Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Size: px
Start display at page:

Download "Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2"

Transcription

1 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They can concisely represent object shapes, e therefore playing an important role in matching, like 'Y', 'T', 'X', and 'L'. Much of the work on 2D pattern recognition, robotics, and mensuration. features focuses on junction 'L', aks, corners. Previous Research Corner Corner detection from the underlying gray scale e2 images. Slide 4 Corners are the intersections of two edges of suciently dierent orientations. Corner detection from binary edge images (digital arcs).

2 Corner Detection from Gray Scale Image I Corners are located in the region with large intensity variations in every direction. Let I c and I r be image gradients in horizontal and vertical directions, we can dened a matrix C as in two directions Slide 7 e5 2 P I 2 c 4 P Ic I r P Ic I r P I 2 r 3 C = 5 where the sums are taken over a small neighborhood Compute the eigenvalue of C, and 2. If the minimum of the two eigenvalues is larger than a Slide 8 e6 threshold, the the point is declared as a corner. It is good for detecting corners with orthogonal edges.

3 in four directions Corner Detection from Gray Scale Image II compute local autocorrelation in four directions Fit the image intensities of a small neighborhood with and take the local lowest result as the measure of Slide e9 interest. Image response at each point is a local quadratic or cubic facet surface. Look for saddle thresholded to determine whether the point is a points by calculating image Gaussian curvature (the product of two principle curvatures, see appendix A 5). corner or not. Corner Detection from Gray Scale Image II Assume corners are formed by two edges of suciently Corner Detection from Gray Scale Image II dierent orientations, in a N N neighborhood, Saddle points are points with zero gradient, and a max in Slide 2 compute the direction of each point and then construct 0 one direction but a min in the other. Dierent methods are a histogram of edgel orientations. A pixel point is used to detect saddle points. declared as a corner if two distinctive peaks are observed in the histogram.

4 ^y n jn = :::Ng, statistically A Corner Detection from Digital Arcs Criteria maximum curvature. Slide 5 3 deection angle. maximum deviation. total tting errors. A Statistical Approach Corner Detection from Digital Arcs Problem Statement Objective Given an arc sequence Given a list of connected edge points (a Slide 6 0 ^x n 4 digital arc) resulted from an edge detection, S = f identify arc points that partition the digital arc determine the arc points along S that are most into maximum arc subsequences. likely corner points.

5 Analytically compute 2 and 2 2, the variances of ^ and ^ 2. Approach Overview (cont'd) Slide a window along the input arc sequence S. Estimate ^ and ^ 2, the orientations of the two arc subsequences located to the right and left of the window center, via least-squares line tting. Slide 8 Overview Approach Input arc sequence S Perform a hypothesis test to statistically test the Slide a window along S dierence between ^ and ^ 2. Least-squares estimate θ θ and 2 σ Estimate 2 σ 2 and 2 Slide 7 Statistically test the difference between θ and θ 2 P-value > α? Yes Not a corner No A corner Details of the Proposed Approach Noise and Corner Models Slide 9 Covariance Propagation Hypothesis Testing

6 y n ^ y n H 0 : 2 < 0 H : 2 0 n = ::: N A ^ 2,and 0 a threshold. Noise Model Given an observed arc sequence S = f(^x n ^y n ) t jn = :::Ng, it is assumed that (^x n ^y n ) result from random perturbations to the ideal points (x n y n ), lying on a line x n cos + y n sin ; =0, through the following noise model: Slide ^ x n 0 x n = A 0 n cos + A sin where n are iid as N(0, 2 ). Xcos ^θ + Ysin^θ = ^ ρ Σ θ ^ ρ^, m th point Moving window Corner Model digital arc segment Xcos^θ + Ysin^θ 2 2 = ^ρ 2 Σ^ θ ^ 2, ρ 2 Covariance Propagation Problem statement Slide 23 2 Analytically estimate, the covariance matrix of least-squares estimate ^ =(^ ^) t,in terms of the input covariance matrix X. where ^ 2 = j^ ; ^ 2 j, 2 is the population mean of

7 X g 2 ( X)= F g(x ) = ); ( ( )tx X : +p x2 + y2 ; 2 if y cos x sin k = N NX NX k n (k n ; k ) 2 Geometric Interpretation of k Covariance Propagation (cont.) Covariance Propagation (cont.) From Haralick's covariance propagation theory, dene Dene 8 < F ( ^ ^X) = k = NX n= (^x n cos^ +^y n sin ^ ; ^) 2 x 2 + y 2 ; 2 ; p otherwise 24 and Slide 26 and n= then g(x ) 2 k = n= X g(x ) ( g(x ) )[( ); ] t X 25 Slide 27

8 k 2 k + 2 k 2 k N H 0 : 2 < 0 H : 2 0 ^ 2 2 ^ 2 +^ 2 2 T 2 2 Y Hypothesis Testing (x,y) k where 0 is an angular threshold and 2 is the population mean of RV ^ 2 = j^ ; ^ 2 j. 28 Slide 30 Let X T = Under null hypothesis Covariance Propagation (cont.) 29 X k = k 2 k A if P (T ) <, then a corner else not a corner. Slide 3

9 32 Corner Detection Example 33

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Machine vision. Summary # 4. The mask for Laplacian is given

Machine vision. Summary # 4. The mask for Laplacian is given 1 Machine vision Summary # 4 The mask for Laplacian is given L = 0 1 0 1 4 1 (6) 0 1 0 Another Laplacian mask that gives more importance to the center element is L = 1 1 1 1 8 1 (7) 1 1 1 Note that the

More information

INF Shape descriptors

INF Shape descriptors 3.09.09 Shape descriptors Anne Solberg 3.09.009 1 Mandatory exercise1 http://www.uio.no/studier/emner/matnat/ifi/inf4300/h09/undervisningsmateriale/inf4300 termprojecti 009 final.pdf / t / / t t/ifi/inf4300/h09/

More information

Machine vision, spring 2018 Summary 4

Machine vision, spring 2018 Summary 4 Machine vision Summary # 4 The mask for Laplacian is given L = 4 (6) Another Laplacian mask that gives more importance to the center element is given by L = 8 (7) Note that the sum of the elements in the

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation.

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation. : Definition Importance Detection of Discontinuities: 9 R = wi z i= 1 i Point Detection: 1. A Mask 2. Thresholding R T Line Detection: A Suitable Mask in desired direction Thresholding Line i : R R, j

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

Biomedical Image Analysis. Segmentation by Thresholding

Biomedical Image Analysis. Segmentation by Thresholding Biomedical Image Analysis Segmentation by Thresholding Contents: Thresholding principles Ridler & Calvard s method Ridler TW, Calvard S (1978). Picture thresholding using an iterative selection method,

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications Edge Detection Roadmap Introduction to image analysis (computer vision) Its connection with psychology and neuroscience Why is image analysis difficult? Theory of edge detection Gradient operator Advanced

More information

CS Finding Corner Points

CS Finding Corner Points CS 682 1 Finding Corner Points CS 682 2 Normalized Cross-correlation Let w 1 = I 1 (x 1 + i, y 1 + j) andw 2 = I 2 (x 2 + i, y 2 + j), i = W,...,W, j = W,...,W be two square image windows centered at locations

More information

p(z)

p(z) Chapter Statistics. Introduction This lecture is a quick review of basic statistical concepts; probabilities, mean, variance, covariance, correlation, linear regression, probability density functions and

More information

Image Analysis. Feature extraction: corners and blobs

Image Analysis. Feature extraction: corners and blobs Image Analysis Feature extraction: corners and blobs Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Svetlana Lazebnik, University of North Carolina at Chapel Hill (http://www.cs.unc.edu/~lazebnik/spring10/).

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Tightening linearizations of non-linear binary optimization problems

Tightening linearizations of non-linear binary optimization problems Tightening linearizations of non-linear binary optimization problems Elisabeth Rodríguez Heck and Yves Crama QuantOM, HEC Management School, University of Liège Partially supported by Belspo - IAP Project

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Estimators for Orientation and Anisotropy in Digitized Images

Estimators for Orientation and Anisotropy in Digitized Images Estimators for Orientation and Anisotropy in Digitized Images Lucas J. van Vliet and Piet W. Verbeek Pattern Recognition Group of the Faculty of Applied Physics Delft University of Technolo Lorentzweg,

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 5: Feature descriptors and matching Szeliski: 4.1 Reading Announcements Project 1 Artifacts due tomorrow, Friday 2/17, at 11:59pm Project 2 will be released

More information

Image Characteristics

Image Characteristics 1 Image Characteristics Image Mean I I av = i i j I( i, j 1 j) I I NEW (x,y)=i(x,y)-b x x Changing the image mean Image Contrast The contrast definition of the entire image is ambiguous In general it is

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

SIFT: Scale Invariant Feature Transform

SIFT: Scale Invariant Feature Transform 1 SIFT: Scale Invariant Feature Transform With slides from Sebastian Thrun Stanford CS223B Computer Vision, Winter 2006 3 Pattern Recognition Want to find in here SIFT Invariances: Scaling Rotation Illumination

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Detection of signal transitions by order statistics filtering

Detection of signal transitions by order statistics filtering Detection of signal transitions by order statistics filtering A. Raji Images, Signals and Intelligent Systems Laboratory Paris-Est Creteil University, France Abstract In this article, we present a non

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

COMS 4771 Lecture Course overview 2. Maximum likelihood estimation (review of some statistics)

COMS 4771 Lecture Course overview 2. Maximum likelihood estimation (review of some statistics) COMS 4771 Lecture 1 1. Course overview 2. Maximum likelihood estimation (review of some statistics) 1 / 24 Administrivia This course Topics http://www.satyenkale.com/coms4771/ 1. Supervised learning Core

More information

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely EE 11: Introduction to Digital Communication Systems Midterm Solutions 1. Consider the following discrete-time communication system. There are two equallly likely messages to be transmitted, and they are

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Perception Concepts Vision Chapter 4 (textbook) Sections 4.3 to 4.5 What is the course

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use. CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)

More information

ε ε

ε ε The 8th International Conference on Computer Vision, July, Vancouver, Canada, Vol., pp. 86{9. Motion Segmentation by Subspace Separation and Model Selection Kenichi Kanatani Department of Information Technology,

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

Math 5BI: Problem Set 6 Gradient dynamical systems

Math 5BI: Problem Set 6 Gradient dynamical systems Math 5BI: Problem Set 6 Gradient dynamical systems April 25, 2007 Recall that if f(x) = f(x 1, x 2,..., x n ) is a smooth function of n variables, the gradient of f is the vector field f(x) = ( f)(x 1,

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Blobs & Scale Invariance

Blobs & Scale Invariance Blobs & Scale Invariance Prof. Didier Stricker Doz. Gabriele Bleser Computer Vision: Object and People Tracking With slides from Bebis, S. Lazebnik & S. Seitz, D. Lowe, A. Efros 1 Apertizer: some videos

More information

Multi-scale digital image correlation of strain localization

Multi-scale digital image correlation of strain localization Multi-scale digital image correlation of strain localization J. Marty a, J. Réthoré a, A. Combescure a a. Laboratoire de Mécanique des Contacts et des Strcutures, INSA Lyon / UMR CNRS 5259 2 Avenue des

More information

SOLVING TRIGONOMETRIC INEQUALITIES: METHODS, AND STEPS (By Nghi H. Nguyen Updated Nov 02, 2014)

SOLVING TRIGONOMETRIC INEQUALITIES: METHODS, AND STEPS (By Nghi H. Nguyen Updated Nov 02, 2014) DEFINITION. SOLVING TRIGONOMETRIC INEQUALITIES: METHODS, AND STEPS (By Nghi H. Nguyen Updated Nov 02, 2014) A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a

More information

Lecture 3: Statistical sampling uncertainty

Lecture 3: Statistical sampling uncertainty Lecture 3: Statistical sampling uncertainty c Christopher S. Bretherton Winter 2015 3.1 Central limit theorem (CLT) Let X 1,..., X N be a sequence of N independent identically-distributed (IID) random

More information

CS4670: Computer Vision Kavita Bala. Lecture 7: Harris Corner Detec=on

CS4670: Computer Vision Kavita Bala. Lecture 7: Harris Corner Detec=on CS4670: Computer Vision Kavita Bala Lecture 7: Harris Corner Detec=on Announcements HW 1 will be out soon Sign up for demo slots for PA 1 Remember that both partners have to be there We will ask you to

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features?

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features? Lecture 1 Why extract eatures? Motivation: panorama stitching We have two images how do we combine them? Local Feature Detection Guest lecturer: Alex Berg Reading: Harris and Stephens David Lowe IJCV We

More information

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics

2015 School Year. Graduate School Entrance Examination Problem Booklet. Mathematics 2015 School Year Graduate School Entrance Examination Problem Booklet Mathematics Examination Time: 10:00 to 12:30 Instructions 1. Do not open this problem booklet until the start of the examination is

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Low-level Image Processing

Low-level Image Processing Low-level Image Processing In-Place Covariance Operators for Computer Vision Terry Caelli and Mark Ollila School of Computing, Curtin University of Technology, Perth, Western Australia, Box U 1987, Emaihtmc@cs.mu.oz.au

More information

Morphological image processing

Morphological image processing INF 4300 Digital Image Analysis Morphological image processing Fritz Albregtsen 09.11.2017 1 Today Gonzalez and Woods, Chapter 9 Except sections 9.5.7 (skeletons), 9.5.8 (pruning), 9.5.9 (reconstruction)

More information

SURF Features. Jacky Baltes Dept. of Computer Science University of Manitoba WWW:

SURF Features. Jacky Baltes Dept. of Computer Science University of Manitoba   WWW: SURF Features Jacky Baltes Dept. of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky Salient Spatial Features Trying to find interest points Points

More information

Instance-level l recognition. Cordelia Schmid INRIA

Instance-level l recognition. Cordelia Schmid INRIA nstance-level l recognition Cordelia Schmid NRA nstance-level recognition Particular objects and scenes large databases Application Search photos on the web for particular places Find these landmars...in

More information

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg Statistics for Data Analysis PSI Practical Course 2014 Niklaus Berger Physics Institute, University of Heidelberg Overview You are going to perform a data analysis: Compare measured distributions to theoretical

More information

Algebraic Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 17, 2017

Algebraic Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 17, 2017 Algebraic Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 17, 2017 An algebraic curve is a curve which is described by a polynomial equation: f(x,y) = a ij x i y j = 0 in x and y. The degree of the curve

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

Local Features (contd.)

Local Features (contd.) Motivation Local Features (contd.) Readings: Mikolajczyk and Schmid; F&P Ch 10 Feature points are used also or: Image alignment (homography, undamental matrix) 3D reconstruction Motion tracking Object

More information

Big Hypothesis Testing with Kernel Embeddings

Big Hypothesis Testing with Kernel Embeddings Big Hypothesis Testing with Kernel Embeddings Dino Sejdinovic Department of Statistics University of Oxford 9 January 2015 UCL Workshop on the Theory of Big Data D. Sejdinovic (Statistics, Oxford) Big

More information

Chapter 3 Salient Feature Inference

Chapter 3 Salient Feature Inference Chapter 3 Salient Feature Inference he building block of our computational framework for inferring salient structure is the procedure that simultaneously interpolates smooth curves, or surfaces, or region

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

= w 2. w 1. B j. A j. C + j1j2

= w 2. w 1. B j. A j. C + j1j2 Local Minima and Plateaus in Multilayer Neural Networks Kenji Fukumizu and Shun-ichi Amari Brain Science Institute, RIKEN Hirosawa 2-, Wako, Saitama 35-098, Japan E-mail: ffuku, amarig@brain.riken.go.jp

More information

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine.

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine. Automatic Can Separation Kjersti Aas Line Eikvil Otto Milvang Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway e-mail: Kjersti.Aas@nr.no Tel: (+47) 22 85 25 00 Fax: (+47) 22 69 76

More information

Statistics of Shape: Eigen Shapes PCA and PGA

Statistics of Shape: Eigen Shapes PCA and PGA Sarang Joshi 10/10/2001 #1 Statistics of Shape: Eigen Shapes PCA and PGA Sarang Joshi Departments of Radiation Oncology, Biomedical Engineering and Computer Science University of North Carolina at Chapel

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 11 Local Features 1 Schedule Last class We started local features Today More on local features Readings for

More information

DS-GA 1002 Lecture notes 12 Fall Linear regression

DS-GA 1002 Lecture notes 12 Fall Linear regression DS-GA Lecture notes 1 Fall 16 1 Linear models Linear regression In statistics, regression consists of learning a function relating a certain quantity of interest y, the response or dependent variable,

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks A Correlation of Pearson 2013 to the Common Core State Standards for A Correlation of Pearson Introduction This document demonstrates how Pearson 2013 meets the standards of the Mathematics, PAARC Model

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

EE/CpE 345. Modeling and Simulation. Fall Class 9

EE/CpE 345. Modeling and Simulation. Fall Class 9 EE/CpE 345 Modeling and Simulation Class 9 208 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation - the behavior

More information

Edge Detection. CS 650: Computer Vision

Edge Detection. CS 650: Computer Vision CS 650: Computer Vision Edges and Gradients Edge: local indication of an object transition Edge detection: local operators that find edges (usually involves convolution) Local intensity transitions are

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Aperture Photometry in Band Limited. Data. Robert Lupton. March 4, Band limited data, that is, data that has non-zero Fourier components in

Aperture Photometry in Band Limited. Data. Robert Lupton. March 4, Band limited data, that is, data that has non-zero Fourier components in Aperture Photometry in Band Limited Data Robert Lupton March 4, 996 Band Limited Data Band limited data, that is, data that has non-zero Fourier components in only a restricted part of k-space jkj < k,

More information

Statistical Signal Processing Detection, Estimation, and Time Series Analysis

Statistical Signal Processing Detection, Estimation, and Time Series Analysis Statistical Signal Processing Detection, Estimation, and Time Series Analysis Louis L. Scharf University of Colorado at Boulder with Cedric Demeure collaborating on Chapters 10 and 11 A TT ADDISON-WESLEY

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES

MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES S. Visuri 1 H. Oja V. Koivunen 1 1 Signal Processing Lab. Dept. of Statistics Tampere Univ. of Technology University of Jyväskylä P.O.

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings CS8803: Statistical Techniques in Robotics Byron Boots Hilbert Space Embeddings 1 Motivation CS8803: STR Hilbert Space Embeddings 2 Overview Multinomial Distributions Marginal, Joint, Conditional Sum,

More information

Detectors part II Descriptors

Detectors part II Descriptors EECS 442 Computer vision Detectors part II Descriptors Blob detectors Invariance Descriptors Some slides of this lectures are courtesy of prof F. Li, prof S. Lazebnik, and various other lecturers Goal:

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Curvature of Digital Curves

Curvature of Digital Curves Curvature of Digital Curves Left: a symmetric curve (i.e., results should also be symmetric ). Right: high-curvature pixels should correspond to visual perception of corners. Page 1 March 2005 Categories

More information

ECON 616: Lecture 1: Time Series Basics

ECON 616: Lecture 1: Time Series Basics ECON 616: Lecture 1: Time Series Basics ED HERBST August 30, 2017 References Overview: Chapters 1-3 from Hamilton (1994). Technical Details: Chapters 2-3 from Brockwell and Davis (1987). Intuition: Chapters

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information