t " (# ) *1 ) (13) Pto % +1 ( (6) Thrust (mathed nozzle). We already have Eq. (10) of Leture 18, but it is sometimes better to normalize thrust by the total free-stream pressure on the ompressor inlet, A, 3

4 whih is known from flight onditions. If P e = P o (variable nozzle, or just design point for a fixed nozzle), F m (u e u o ) " = A A (14) P A u # u = m " to e o RT to A For u e, we go bak to Leture 18, Eq. (7): # u e = a o (# o$ $ t "1) " 1 $ ao R / T and o = =. All together then, R / T to " o RT to # ' $ ($ o & & t %1) * = "m ) % M o, (15) $ o () # %1 &,+ Here the quantities m and depend on ϑ only, but we an see that the Mah number " #1 M o appears expliitly (as M o and as o =1 + M o ), so the normalized thrust depends on both ϑ and M o. (7) Thrust (trunated soni nozzle). We now have m e = m 7 =1, but P e = P 7 > P o, so F m (u e ( " P )A = = " u o ) + P e o e A A (16) u " u $ e o P e P ' o A = #m e + & " ) R T to % ( A and this time M e = 1, so u e = RT e = R T = RTto"# +1 t 5 t +1 ue Pe so that = "# t depends on ϑ alone. Sine we also know that m and are R T to +1 funtions of ϑ alone, it makes sense to separate out Eq. (16) in the form 4

5 # u P A & e e e uo Po Ae = %"m + ( ) " m ) $ R T t o A ' R T t o A (17) & # ) ( # & )#,1 A - 0 e % + # 1 A = m e $ ( t + ( % t % +,/"m M # +1 '# +1 * A + # /#,. $ o $ ' * o A 1 ######"######$ (18) * ($ ) One again, the normalized thrust depends on both, ϑ and M o, but the struture is fairly simple, and in partiular, the portion * of (negleting the inoming momentum and the external pressure) is a funtion of ϑ alone. This portion an be very easily saled between onditions, and the rest an be subtrated separately. A note on ϑ: the near-onstany of the engine operating point Two important points in the flight envelope of an airraft engine are (a) Take-off onditions (M o 0.5, T o 90K ), and (b) End-of-limb onditions (M , T 0 0K. The total temperatures are T to = 90( ) = 94K (take-off) and T to = 0( ) = 5K (end of limb). Suppose the engine is dimensioned for end-of-limb, whih is ommon, and that the peak temperature T t4, whih will have to be maintained for many hours of ruise, is seleted at a onservative T t4 = 1600K. We then 1600 have = = 6.35 at this ondition. If we now deided to maintain ϑ = 6.35 also for 5 take-off, we would need then T t 4 = =1868K. While this is too high for longterm operation (reep, orrosion), it may be aeptable for the few minutes per yle that the engine will be at take-off maximum power. As a seond example, onsider a ommerial jet in a long ruise. As the fuel is onsumed and the weight dereases, so must the lift L =1/ 0 u 0 A w L. Now, the lift oeffiient will be kept lose to that for optimum L/D, and the Mah number M 0 is unlikely to hange muh, as it will stay just below the transoni drag peak, and so u0 will be proportional to T 0 due to the speed of sound variation. Together with the density part of lift, we an see that the ambient pressure p 0 must be dereasing in proportion to the airplane s weight, i.e., the plane must be limbing gradually. Turning now to the forward fore balane, given a onstant L/D, the drag, and hene the engine thrust, must also be dereasing in time in the same proportion as the ambient pressure. Therefore, from Eq. (14), the nondimensional thrust (",M 0 ) will remain onstant, and sine M 0 does too, the peak temperature ratio θ will also remain onstant, and with it all the important ratios like τ, M, et. In other words, ϑ may not vary muh among (important) flight onditions, and the engine will be operating at a fixed nondimensional ondition (onstant ompression ratio, nondimensional flow, ompressor inlet Mah number, et.). But of ourse, the 5

6 dimensional quantities (flow rate, peak pressure, et.) will be different, depending on p o, et. (8) The Operating Line in the ompressor map. Compressor performane is typially presented as a map of vs. m, with lines of onstant normalized rotational speed and " superimposed. The details are the subjet of later Letures, but the general shape is as shown below. (The flow and speed variables are renormalized by the Design values): = m (m ) des Kerrebrok, Jak L. (199). Airraft Engines and Gas Turbines (nd Edition). MIT Press, Massahusetts Institute of Tehnology. Used with permission. Atually the nominal operating line shown in the figure is not a property of the ompressor, but rather of the rest of the engine. We an alulate this line with the information we have now, before deiding what partiular ompressor to use. From Eqs. (11) and (9), and from the shaft power balane (Eq. 7), " /" #1 A m = 4 (19) A $ " #1 = 1# " t (0) where we reall that t is fixed for a fixed geometry. Eliminating ϑ, 6

7 A 1# m = 4 " /" #1 t (1) A #1 or, in terms of, A 1" # m = 4 t $ "1 () A $ "1 whih is the equation for the operating line (written in reverse). If the ompressor is already available, we see from () that we an adjust the nozzle area A 4 to plae this line in a good plae on the map, i.e., below the stall line and through the best effiieny points. T Sine m depends on = t 4, varying Tt4 moves the operating point along the operating Tto line, and this is what the pilot does with the throttle stik to power the engine up or down. At eah seleted ϑ, the engine settles to a, a M, a (normalized) rotation rate, et. Effets of Mah number If we look at operation of a given engine at different flight Mah numbers, we may try to maintain the same non-dimensional onditions throughout, whih, as we have seen, an be done by maintaining for example a onstant ompressor inlet Mah, M. This, in turn T guarantees a onstant = t 4, but sine now we have a varying Mah number, so that T to T t0 inreases with M 0, we may find that the turbine inlet temperature T t4 needs to beome too high at the higher Mah numbers. For example, T t4 would have to be 1.8 times higher at M 0 =.0 than at stati onditions, and.5 times at M 0 =.5. A more reasonable assumption is that the ratio θ t =T t4 /T 0 an be maintained the same at all Mah numbers, sine at least in the stratosphere, T 0 is almost invariant. The ompressor 1 " t (1# t ) temperature ratio now follows from = +, where the numerator is a " 0 onstant; thus, τ will be lowered as the Mah number inreases, but less strongly than would be required to maintain maximum thrust per unit flow ( = " t /" 0 ). The flow parameter m is now determined by Eq. (9), i.e. ompressor-turbine flow mathing, and then the ompressor-inlet Mah number from Eq. (8). One these parameters are known, we an use Eq. (15) to alulate the normalized thrust; sine we are interested in the effet of Mah number, it makes sense to re-normalize thrust by p 0 A, or F # = # " 0 $1. 0 p A A numerial example 7

8 We take now θ t =7, or T t4 =1540K in the stratosphere. The geometry of the engine must have been speified in advane. This means that the turbine temperature ratio (Eq. 5) is a known fixed number. For the example, we selet τ t suh as to obtain maximum thrust at M 0 =1. From the shaft balane equation, # 0 t =1" # t ( "1) and we put now θ 0 =1. and τ = 7/1.=.048 (at M 0 =1). This fixes τ t = Similarly, the area ratio A 4 /A must have been fixed, and we selet it here so as to obtain at M 0 =1 a ompressor-fae Mah number M =0.5, whih, from Eq. (8) implies m = From Eq. (9) then, " m = ( ) and the rest of the steps are as desribed above. The table below summarizes the results: M θ τ m M F/(p 0 A ) We find that at a fixed altitude the thrust is nearly onstant up to Mah 1, then it inreases rapidly. Atually the inrease is less rapid than this simple model predits, beause of losses in the supersoni flow in the engine inlet. Finally to this point, we should note that an airraft normally flies at inreasing altitude as the Mah Number inreases, so that dynami pressure p 0 M is roughly onstant. In this 0 ase the hange in F between Mah 1 and Mah is atually a thrust redution. 8

9 MIT OpenCourseWare Introdution to Propulsion Systems Spring 01 For information about iting these materials or our Terms of Use, visit:

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion 16.50 Leture 6 Subjet: Modeling of Thermal Roket Engines; Nozzle flow; Control of mass flow Though onetually simle, a roket engine is in fat hysially a very omlex devie and diffiult to reresent quantitatively

More information

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW SOE FUNDAENAL ASECS OF CORESSIBLE FLOW ah number gas veloity mah number, speed of sound a a R < : subsoni : transoni > : supersoni >> : hypersoni art three : ah Number 7 Isentropi flow in a streamtube

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

INFLUENCE OF OPERATING AND CONSTRUCTION PARAMETERS ON THE BEHAVIOR OF HYDRAULIC CYLINDER SUBJECTED TO JERKY MOTION

INFLUENCE OF OPERATING AND CONSTRUCTION PARAMETERS ON THE BEHAVIOR OF HYDRAULIC CYLINDER SUBJECTED TO JERKY MOTION Proeedings of ICFDP 8: 8 th International Congress of Fluid Dynamis & Propulsion Deember 14-17, 006, Sharm El-Shiekh, Sinai, Egypt ICFDP8-EG-154 INFLUENCE OF OPERATING AND CONSTRUCTION PARAMETERS ON THE

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

Chapter 2 Lecture 8 Longitudinal stick fixed static stability and control 5 Topics

Chapter 2 Lecture 8 Longitudinal stick fixed static stability and control 5 Topics Flight dynamis II Stability and ontrol hapter 2 Leture 8 Longitudinal stik fied stati stability and ontrol 5 Topis 2.6 ontributions of power plant to mg and mα 2.6.1 Diret ontributions of powerplant to

More information

COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION

COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION Jiri Nozika*, Josef Adame*, Daniel Hanus** *Department of Fluid Dynamis and

More information

Chapter 2 Lecture 9 Longitudinal stick fixed static stability and control 6 Topics

Chapter 2 Lecture 9 Longitudinal stick fixed static stability and control 6 Topics hapter Leture 9 Longitudinal stik fied stati stability and ontrol 6 Topis Eample.4 Eample.4 Referene.4 desribes the stability and ontrol data for ten airplanes. This inludes a general aviation airplane

More information

The casing is subjected to the following:

The casing is subjected to the following: 16.50 Leture 13 Subjet: Roket asing design; Strutural modeling Thus far all our modeling has dealt with the fluid mehanis and thermodynamis of rokets. This is appropriate beause it is these features that

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

13.Prandtl-Meyer Expansion Flow

13.Prandtl-Meyer Expansion Flow 3.Prandtl-eyer Expansion Flow This hapter will treat flow over a expansive orner, i.e., one that turns the flow outward. But before we onsider expansion flow, we will return to onsider the details of the

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3 hapter 3 eture 7 Drag polar Topis 3..3 Summary of lift oeffiient, drag oeffiient, pithing moment oeffiient, entre of pressure and aerodynami entre of an airfoil 3..4 Examples of pressure oeffiient distributions

More information

LOAD-RATIO DEPENDENCE ON FATIGUE LIFE OF COMPOSITES

LOAD-RATIO DEPENDENCE ON FATIGUE LIFE OF COMPOSITES LOAD-RATIO DEPENDENCE ON FATIGUE LIFE OF COMPOSITES Joakim Shön 1 and Anders F. Blom 1, 1 Strutures Department, The Aeronautial Researh Institute of Sweden Box 1101, SE-161 11 Bromma, Sweden Department

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics hapter 2 eture 5 ongitudinal stik fied stati stability and ontrol 2 Topis 2.2 mg and mα as sum of the ontributions of various omponent 2.3 ontributions of ing to mg and mα 2.3.1 orretion to mα for effets

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

A population of 50 flies is expected to double every week, leading to a function of the x

A population of 50 flies is expected to double every week, leading to a function of the x 4 Setion 4.3 Logarithmi Funtions population of 50 flies is epeted to doule every week, leading to a funtion of the form f ( ) 50(), where represents the numer of weeks that have passed. When will this

More information

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties Amerian Journal of Applied Sienes 4 (7): 496-501, 007 ISSN 1546-939 007 Siene Publiations Robust Flight ontrol Design for a urn oordination System with Parameter Unertainties 1 Ari Legowo and Hiroshi Okubo

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

Determination of the Aerodynamic Characteristics of Flying Vehicles Using Method Large Eddy Simulation with Software ANSYS

Determination of the Aerodynamic Characteristics of Flying Vehicles Using Method Large Eddy Simulation with Software ANSYS Automation, Control and Intelligent Systems 15; 3(6): 118-13 Published online Deember, 15 (http://www.sienepublishinggroup.om//ais) doi: 1.11648/.ais.1536.14 ISSN: 38-5583 (Print); ISSN: 38-5591 (Online)

More information

Introduction to Exergoeconomic and Exergoenvironmental Analyses

Introduction to Exergoeconomic and Exergoenvironmental Analyses Tehnishe Universität Berlin Introdution to Exergoeonomi and Exergoenvironmental Analyses George Tsatsaronis The Summer Course on Exergy and its Appliation for Better Environment Oshawa, Canada April, 30

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling Supplementary Information Infrared Transparent Visible Opaque Fabris (ITVOF) for Personal Cooling Jonathan K. Tong 1,Ɨ, Xiaopeng Huang 1,Ɨ, Svetlana V. Boriskina 1, James Loomis 1, Yanfei Xu 1, and Gang

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Critical Reflections on the Hafele and Keating Experiment

Critical Reflections on the Hafele and Keating Experiment Critial Refletions on the Hafele and Keating Experiment W.Nawrot In 1971 Hafele and Keating performed their famous experiment whih onfirmed the time dilation predited by SRT by use of marosopi loks. As

More information

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL Journal of Geongineering, Vol. Yi-Chuan 4, No. 1, Chou pp. 1-7, and April Yun-Mei 009 Hsiung: A Normalized quation of Axially Loaded Piles in lasto-plasti Soil 1 A NORMALIZD QUATION OF AXIALLY LOADD PILS

More information

Physics; Watching the Game From the Outside

Physics; Watching the Game From the Outside Physis; Wathing the Game From the Outside Roald C. Maximo Feb It is a good thing to have two ways of looking at a subjet, and also admit that there are two ways of looking at it. James Clerk Maxwell, on

More information

Design of an Adaptive Neural Network Controller for Effective Position Control of Linear Pneumatic Actuators

Design of an Adaptive Neural Network Controller for Effective Position Control of Linear Pneumatic Actuators Researh Artile International Journal of Current Engineering and Tehnology E-ISSN 77 406, P-ISSN 347-56 04 INPRESSCO, All Rights Reserved Available at http://inpresso.om/ategory/ijet Design of an Adaptive

More information

Taste for variety and optimum product diversity in an open economy

Taste for variety and optimum product diversity in an open economy Taste for variety and optimum produt diversity in an open eonomy Javier Coto-Martínez City University Paul Levine University of Surrey Otober 0, 005 María D.C. Garía-Alonso University of Kent Abstrat We

More information

Analysis of discretization in the direct simulation Monte Carlo

Analysis of discretization in the direct simulation Monte Carlo PHYSICS OF FLUIDS VOLUME 1, UMBER 1 OCTOBER Analysis of disretization in the diret simulation Monte Carlo iolas G. Hadjionstantinou a) Department of Mehanial Engineering, Massahusetts Institute of Tehnology,

More information

Fig Review of Granta-gravel

Fig Review of Granta-gravel 0 Conlusion 0. Sope We have introdued the new ritial state onept among older onepts of lassial soil mehanis, but it would be wrong to leave any impression at the end of this book that the new onept merely

More information

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers A. E. Romanov et al.: Threading Disloation Density Redution in Layers (II) 33 phys. stat. sol. (b) 99, 33 (997) Subjet lassifiation: 6.72.C; 68.55.Ln; S5.; S5.2; S7.; S7.2 Modeling of Threading Disloation

More information

Controller Design Based on Transient Response Criteria. Chapter 12 1

Controller Design Based on Transient Response Criteria. Chapter 12 1 Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

STUDY OF INHERENT FREQUENCY OF HELMHOLTZ RESONATOR

STUDY OF INHERENT FREQUENCY OF HELMHOLTZ RESONATOR 005 WJTA Amerian Waterjet Conferene August -3, 005! Houston, Texas Paper 6B-4 STUDY OF INHERENT FREQUENCY OF HELMHOLT RESONATOR Gong Weili An Liqian Cui Longlian Xie Guixin Shool of Mehanis, Arhiteture

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

MOLECULAR ORBITAL THEORY- PART I

MOLECULAR ORBITAL THEORY- PART I 5.6 Physial Chemistry Leture #24-25 MOLECULAR ORBITAL THEORY- PART I At this point, we have nearly ompleted our rash-ourse introdution to quantum mehanis and we re finally ready to deal with moleules.

More information

A. M. Fitzgerald * Orbital Sciences Corporation Space Data Division Chandler, AZ. Introduction between low earth orbit (LEO) and geosynchronous

A. M. Fitzgerald * Orbital Sciences Corporation Space Data Division Chandler, AZ. Introduction between low earth orbit (LEO) and geosynchronous 1889 IEPC-93-207 THE EFFECT OF SOLAR ARRAY DEGRADATION IN ORBIT-RAISING WITH ELECTRIC PROPULSION A. M. Fitzgerald * Orbital Sienes Corporation Spae Data Division Chandler, AZ Abstrat A omputer model inorporating

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T.

BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Koscak-Kolin, S., Kurevija, T. BINARY RANKINE CYCLE OPTIMIZATION Golub, M., Kosak-Kolin, S., Kurevija, T. Faulty of Mining, Geology and Petroleum Engineering Department of Petroleum Engineering Pierottijeva 6, Zagreb 0 000, Croatia

More information

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM NETWORK SIMPLEX LGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM Cen Çalışan, Utah Valley University, 800 W. University Parway, Orem, UT 84058, 801-863-6487, en.alisan@uvu.edu BSTRCT The minimum

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Word of Mass: The Relationship between Mass Media and Word-of-Mouth

Word of Mass: The Relationship between Mass Media and Word-of-Mouth Word of Mass: The Relationship between Mass Media and Word-of-Mouth Roman Chuhay Preliminary version Marh 6, 015 Abstrat This paper studies the optimal priing and advertising strategies of a firm in the

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department o Mehanial Engineering AMEE41 / ATO4 Aerodynamis Instrutor: Marios M. Fyrillas Email: eng.m@it.a.y Homework Assignment #4 QESTION 1 Consider the boundary layer low on a lat plate o width b (shown

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1 MUTLIUSER DETECTION (Letures 9 and 0) 6:33:546 Wireless Communiations Tehnologies Instrutor: Dr. Narayan Mandayam Summary By Shweta Shrivastava (shwetash@winlab.rutgers.edu) bstrat This artile ontinues

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

Advances in Radio Science

Advances in Radio Science Advanes in adio Siene 2003) 1: 99 104 Copernius GmbH 2003 Advanes in adio Siene A hybrid method ombining the FDTD and a time domain boundary-integral equation marhing-on-in-time algorithm A Beker and V

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #4: Due at 500 pm Monday 8 July,. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) o a very good approximation, ammonia obeys the Bertholet equation

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Leture 5 for BST 63: Statistial Theory II Kui Zhang, Spring Chapter 8 Hypothesis Testing Setion 8 Introdution Definition 8 A hypothesis is a statement about a population parameter Definition 8 The two

More information

Surging in Coil Springs

Surging in Coil Springs Purdue University Purdue e-pubs nternational Compressor Engineering Conferene Shool of Mehanial Engineering 1996 Surging in Coil Springs R. A. Simmons Purdue University W. Soedel Purdue University Follow

More information

Process engineers are often faced with the task of

Process engineers are often faced with the task of Fluids and Solids Handling Eliminate Iteration from Flow Problems John D. Barry Middough, In. This artile introdues a novel approah to solving flow and pipe-sizing problems based on two new dimensionless

More information

Appendix A Market-Power Model of Business Groups. Robert C. Feenstra Deng-Shing Huang Gary G. Hamilton Revised, November 2001

Appendix A Market-Power Model of Business Groups. Robert C. Feenstra Deng-Shing Huang Gary G. Hamilton Revised, November 2001 Appendix A Market-Power Model of Business Groups Roert C. Feenstra Deng-Shing Huang Gary G. Hamilton Revised, Novemer 200 Journal of Eonomi Behavior and Organization, 5, 2003, 459-485. To solve for the

More information

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor Purdue University Purdue e-pubs International Compressor Engineering Conferene Shool of Mehanial Engineering 010 Simulation and Development of Trans-ritial CO Rolling Piston Compressor Yunfeng Chang Xi'an

More information

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates Exerpt from the Proeedings of the COMSOL Conferene 9 Boston MultiPhysis Analysis of Trapped Field in Multi-Layer YBCO Plates Philippe. Masson Advaned Magnet Lab *7 Main Street, Bldg. #4, Palm Bay, Fl-95,

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Effects of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise

Effects of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise Effets of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interation Broadband Noise Hongbin Ju* GE Global Researh Center, One Researh Cirle, Niskayuna, NY. 09 A method is developed for prediting broadband noise

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings Supplementary information for: All-optial signal proessing using dynami Brillouin gratings Maro Santagiustina, Sanghoon Chin 2, Niolay Primerov 2, Leonora Ursini, Lu Thévena 2 Department of Information

More information

To work algebraically with exponential functions, we need to use the laws of exponents. You should

To work algebraically with exponential functions, we need to use the laws of exponents. You should Prealulus: Exponential and Logisti Funtions Conepts: Exponential Funtions, the base e, logisti funtions, properties. Laws of Exponents memorize these laws. To work algebraially with exponential funtions,

More information

Methods of evaluating tests

Methods of evaluating tests Methods of evaluating tests Let X,, 1 Xn be i.i.d. Bernoulli( p ). Then 5 j= 1 j ( 5, ) T = X Binomial p. We test 1 H : p vs. 1 1 H : p>. We saw that a LRT is 1 if t k* φ ( x ) =. otherwise (t is the observed

More information

A simple expression for radial distribution functions of pure fluids and mixtures

A simple expression for radial distribution functions of pure fluids and mixtures A simple expression for radial distribution funtions of pure fluids and mixtures Enrio Matteoli a) Istituto di Chimia Quantistia ed Energetia Moleolare, CNR, Via Risorgimento, 35, 56126 Pisa, Italy G.

More information

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions IV Transport Phenomena Leture 21: Solids and Conentrated Solutions MIT Student (and MZB) Marh 28, 2011 1 Transport in Solids 1.1 Diffusion The general model of hemial reations an also be used for thermally

More information

Dr G. I. Ogilvie Lent Term 2005

Dr G. I. Ogilvie Lent Term 2005 Aretion Diss Mathematial Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 1.4. Visous evolution of an aretion dis 1.4.1. Introdution The evolution of an aretion dis is regulated by two onservation laws:

More information

The transition between quasi-static and fully dynamic for interfaces

The transition between quasi-static and fully dynamic for interfaces Physia D 198 (24) 136 147 The transition between quasi-stati and fully dynami for interfaes G. Caginalp, H. Merdan Department of Mathematis, University of Pittsburgh, Pittsburgh, PA 1526, USA Reeived 6

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

The coefficients a and b are expressed in terms of three other parameters. b = exp

The coefficients a and b are expressed in terms of three other parameters. b = exp T73S04 Session 34: elaxation & Elasti Follow-Up Last Update: 5/4/2015 elates to Knowledge & Skills items 1.22, 1.28, 1.29, 1.30, 1.31 Evaluation of relaxation: integration of forward reep and limitations

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

18.05 Problem Set 6, Spring 2014 Solutions

18.05 Problem Set 6, Spring 2014 Solutions 8.5 Problem Set 6, Spring 4 Solutions Problem. pts.) a) Throughout this problem we will let x be the data of 4 heads out of 5 tosses. We have 4/5 =.56. Computing the likelihoods: 5 5 px H )=.5) 5 px H

More information

Simplification of Network Dynamics in Large Systems

Simplification of Network Dynamics in Large Systems Simplifiation of Network Dynamis in Large Systems Xiaojun Lin and Ness B. Shroff Shool of Eletrial and Computer Engineering Purdue University, West Lafayette, IN 47906, U.S.A. Email: {linx, shroff}@en.purdue.edu

More information

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS Russian Physis Journal, Vol. 48, No. 8, 5 CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS A. N. Taskin, V. N. Udodov, and A. I. Potekaev UDC

More information

Active Magnetic Bearings for Frictionless Rotating Machineries

Active Magnetic Bearings for Frictionless Rotating Machineries Ative Magneti Bearings for Fritionless Rotating Mahineries Joga Dharma Setiawan Abstrat Ative magneti bearing (AMB systems an support a rotor without physial ontat and enable users to preisely ontrol rotor

More information

MBS TECHNICAL REPORT 17-02

MBS TECHNICAL REPORT 17-02 MBS TECHNICAL REPORT 7-02 On a meaningful axiomati derivation of some relativisti equations Jean-Claude Falmagne University of California, Irvine Abstrat The mathematial expression of a sientifi or geometri

More information

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker.

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker. UTC Engineering 329 Proportional Controller Design for Speed System By John Beverly Green Team John Beverly Keith Skiles John Barker 24 Mar 2006 Introdution This experiment is intended test the variable

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College Canimals borrowed, with thanks, from Malaspina University College/Kwantlen University College http://ommons.wikimedia.org/wiki/file:ursus_maritimus_steve_amstrup.jpg Purpose Investigate the rate of heat

More information

Effect of Droplet Distortion on the Drag Coefficient in Accelerated Flows

Effect of Droplet Distortion on the Drag Coefficient in Accelerated Flows ILASS Amerias, 19 th Annual Conerene on Liquid Atomization and Spray Systems, Toronto, Canada, May 2006 Eet o Droplet Distortion on the Drag Coeiient in Aelerated Flows Shaoping Quan, S. Gopalakrishnan

More information

ES 247 Fracture Mechanics Zhigang Suo

ES 247 Fracture Mechanics Zhigang Suo ES 47 Frature Mehanis Zhigang Suo The Griffith Paper Readings. A.A. Griffith, The phenomena of rupture and flow in solids. Philosophial Transations of the Royal Soiety of London, Series A, Volume 1 (191)

More information

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS Fratals, Vol. 9, No. (00) 09 World Sientifi Publishing Company UPPER-TRUNCATED POWER LAW DISTRIBUTIONS STEPHEN M. BURROUGHS and SARAH F. TEBBENS College of Marine Siene, University of South Florida, St.

More information

Lecture 11 Buckling of Plates and Sections

Lecture 11 Buckling of Plates and Sections Leture Bukling of lates and Setions rolem -: A simpl-supported retangular plate is sujeted to a uniaxial ompressive load N, as shown in the sketh elow. a 6 N N a) Calulate and ompare ukling oeffiients

More information

Transient wave propagation analysis of a pantograph- catenary system

Transient wave propagation analysis of a pantograph- catenary system Journal of Physis: Conferene Series PAPER OPEN ACCESS Transient wave propagation analysis of a pantograph- atenary system To ite this artile: Kyohei Nagao and Arata Masuda 216 J. Phys.: Conf. Ser. 744

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION Journal of Mathematial Sienes: Advanes and Appliations Volume 3, 05, Pages -3 EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION JIAN YANG, XIAOJUAN LU and SHENGQIANG TANG

More information