Coupled FETI/BETI for Nonlinear Potential Problems

Size: px
Start display at page:

Download "Coupled FETI/BETI for Nonlinear Potential Problems"

Transcription

1 Coupled FETI/BETI for Nonlinear Potential Problems U. Langer 1 C. Pechstein 1 A. Pohoaţǎ 1 1 Institute of Computational Mathematics Johannes Kepler University Linz {ulanger,pechstein,pohoata}@numa.uni-linz.ac.at This work has been supported by the Austrian Science Fund Fonds zur Förderung der wissenschaftlichen Forschung (FWF) under the grant Project P

2 Outline Motivation Nonlinear Magnetostatic Maxwell Coupled FETI/BETI for Linear Potential Problems Weak Formulation Tearing and Interconnecting Schur Complement Regularization Dual Problem Preconditioning Nonlinear Potential Problems Approximation of Nonlinear Parameter Newton + Coupled FETI-BETI First Numerical Results (Linear) Concluding Remarks and Outlook 2

3 Motivation for Coupled FETI/BETI Solving Nonlinear Field Problems Magnetostatic 2D Maxwell Why FETI/BETI? Parallel Computing Why Coupling? Benefit from both FEM and BEM techniques References FETI: [Farhat, Roux, Klawonn, Widlund, Brenner] BETI/Coupling: [Langer, Steinbach] coil core coil air 3

4 Non-overlapping Domain Decomposition Ω R n n = 2, 3 bounded Ω = i I Ω i Γ = Ω Γ i = Ω i Γ ij = Γ i Γ j n i... outward unit normal vector to Ω i Γ Γ i Ω i Ω j Γjk Ω k 4

5 Linear Potential Problem Potential Problem α i = α i (x)! [α i u ] = f u = 0 in Ω i on Γ (α i u) n i + (α j u) n j = 0 on Γ ij Weak formulation Find u H 1 0(Ω): α i u v dx = Ω i i I Ω f v dx v H 1 0(Ω) 5

6 BEM Subdomains I = I BEM I FEM such that α i const for i I BEM Local representation: α i u v dx = Ω i Ω i α i u }{{} =f v dx + Γ i u α i v ds x }{{ n } i =S i u N i f for i I BEM Global formulation: i I FEM Ω i α i u v dx + = i I FEM Ω i f v dx + i I BEM i I BEM (S i u) v ds x = Γ i (N i f) v ds x Γ i 1 v H0 (Ω) 6

7 Discretization Triangulation of Ω i, i I FEM V i,h H 1 (Ω i ) H 1 0(Ω) Triangulation of Γ i, i I BEM V i,h {v H 1/2 (Γ i ) : v Γi Γ = 0}) conforming (K i,h u i, v i ) = α i u i,h v i,h dx (f i, v i ) = f v i,h dx Ω i Ω i (Si,h BEM u i, v i ) (S i u i,h )v i,h ds x (fi,h BEM, v i ) = (N i f) v i,h dsx Γ i Γ i [ 1 ] Si,h BEM := D i,h + 2 M i,h + Ki,h V 1 i,h [ 1 2 M i,h + K i,h ] 7

8 Tearing and Interconnecting Tearing: Unknowns are now (u i ) i I Interconnecting: Continuity enforced by B i u i = 0 i I I FEM = {1,..., q} Linear System: I BEM = {q + 1,..., p} K 1,h B K q,h B q S BEM q+1,h B q S BEM p,h B p B 1 B q B q+1 B p 0 u 1. u q u q+1. u p λ = f 1. f q f BEM q+1. f BEM p 0 8

9 FEM Schur Complement Optionally: Elimination of inner FEM-unknowns via Schur Complement S FEM i,h f FEM i,h = K CC i,h Ki,h IC [Ki,h] II 1 Ki,h CI = f C i,h KIC i,h [K II i,h] 1 f I i,h Linear System: S FEM 1,h B S FEM q,h B q S BEM q+1,h B q S BEM p,h B p B 1 B q B q+1 B p 0 u 1. u q u q+1. u p λ = f FEM 1. f FEM q f BEM q+1. f BEM p 0 9

10 FETI/BETI Regularization, Dual Problem In floating domains, i.e. Γ I Γ = : S FEM/BEM i,h = S FEM/BEM i,h +β i e i e i Elimination of u i : u i = [ ] 1 [ SFEM/BEM FEM/BEM i,h f i B i ] + γi e i Dual problem: F := i I B [ ] 1B SFEM/BEM i i,h i, ( ) ( ) F G λ = γ G G := (B ie i ) i I floating ( d e ) Projected dual problem: P := I G(G G) 1 G P F λ = P d 10

11 FETI/BETI Preconditioners Projected dual problem solved with CG-iteration. Preconditioners: [Langer, Steinbach, Klawonn, Widlund, Brenner] C 1 α FETI = (BC 1 C 1 BETI = (BC 1 Spectral Equivalence: α B ) 1 BC 1 α B ) 1 BC 1 α [ i I B i S FEM/BEM i,h B i [ B i D i,h B i i I ] ] C 1 α C 1 α B )(BC 1 α B ) 1 B )(BC 1 α B ) 1 S BEM i,h S FEM i,h S i,h D i,h Condition Estimate: κ(p C 1 FETI/BETI P P F P ) (1 + log(h/h)) 2 11

12 Nonlinear Potential Problems Nonlinear Coefficient ν i : R + 0 R+, ν i ( ) const for i I BEM s ν(s)s strongly monotone and Lipschitz-continuous [ν i ( u ) u ] = f u = 0 ν i ( u ) u n i + ν j ( u ) u n j = 0 in Ω i on Γ on Γ ij Problem: In magnetostatics, ν i not available in analytical form Approximation 12

13 Approximation of B-H-Curves Magnetostatics / Maxwell: B-H-curve 1.2 [ν i ( u ) u] 2D 3D [ν i ( A ) }{{ A } ] } {{ =B } =H B in T H in A/m reluctivity nu H = ν( B ) B ν(s):= f 1 (s) s B = f( H ) nu(b) Physical Properties: B B-H-Curve f reluctivity ν f C 1 (R + 0 R+ 0 ) ν C1 (R + R + ) f(0) = 0 ν(s)s strongly monotne: f ( ) (s) µ 0 > 0 = ν(s)s ν(t)t (s t) 1/L s t 2 lim f (s) = µ 0 ν(s)s Lipschitz-continuous: s = L := max s 0 f (s) < ν(s)s ν(t)t 1/µ 0 s t 13

14 Approximation of B-H-Curves [Pechstein, Jüttler, Gfrerer] Given Data Pairs B-H-curve data B 1 (H k, B k ) k=1,...,n with f(h k ) B k δ k H Approximation of f in the class of strongly monotone cubic C 1 splines, such that f(h k ) B k c δ k Minimization of H N 0 [ f (s) ] 2 ds ω(s) Quadratic Optimization Problem Spline Representation of (Data Dependent Functional) f Newton+Trick Fast Evaluation of ν, ν, etc. 14

15 Approximation of B-H-Curves Results nu - interproximated B-H-curve - Su7a2.dat - monotone cubic C^1 B-spline (rel. tolerance 0.005) 1e+06 data function nu0 2 interproximated B-H-curve - SiFe.dat - monotone cubic C^1 B-spline (rel. tolerance 0.005) data function asymptotics nu(b) B B H interproximated B-H-curve - QMS3L.dat - monotone cubic C^1 B-spline (rel. tolerance 0.005) interproximated B-H-curve - QMS3L.dat - monotone cubic C^1 B-spline (rel. tolerance 0.005) 1.6 data function asymptotics 1.6 data function asymptotics B 0.8 B H H 15

16 Nonlinear Potential Problem Nonlinear Coefficient ν i C 1 (R + 0 R+ ), ν i ( ) const for i I BEM ν i (t)t strongly monotone, Lipschitz-continuous reluctivity nu [ν i ( u ) u ] = f u = 0 in Ω i on Γ nu(b) ν i ( u ) u n i + ν j ( u ) u n j = 0 on Γ ij 100 Weak formulation: Find u H 1 0 (Ω): ν i ( u ) u v dx + i I FEM Ω i = f v dx + i I FEM Ω i (ν (S i ) i I BEM Γ i i I BEM B i u)v ds x = Γ i (N i f)v ds x 1 v H0 (Ω) 16

17 Newton Iteration Initial u (0), e.g. u (0) = 0 u (k+1) = u (k) + ρ k w (k) i I FEM Ω i = where [ζ i ( u (k) ) w (k)] v dx + i I FEM Ω i i I BEM Γ i f v ν i ( u (k) ) u (k) v dx + ( S (ν i ) i w (k)) v ds x = i I BEM Γ i [ (Ni f) ( S i u (k))] v ds x ζ i (p)q := ν i ( p )q + ν i ( p ) (p q)p p R n \ {0} q R n p ζ i (0)q := ν i ( 0 )q q R n 17

18 FETI/BETI for the k-th Newton Equation Define (K i,h (u)w, v) = Ω i [ ζi (u h ) w h ] vh dx (r (k), v) = (f i i K i (u (k), v) for i I FEM (r (k),bem, v) = (f BEM i i Si,h BEM u (k) ) for i I BEM Linear System K 1,h (u i ) B K q,h (u i ) B q S q+1,h BEM B q S p,h BEM Bp B 1 Bq B q+1 Bp 0 w (k) 1. w (k) q w (k) q+1. w (k) p λ = r (k) 1. r q r (k),bem q+1. r (k),bem p 0 18

19 Inner vs. Outer Iteration Outer Iteration: Inner Iteration: Newton Projected Preconditioned CG Stopping Criterion (PPCG): P F λ (i) < ε (k) CG λ 0 Stopping Criterion (Newton): ( r (k),inner ) i < ε i I FEM Newton r 0 additionally measure flux jump on the interfaces Γ ij 19

20 Numerical Results (Linear) model problem: coil-core configuration core µ r = 10 3 coil / coil f = ±10 3 elsewhere µ r = 1, f = 0 Dirichlet: u Ω = 0 ν = 1 µ r µ 0 µ 0 = 4.π.10 7 OSTBEM 20

21 Numerical Results (Linear) 260 coupling nodes, 911 inner nodes, 276 Lagrange parameters preconditioner iterations residual total (sec) one step (sec) FETI (C α = 1) e BETI e FETI (Kla-Wid) e BETI e coupling nodes, 3271 inner nodes, 548 Lagrange parameters preconditioner iterations residual total (sec) one step (sec) FETI (C α = 1) e BETI e FETI (Kla-Wid) e BETI e

22 Numerical Results (Linear) PPCG residual - magnet.inp PPCG residual - magnet.inp 1 Scaled Schur Complement Preconditione type Klawonn-Widlund (Euclid) Scaled Hypersingular Preconditione type Klawonn-Widlund (Euclid) Scaled Schur Complement Preconditione type C_diag = 1 (Euclid) Scaled Hypersingular Preconditione type C_diag = 1 (Euclid) 1 Scaled Schur Complement Preconditione type Klawonn-Widlund (Euclid) Scaled Hypersingular Preconditione type Klawonn-Widlund (Euclid) Scaled Schur Complement Preconditione type C_diag = 1 (Euclid) Scaled Hypersingular Preconditione type C_diag = 1 (Euclid) relative residual e-06 1e-08 relative residual e-06 1e-08 1e-10 1e-10 1e-12 1e-12 1e iteration 1e iteration 22

23 Numerical Results (Linear) potential u B -field 23

24 Concluding Remarks and Outlook Family of FEM/BEM Domain Decomposition Techniques Coupled FETI/BETI with two efficient and robust Preconditioners Efficient and fast handling of B-H-Curves Balancing inner and outer iteration (ε (k) CG, ε Newton) Meshrefinement (adaptive) Use multilevel structure for good initials u (0) and Multigrid Preconditioning Exploit various levels of elimination w.r.t. parallel computing (K i, S i, BETI saddle-point-problem, etc. Nonlinear Tearing and Interconnecting 24

25 Nonlinear Tearing and Interconnecting Solution u of the local nonlinear boundary value problem [ν i ( u ) u ] = f u = g u = v i in Ω i on Γ i Γ on Γ i \ Γ defines the Nonlinear Dirichlet-to-Neumann-map T i [f, g] : H 1/2 (Γ i \ Γ) H 1/2 (Γ i \ Γ) : v i ν i ( u ) u ν i ( ) const = T i [f, g](v i ) = S i g + S i v i N i f Ω i floating: T i [f, g](v i ) = T i [f](v i ), kernel = constant functions Possible Realization of T i,h [f, g](v i ): Solve nonlinear Dirichlet problem (g, v i, f) with (damped) Newton Last iterate u (k) h determines Neumann data via Schur Complement. n i 25

26 Nonlinear Tearing and Interconnecting Nonlinear Neumann-to-Dirichlet-Map (nonfloating) Solve Dirichlet problem [ν i ( u ) u ] = f, in Ω i, u = g, on Γ i Γ, ν i ( u ) u/ n i = t i, on Γ i \ Γ, with a (damped) Newton, take Dirichlet data T i [f, g] 1 (t i ) Nonlinear Neumann-to-Dirichlet-Map (floating) Solve a regularized version of the local Neumann problem [ν i ( u ) u ] = f ν i ( u ) u/ n i = t i in Ω i on Γ i with (damped) Newton, take Dirichlet data T i [f, g] 1 (t i ) 26

27 Nonlinear Tearing and Interconnecting Global Problem t i = T i [f, g](u i ) u i = u j t i + t j = 0 on Γ i on Γ ij on Γ ij Eliminating (t i ) Nonlinear Variational Skeleton Problem T i [f, g](u) v ds x = 0, v H 1/2 ( i I Γ i \ Γ). i I Γ i \Γ Discrete approximation of the nonlinear operators: T FEM/BEM i,h [f, g], T FEM/BEM i,h [f, g] 27

28 Nonlinear Tearing and Interconnecting Nonlinear FETI/BETI System T FEM/BEM i,h [f, g](u i ) + B T i λ = 0, i I, B i u i = 0. Eliminate (u i ) via solution of local (nonlinear) problems Define i I u i = T FEM/BEM i,h [f, g] ( B T i λ) + γ i e i }{{} + constant F (λ) := i I B i T FEM/BEM i,h [f, g] ( B T i λ), G := (B i e i ) i I, Ωi floating, 28

29 Nonlinear Tearing and Interconnecting Nonlinear Dual Equation F (λ) + Gγ = 0 G T λ = 0 Linear Projection P := I G(G T G) 1 G T Projected Nonlinear Dual Equation P F (λ) = 0 Solution λ γ (u i ) global field u h 29

30 Nonlinear Tearing and Interconnecting - To Do Existence of a unique solution λ (Regularity of F ( )) Fixpoint or Newton Iteration + Analysis Preconditioning 30

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems U. Langer A. Pohoaţǎ O. Steinbach 27th September 2004 Institute of Computational Mathematics Johannes Kepler University

More information

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner) Inexact Data-Sparse BETI Methods by Ulrich Langer (joint talk with G. Of, O. Steinbach and W. Zulehner) Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences http://www.ricam.oeaw.ac.at

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods

All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods Ulrich Langer 1,2 and Clemens Pechstein 2 1 Institute of Computational Mathematics,

More information

Monotonicity-preserving Interproximation of B-H-Curves *

Monotonicity-preserving Interproximation of B-H-Curves * Monotonicity-preserving Interproximation of --Curves * Clemens Pechstein and ert Jüttler Special Research Program Numerical and Symbolic Scientific Computing, Institute of Computational Mathematics and

More information

FETI Methods for the Simulation of Biological Tissues

FETI Methods for the Simulation of Biological Tissues SpezialForschungsBereich F 32 Karl Franzens Universita t Graz Technische Universita t Graz Medizinische Universita t Graz FETI Methods for the Simulation of Biological Tissues Ch. Augustin O. Steinbach

More information

IsogEometric Tearing and Interconnecting

IsogEometric Tearing and Interconnecting IsogEometric Tearing and Interconnecting Christoph Hofer and Ludwig Mitter Johannes Kepler University, Linz 26.01.2017 Doctoral Program Computational Mathematics Numerical Analysis and Symbolic Computation

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

Scalable BETI for Variational Inequalities

Scalable BETI for Variational Inequalities Scalable BETI for Variational Inequalities Jiří Bouchala, Zdeněk Dostál and Marie Sadowská Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Inexact Data Sparse Boundary Element Tearing and Interconnecting Methods U. Langer, G. Of, O. Steinbach, W. Zulehner Berichte aus dem Institut für Mathematik D Numerik und Partielle

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

Inexact Data Sparse Boundary Element Tearing and Interconnecting Methods

Inexact Data Sparse Boundary Element Tearing and Interconnecting Methods Inexact Data Sparse Boundary Element Tearing and Interconnecting Methods U. Langer 1,2, G. Of 3, O. Steinbach 4, W. Zulehner 2 1 Radon Institute for Computational and Applied Mathematics, Austrian Academy

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

Substructuring for multiscale problems

Substructuring for multiscale problems Substructuring for multiscale problems Clemens Pechstein Johannes Kepler University Linz (A) jointly with Rob Scheichl Marcus Sarkis Clark Dohrmann DD 21, Rennes, June 2012 Outline 1 Introduction 2 Weighted

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem Leszek Marcinkowski 1 and Nina Dokeva 2 1 Department of Mathematics, Warsaw University, Banacha 2, 02 097 Warszawa, Poland,

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver Multilevel and Adaptive Iterative Substructuring Methods Jan Mandel University of Colorado Denver The multilevel BDDC method is joint work with Bedřich Sousedík, Czech Technical University, and Clark Dohrmann,

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz The All-Floating Boundary Element Tearing and Interconnecting Method G. Of, O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/3 Technische Universität

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

JOHANNES KEPLER UNIVERSITY LINZ. A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems

JOHANNES KEPLER UNIVERSITY LINZ. A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems Michael Kolmbauer Institute of Computational Mathematics, Johannes

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Qiya Hu 1, Shi Shu 2 and Junxian Wang 3 Abstract In this paper we propose a substructuring

More information

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM C. Canuto 1, L. F. Pavarino 2, and A. B. Pieri 3 1 Introduction Discontinuous Galerkin (DG) methods for partial differential

More information

Extending the theory for domain decomposition algorithms to less regular subdomains

Extending the theory for domain decomposition algorithms to less regular subdomains Extending the theory for domain decomposition algorithms to less regular subdomains Olof Widlund Courant Institute of Mathematical Sciences New York University http://www.cs.nyu.edu/cs/faculty/widlund/

More information

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Jan Mandel University of Colorado at Denver Bedřich Sousedík Czech Technical University

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS JING LI AND XUEMIN TU Abstract A variant of balancing domain decomposition method by constraints

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 6 [Version: 2002/09/18 v1.02] Convergence analysis of a balancing domain decomposition method for solving a class of indefinite

More information

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems F. Bachinger U. Langer J. Schöberl April 2004 Abstract This work provides a complete analysis of eddy current problems, ranging from

More information

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Jakub Šístek1 joint work with Jan Březina 2 and Bedřich Sousedík 3 1 Institute of Mathematics of the AS CR Nečas Center

More information

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Axel Klawonn 1 and Olof B. Widlund 2 1 Universität Duisburg-Essen, Campus Essen, Fachbereich Mathematik, (http://www.uni-essen.de/ingmath/axel.klawonn/)

More information

Multispace and Multilevel BDDC

Multispace and Multilevel BDDC Multispace and Multilevel BDDC Jan Mandel Bedřich Sousedík Clark R. Dohrmann February 11, 2018 arxiv:0712.3977v2 [math.na] 21 Jan 2008 Abstract BDDC method is the most advanced method from the Balancing

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

Multigrid Based Optimal Shape and Topology Design in Magnetostatics

Multigrid Based Optimal Shape and Topology Design in Magnetostatics Multigrid Based Optimal Shape and Topology Design in Magnetostatics Dalibor Lukáš 1 Department of Applied Mathematics, VŠB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava Poruba, Czech

More information

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Nina Dokeva and Wlodek Proskurowski University of Southern California, Department of Mathematics Los Angeles,

More information

Robust Parallel Newton{Multilevel Methods. Bodo Heise. Institute for Mathematics, Johannes Kepler University Linz, A Linz, Austria.

Robust Parallel Newton{Multilevel Methods. Bodo Heise. Institute for Mathematics, Johannes Kepler University Linz, A Linz, Austria. Robust Parallel Newton{Multilevel Methods Bodo Heise Institute for Mathematics, Johannes Kepler University Linz, A - 4040 Linz, Austria. e-mail: heise@miraculix.numa.uni-linz.ac.at Michael Jung Faculty

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

The mortar element method for quasilinear elliptic boundary value problems

The mortar element method for quasilinear elliptic boundary value problems The mortar element method for quasilinear elliptic boundary value problems Leszek Marcinkowski 1 Abstract We consider a discretization of quasilinear elliptic boundary value problems by the mortar version

More information

Groupe de Travail Méthodes Numériques

Groupe de Travail Méthodes Numériques Groupe de Travail Méthodes Numériques Laboratoire Jacques-Louis Lions, Paris 6 Monday, May 11th, 2009 Domain Decomposition with Lagrange Multipliers: A continuous framework for a FETI-DP+Mortar method

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Marcus Sarkis Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro and Daniel

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Conference Applications of Mathematics 2012 in honor of the 60th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 2012 SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Jakub Šístek1,2,

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

UNCORRECTED PROOF. A Robust FEM-BEM Solver for Time-Harmonic Eddy 2 Current Problems 3. 1 Introduction 18. Michael Kolmbauer 1 and Ulrich Langer 2 4

UNCORRECTED PROOF. A Robust FEM-BEM Solver for Time-Harmonic Eddy 2 Current Problems 3. 1 Introduction 18. Michael Kolmbauer 1 and Ulrich Langer 2 4 1 A Robust FEM-BEM Solver for Time-Harmonic Eddy 2 Current Problems 3 Michael Kolmbauer 1 and Ulrich Langer 2 4 1 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, 5 kolmbauer@numa.uni-linz.ac.at

More information

Domain Decomposition solvers (FETI)

Domain Decomposition solvers (FETI) Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de rixen@tum.de 8-10 October

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Some Domain Decomposition Methods for Discontinuous Coefficients

Some Domain Decomposition Methods for Discontinuous Coefficients Some Domain Decomposition Methods for Discontinuous Coefficients Marcus Sarkis WPI RICAM-Linz, October 31, 2011 Marcus Sarkis (WPI) Domain Decomposition Methods RICAM-2011 1 / 38 Outline Discretizations

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva June 2015 Invents an Iterative Method in a Letter (1823), in a letter to Gerling: in order to compute a least squares solution based on angle measurements

More information

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation Fourteenth nternational Conference on Domain Decomposition Methods Editors: smael Herrera, David E Keyes, Olof B Widlund, Robert Yates c 23 DDMorg 18 Balancing Neumann-Neumann for (n)compressible Linear

More information

ON THE CONVERGENCE OF A DUAL-PRIMAL SUBSTRUCTURING METHOD. January 2000

ON THE CONVERGENCE OF A DUAL-PRIMAL SUBSTRUCTURING METHOD. January 2000 ON THE CONVERGENCE OF A DUAL-PRIMAL SUBSTRUCTURING METHOD JAN MANDEL AND RADEK TEZAUR January 2000 Abstract In the Dual-Primal FETI method, introduced by Farhat et al [5], the domain is decomposed into

More information

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS lectronic Transactions on Numerical Analysis. Volume 45, pp. 524 544, 2016. Copyright c 2016,. ISSN 1068 9613. TNA AN ADAPTIV CHOIC O PRIMAL CONSTRAINTS OR BDDC DOMAIN DCOMPOSITION ALGORITHMS JUAN G. CALVO

More information

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition Clemens Pechstein Institute of Computational Mathematics,

More information

Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics

Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics J. Bouchala, Z. Dostál, and M. Sadowská Department of Applied Mathematics VŠB Technical University of Ostrava

More information

On Iterative Substructuring Methods for Multiscale Problems

On Iterative Substructuring Methods for Multiscale Problems On Iterative Substructuring Methods for Multiscale Problems Clemens Pechstein Introduction Model Problem Let Ω R 2 or R 3 be a Lipschitz polytope with boundary Ω = Γ D Γ N, where Γ D Γ N = /0. We are interested

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Scalable Total BETI for 2D and 3D Contact Problems

Scalable Total BETI for 2D and 3D Contact Problems VŠB Technical University of Ostrava Faculty of Electrical Engineering and Computer Science Department of Applied Mathematics Scalable Total BETI for 2D and 3D Contact Problems Ing. Marie Sadowská Field

More information

On the Use of Inexact Subdomain Solvers for BDDC Algorithms

On the Use of Inexact Subdomain Solvers for BDDC Algorithms On the Use of Inexact Subdomain Solvers for BDDC Algorithms Jing Li a, and Olof B. Widlund b,1 a Department of Mathematical Sciences, Kent State University, Kent, OH, 44242-0001 b Courant Institute of

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD Electronic ransactions on Numerical Analysis. Volume 45, pp. 257 282, 2016. Copyright c 2016,. ISSN 1068 9613. ENA A DECOMPOSIION RESUL FOR BIHARMONIC PROBLEMS AND HE HELLAN-HERRMANN-JOHNSON MEHOD WOLFGANG

More information

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY MINGCHAO CAI, LUCA F. PAVARINO, AND OLOF B. WIDLUND TR2014-969 Abstract. Low order finite element discretizations of the linear

More information

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Nina Dokeva and Wlodek Proskurowski Department of Mathematics, University of Southern California, Los Angeles,

More information

UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS

UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS MAXIM A. OLSHANSKII, JÖRG PETERS, AND ARNOLD REUSKEN Abstract. We consider

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva July 2015 Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson (1845): First Idea of After preconditioning, it takes only three

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

A Neumann-Dirichlet Preconditioner for FETI-DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2D 4 UNCORRECTED PROOF

A Neumann-Dirichlet Preconditioner for FETI-DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2D 4 UNCORRECTED PROOF 1 A Neumann-Dirichlet Preconditioner for FETI-DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2D 4 Leszek Marcinkowski * 5 Faculty of Mathematics, University of Warsaw, Banacha 2,

More information

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems Efficient smoothers for all-at-once multigrid methods for Poisson and Stoes control problems Stefan Taacs stefan.taacs@numa.uni-linz.ac.at, WWW home page: http://www.numa.uni-linz.ac.at/~stefant/j3362/

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Schur Complement Preconditioners for Multiple Saddle Point Problems of Block Tridiagonal Form with Application to Optimization Problems

More information

Capacitance Matrix Method

Capacitance Matrix Method Capacitance Matrix Method Marcus Sarkis New England Numerical Analysis Day at WPI, 2019 Thanks to Maksymilian Dryja, University of Warsaw 1 Outline 1 Timeline 2 Capacitance Matrix Method-CMM 3 Applications

More information

for three dimensional problems are often more complicated than the quite simple constructions that work well for problems in the plane; see [23] for a

for three dimensional problems are often more complicated than the quite simple constructions that work well for problems in the plane; see [23] for a DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS AEL KLAWONN Λ, OLOF B. WIDLUND y, AND MAKSYMILIAN DRYJA z Abstract. In this paper, certain iterative substructuring

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 11, pp. 1-24, 2000. Copyright 2000,. ISSN 1068-9613. ETNA NEUMANN NEUMANN METHODS FOR VECTOR FIELD PROBLEMS ANDREA TOSELLI Abstract. In this paper,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Schur complement preconditioners for the biharmonic Dirichlet boundary value problem L. John, O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2013/4

More information

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 1 FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik, Universität

More information

where K e 2 h RN h e N h e is a symmetric positive denite (SPD) sparse system matrix, u h 2 R N h e the solution vector, and fh 2 R N h e the load vec

where K e 2 h RN h e N h e is a symmetric positive denite (SPD) sparse system matrix, u h 2 R N h e the solution vector, and fh 2 R N h e the load vec Algebraic Multigrid for Edge Elements Stefan Reitzinger y Joachim Schoberl z 15th June 2000 Abstract This paper presents an algebraic multigrid method for the ecient solution of the linear system arising

More information

BEM-BASED FINITE ELEMENT TEARING AND INTERCONNECTING METHODS

BEM-BASED FINITE ELEMENT TEARING AND INTERCONNECTING METHODS Electronic Transactions on Numerical Analysis. Volume 44, pp. 230 249, 2015. Copyright c 2015,. ISSN 1068 9613. ETNA BEM-BASED FINITE ELEMENT TEARING AND INTERCONNECTING METHODS CLEMENS HOFREITHER, ULRICH

More information

An introduction to PDE-constrained optimization

An introduction to PDE-constrained optimization An introduction to PDE-constrained optimization Wolfgang Bangerth Department of Mathematics Texas A&M University 1 Overview Why partial differential equations? Why optimization? Examples of PDE optimization

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 3

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 3 GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 3 MÉXICO 2014 MEMORIAS GGMC INSTITUTO DE GEOFÍSICA UNAM MIEMBROS DEL GGMC Dr. Ismael Herrera Revilla iherrerarevilla@gmail.com Dr. Luis Miguel de

More information

Effective Minimization of Functional Majorant in A Posteriori Error Analysis

Effective Minimization of Functional Majorant in A Posteriori Error Analysis Effective Minimization of Functional Majorant in A Posteriori Error Analysis Jan Valdman June 3, 28 Abstract We consider a Poisson problem and its functional a posteriori estimate derived in [2]. The estimate

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.) Jyväskylä,

More information

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method

Key words. preconditioned conjugate gradient method, saddle point problems, optimal control of PDEs, control and state constraints, multigrid method PRECONDITIONED CONJUGATE GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEMS WITH CONTROL AND STATE CONSTRAINTS ROLAND HERZOG AND EKKEHARD SACHS Abstract. Optimality systems and their linearizations arising in

More information