ScienceDirect. Rotation properties of feather shuttlecocks in motion

Size: px
Start display at page:

Download "ScienceDirect. Rotation properties of feather shuttlecocks in motion"

Transcription

1 Available online at ScienceDirect Procedia Engineering 72 ( 2014 ) The 2014 Conference of the International Sports Engineering Association Rotation properties of feather shuttlecocks in motion Xiaoshan Cao 1*, Jianmin Qiu 1, Xing Zhang 2, Junping Shi 1 1 Department of Engineering Mechanics, Xi'an University of Technology, Xi an , China 2Physical Department,, Xi'an University of Technology, Xi an , China Abstract Feather shuttlecocks are chiral bodies whose rotation properties, such as trajectory and velocity, affect their motion states. This study proposes an experimental method to simulate the rotation properties of shuttlecocks. The effect of wind velocity on the angular velocity of refitting shuttlecocks is tested in a wind tunnel. The refitting parts lie on the cork of the shuttlecocks to avoid affecting the shape of the feather and the friction between air and the feather. Two types of moments are assumed to act on the shuttlecocks: driving and resistance. The driving moment is dependent on relative airflow velocity, whereas the resistance moment is related to rotation speed. Basing on wind tunnel experimental data, we illustrate the curves of the resistance and driving moments. Results provide theoretical guidance in the design of synthetic shuttlecocks and analysis of badminton techniques. Crown 2014 Copyright The Authors Published Published by Elsevier by Elsevier Ltd. Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University. Keywords: chirality shuttlecocks; rotation speed; wind tunnel experiment; driving moment; resistance moment 1. Introduction Badminton, one of the oldest sports in the world, originated in England in the 1880s and is now gaining popularity in Asia. Badminton has been an Olympic sport since Over 200 million amateurs and over a thousand professional athletes play badminton worldwide. The structures and dynamic characteristics of shuttlecocks, an essential instrument in badminton, have attracted the interest of researchers. Traditional shuttlecocks are made of duck or goose feathers. Synthetic shuttlecocks have been developed and manufactured since the 1950s. The flight properties of synthetic shuttlecocks differ significantly from those of feather shuttlecocks. Feather shuttlecocks are therefore used in most amateur badminton games and in all international competitive games. Traditional shuttlecocks are chiral bodies, so their structures are non-identical to their mirror image. Synthetic shuttlecocks are always approximately centrally symmetric. The asymmetry of synthetic shuttlecocks provides Crown Copyright 2014 Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University doi: /j.proeng

2 Xiaoshan Cao et al. / Procedia Engineering 72 ( 2014 ) stability during a game; however, asymmetry does not significantly affect velocity and trajectory. During high, clear shot testing, the landing point of a feather shuttlecock is closer than that of a synthetic shuttlecock, although the starting sections of their flight trajectories are coincidental. In fluid mechanics, the rotation property attributed to chirality affects the flight resistance of a feather shuttlecock in air. Several studies have analysed the dynamics and flight trajectories of shuttlecocks. Chen et al. (2009) validated a motion equation for badminton events and found a relationship between air resistance force and shuttlecock speed. Alam et al. (2010) used an experimental method to measure the aerodynamic properties of a shuttlecock and compare the non-dimensional drag coefficient of feather and synthetic badminton shuttlecocks. Le Personnic et al. (2011) simulated the flight trajectory of synthetic and feather shuttlecocks at different wind speeds under nonspinning condition. Nakagawa et al. (2012) discussed the relationship between the aerodynamic properties and flow behaviour of a shuttlecock with spin rotation at high Reynolds numbers (Texier et al. 2012). However, these studies failed to consider shuttlecock rotations, which change air resistance. Cooke (2002) discussed the design parameters which affect the 2D motion of a shuttlecock in the trajectory plane and explained how these parameters are incorporated into a computer simulation tool to predict trajectories. The present study considers the effect of the moment of inertia (MOI), which is related to mass distribution. However, aside from MOI, the friction between the shuttlecock and air should also be considered in the design of a shuttlecock. The moment which acts on the shuttlecock can represent the macro behaviour of friction. This study proposes an analytical model to examine the rotation speed of shuttlecocks. This model is used to measure the rotation behaviour of shuttlecocks. The effect of relative airflow velocity and rotation speed on the moments which act on the shuttlecocks is also analysed. 2. Experimental procedure 2.1. Refitting shuttlecocks Figure 1 shows the structures of a traditional feather shuttlecock and a synthetic shuttlecock. The image shows that feather shuttlecocks are non-identical to their mirror image. When an arbitrary feather shuttlecock flies along the z-direction, the vector of the angular velocity must be along the positive direction of the z-axis. However, this phenomenon evidently does not exist in synthetic shuttlecocks. Figure 1. Structure of a traditional feather shuttlecock. To measure the rotation property of shuttlecocks, a refitting shuttlecock with similar bearings was designed. The shuttlecock should rotate along the axis in the wind tunnel. Axis friction is omitted in this study. To evaluate the rotational inertia of the refitting shuttlecock, a ring was manufactured as an additional mass (Figure 2). The rotational inertia is expressed as J m R

3 734 Xiaoshan Cao et al. / Procedia Engineering 72 ( 2014 ) where m 0 and R 0 are the mass and radius of the ring, respectively, which are measured in the experiment. Hereafter, shuttlecocks 1 and 2 represent a refitting shuttlecock without and with an additional mass, respectively Theoretical model Figure 2. Refitting shuttlecock and an additional mass. To analyse shuttlecock speed, the effect of flow on the shuttlecock cork is omitted. The moment which acts on the feathers can be divided into two parts: driving and resistance. The driving moment is dependent on relative airflow velocity, whereas the resistance moment is a function of rotation speed. If the relation between the rotation speed and time is determined, the driving moment with respect to relative airflow velocity and the resistance moment with respect to the rotation speed can be obtained via derivation Resistance moment Consider a process in which the rotation of the shuttlecock slows down when the airflow in the wind tunnel is suddenly turned off. We assume that rotation speed is a function of time expressed as follows:, 1 1 t, (1) 2 2 t where is the rotation speed, and subscripts 1 and 2 represent shuttlecocks 1 and 2, respectively. The relationship of rotational inertia is J J J, r2 r1 0 (2) where J r1 and J r2 are the rotational inertia of shuttlecocks 1 and 2, respectively. Eq. (1) shows the relation between angular acceleration and rotation speed, 1 1 1, (3) where is the angular acceleration. Resistance moment is a function of rotation speed. Therefore, the additional mass will not affect the resistance moment in the same rotation speed. When 1 = 2 =, then M M, (4) r1 r2 where M r is the resistance moment. The relation between moment M and angular acceleration is M J, (5)

4 Xiaoshan Cao et al. / Procedia Engineering 72 ( 2014 ) where J is the rotational inertia. Substituting Eqs. (3) and (5) into Eq. (4) yields r1 1 r1 0 2 J J J. (6) Subsequently, the rotational inertia of shuttlecock 1 is J r1 2J0. (7) Substituting Eq. (7) into Eq. (5) yields the resistance moment M r 2 1J0. (8) Driving moment Similarly, we consider the rotation speed range from zero to a stable value when the airflow in the wind tunnel is suddenly turned off. The rotation speed, which is similar to flow speed v, can be recorded as follows: * * * * t 1 1, at the flow speed v, (9) 2 2 t where * is the rotation speed. The relation between moment M and angular acceleration is expressed as J M M, (10) d r where M d is the driving moment which is similar to the flow speed. Similar to the derivation process in Section 2.2.1, we obtain the rotational inertia of shuttlecock 1 and the driving moment as follows: J d1 2J0, M d 2 1J0 Mr. (11) 2.3. Wind tunnel testing Wind tunnel testing can be divided into two parts. We recorded the rotation angle of refitting shuttlecock without and with an additional mass in the wind tunnel at different wind velocities to evaluate the relation between driving moment and wind velocity. We also recorded the relation between the rotation angle and time when the shuttlecock slows down at the moment when the airflow in the wind tunnel is suddenly turned off to determine the relation between the resistance moment and the rotation speed. Data on the refitting shuttlecocks without and with an additional mass are obtained. 3. Results and discussion Figure 3 presents the rotation speed when the airflow in the wind tunnel is suddenly turned off. The rotational inertia of the shuttlecock with an additional mass is larger than that of the shuttlecock without an additional mass, such that the angular acceleration of the former is less than that of the latter.

5 736 Xiaoshan Cao et al. / Procedia Engineering 72 ( 2014 ) Figure 3. Rotation speed during deceleration. In these experiments, the mass and diameter of the additional mass are g and 29 mm, respectively. Therefore, the rotational inertia of the additional mass is g mm 2. We calculate the resistance moment from these data and using Eqs. (7) and (8), as shown in Figure 4. The results show that resistance increases almost linearly as the rotation speed increases. Figure 4. Resistance moment during deceleration. (a) (b) Figure 5. Rotation speed during acceleration. Wind speed: (a) 20.3 m/s. (b) 15.6 m/s Figure 6. Driving moment during acceleration.

6 Xiaoshan Cao et al. / Procedia Engineering 72 ( 2014 ) Figure 5 shows the relation between rotation speed and wind tunnel time. In these experiments, the rotation speeds vary from zero to a stable value. For shuttlecocks 1 and 2, the stable values of the rotation speed are similar. Therefore, the stable value of the rotation speed is assumed to be dependent on the wind velocity but independent of the rotational inertia. However, from zero to a stable value, shuttlecock 2 requires additional time. The driving moment is plotted as a function of time in Figure 6. The driving moment differs over the wind velocity but is almost similar to time. This result verifies that the driving moment can be determined by the relative airflow velocity. 4. Conclusions Scientists consider the flight parameters of feather shuttlecocks in the design of synthetic shuttlecocks. However, previous studies failed to consider rotation properties. Aerodynamic theory states that the rotation of a flying object decreases flight resistance. When a player hits the shuttlecock, the flight and rotation speeds approach the maximum at the moment. Designing a synthetic shuttlecock based on the flight resistance data of feather shuttlecocks at this moment underestimates the flight resistance when the feather shuttlecocks slow down. This condition might be one of the reasons why the flight trajectories of feather and synthetic shuttlecocks initially exhibit good agreement but differ in landing points. The landing point of a synthetic shuttlecock is far from that of a feather shuttlecock. Furthermore, badminton techniques include normally and tangentially hitting the cork of the shuttlecocks. Knowledge on the rotation properties of shuttlecocks provides theoretical guidance on the design of novel synthetic shuttlecock structures and assists both amateur and professional players to understand the basic skills required for badminton. References Alam, F., H. Chowdhury, C. Theppadungporn, H. Moria, and A. Subic A comparative study of feather and synthetic badminton shuttlecock aerodynamics. 17th Australasian Fluid Mechanics Conference 2010, 17AFMC, December 5, December 9, 2010, 17th Australasian Fluid Mechanics Conference 2010, pp. Olympus; COMSOL Multiphysics; LasTEK and LaVision; LEAP Australia; Kenelec Scientific. Alam, Firoz, Harun Chowdhury, Chavaporn Theppadungporn, and Aleksandar Subic Measurements of aerodynamic properties of badminton shuttlecocks. 8th Conference of the International Sports Engineering Association, ISEA, July 12, July 16, 2010, vol. 2, pp Chen, LM, YH Pan, and YJ Chen A study of shuttlecock's trajectory in badminton. J Sports Sci Med 8, pp Cooke, A Computer simulation of shuttlecock trajectories. Sport Eng. vol.5, Issue 2, pp Le Personnic, J., F. Alam, L. Le Gendre, H. Chowdhury, and A. Subic Flight trajectory simulation of badminton shuttlecocks. 5th Asia- Pacific Congress on Sports Technology, vol. 13, pp Nakagawa, K., H. Hasegawa, M. Murakami, and S. Obayashi Aerodynamic Properties and Flow Behavior for a Badminton Shuttlecock with Spin at High Reynolds Numbers. Engineering of Sport Conference 2012, vol. 34, pp Texier, B. D., C. Cohen, D. Quere, and C. Claneta Shuttlecock dynamics. Engineering of Sport Conference 2012, vol. 34, pp

AERODYNAMIC PROPERTIES OF BADMINTON SHUTTLECOCK

AERODYNAMIC PROPERTIES OF BADMINTON SHUTTLECOCK International Journal of Mechanical and Materials Engineering (IJMME), Vol. 4 (2009), No. 3, 266-272 AERODYNAMIC PROPERTIES OF BADMINTON SHUTTLECOCK Firoz Alam¹, Harun Chowdhury¹, Chavaporn Theppadungporn¹,

More information

ScienceDirect. Optimization of the size and launch conditions of a discus

ScienceDirect. Optimization of the size and launch conditions of a discus Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 24 ) 756 76 The 24 conference of the International Sports Engineering Association Optimization of the size and launch conditions

More information

Available online at Procedia Engineering 200 (2010) (2009)

Available online at   Procedia Engineering 200 (2010) (2009) Available online at www.sciencedirect.com Procedia Engineering 2 (21) (29) 2467 2472 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering Association

More information

Available online at ScienceDirect. The 2014 conference of the International Sports Engineering Association

Available online at   ScienceDirect. The 2014 conference of the International Sports Engineering Association Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 496 501 The 2014 conference of the International Sports Engineering Association Dynamic contribution analysis of

More information

Proceedings The Behavior of Badminton Shuttlecocks from an Engineering Point of View

Proceedings The Behavior of Badminton Shuttlecocks from an Engineering Point of View Proceedings The Behavior of Badminton Shuttlecocks from an Engineering Point of View Christoffer Johansson 1, Kelken Chang 2, Christer Forsgren 3 and Magnus Karlsteen 1, * 1 Department of Physics, Chalmers

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Badminton shuttlecock stability : modelling and simulating the angular response of the turnover Author(s)

More information

Effect of Camber on Badminton Shuttlecock

Effect of Camber on Badminton Shuttlecock Proceedings Effect of Camber on Badminton Shuttlecock Yasufumi Konishi 1, *, Yusuke Matsushima 2, Takashi Misaka 1, Hiroyuki Okuizumi 1, Kensuke Tanaka 2 and Shigeru Obayashi 1 1 Institute of Fluid Science,

More information

Available online at ScienceDirect. The 2014 conference of the International Sports Engineering Association

Available online at   ScienceDirect. The 2014 conference of the International Sports Engineering Association Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 593 598 The 2014 conference of the International Sports Engineering Association Effect of moment of inertia and

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Aerodynamics of badminton shuttlecock : Characterization of flow around a conical skirt with gaps, behind

More information

Detached Eddy Simulation on Hypersonic Base Flow Structure of Reentry-F Vehicle

Detached Eddy Simulation on Hypersonic Base Flow Structure of Reentry-F Vehicle Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

ScienceDirect. Experimental Validation on Lift Increment of a Flapping Rotary Wing with Boring-hole Design

ScienceDirect. Experimental Validation on Lift Increment of a Flapping Rotary Wing with Boring-hole Design Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 1543 1547 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 Experimental

More information

The Campion School P.E. Dept A Level PE Biomechanics

The Campion School P.E. Dept A Level PE Biomechanics Topic: Biomechanics Learning Objectives (What the teacher intends pupils to learn) Learners will be able to develop their knowledge and understanding of the underlying biomechanical principles related

More information

ScienceDirect. Experimental study of influence of movements on airflow under stratum ventilation

ScienceDirect. Experimental study of influence of movements on airflow under stratum ventilation Available online at www.sciencedirect.com ScienceDirect Energy Procedia 7 (15 ) 7 11 th International Building Physics Conference, IBPC 15 Experimental study of influence of movements on airflow under

More information

Available online at ScienceDirect. The 2014 conference of the International Sports Engineering Association

Available online at   ScienceDirect. The 2014 conference of the International Sports Engineering Association Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 97 102 The 2014 conference of the International Sports Engineering Association Dynamic contribution analysis of

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (015 ) 64 69 6th BSME International Conference on Thermal Engineering (ICTE 014) Numerical Study of Sub-Nozzle Flows for

More information

The application of simulation to the understanding of football flight

The application of simulation to the understanding of football flight Loughborough University Institutional Repository The application of simulation to the understanding of football flight This item was submitted to Loughborough University's Institutional Repository by the/an

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

EFFECT OF ATMOSPHERIC ALTITUDE ON THE DRAG OF WING AT SUBSONIC AND SUPERSONIC SPEEDS

EFFECT OF ATMOSPHERIC ALTITUDE ON THE DRAG OF WING AT SUBSONIC AND SUPERSONIC SPEEDS Journal of Engineering Science and Technology 6 th EURECA 2016 Special Issue May (2017) 71-83 School of Engineering, Taylor s University EFFECT OF ATMOSPHERIC ALTITUDE ON THE DRAG OF WING AT SUBSONIC AND

More information

Available online at ScienceDirect. Procedia Engineering 154 (2016 )

Available online at   ScienceDirect. Procedia Engineering 154 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 154 (2016 ) 574 581 12th International Conference on Hydroinformatics, HIC 2016 Research on the Strength and Space-time Distribution

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

Available online at ScienceDirect. Procedia Engineering 147 (2016 )

Available online at   ScienceDirect. Procedia Engineering 147 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 147 (016 ) 677 68 11th conference of the International Sports Engineering Association, ISEA 016 The effect of ball spin rate

More information

NUMERICAL OPTIMIZATION OF THE SHAPE OF A HOLLOW PROJECTILE

NUMERICAL OPTIMIZATION OF THE SHAPE OF A HOLLOW PROJECTILE NUMERICAL OPTIMIZATION OF THE SHAPE OF A HOLLOW PROJECTILE Wessam Mahfouz Elnaggar, Zhihua Chen and Hui Zhang Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing,

More information

Shock attenuation properties of sports surfaces with twodimensional

Shock attenuation properties of sports surfaces with twodimensional Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 855 860 9 th Conference of the International Sports Engineering Association (ISEA) Shock attenuation properties of sports surfaces

More information

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (7) 88 8 X International Conference on Structural Dynamics, EURODYN 7 Dynamics and Control of the GyroPTO Wave Energy Point

More information

The Analysis of Internal Flow Field in Oil-Gas Separator

The Analysis of Internal Flow Field in Oil-Gas Separator Available online at www.sciencedirect.com Procedia Engineering 15 (011) 4337 4341 Advanced in Control Engineering and Information Science The Analysis of Internal Flow Field in Oil-Gas Separator Wang Zhongyi

More information

CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION

CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION KINESIOLOGY Scientific Basis of Human Motion, 12 th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State

More information

ScienceDirect. Centre of pressure detection and analysis with a high-resolution and low-cost smart insole

ScienceDirect. Centre of pressure detection and analysis with a high-resolution and low-cost smart insole Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 146 151 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Centre of pressure detection and analysis with

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Available online at ScienceDirect. Procedia Technology 23 (2016 ) 42 50

Available online at   ScienceDirect. Procedia Technology 23 (2016 ) 42 50 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 23 (216 ) 42 5 3rd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 216 On the stiffness

More information

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation Available online at www.sciencedirect.com Energy Procedia 17 (2012 ) 791 800 2012 International Conference on Future Electrical Power and Energy Systems Fluid Flow and Heat Transfer Characteristics in

More information

PHYSICS 218. Final Exam SPRING, Do not fill out the information below until instructed to do so! Name: Signature: Student ID:

PHYSICS 218. Final Exam SPRING, Do not fill out the information below until instructed to do so! Name: Signature: Student ID: PHYSICS 218 Final Exam SPRING, 2015 Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: You have the full class period to complete the

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

Kinesiology 201 Solutions Fluid and Sports Biomechanics

Kinesiology 201 Solutions Fluid and Sports Biomechanics Kinesiology 201 Solutions Fluid and Sports Biomechanics Tony Leyland School of Kinesiology Simon Fraser University Fluid Biomechanics 1. Lift force is a force due to fluid flow around a body that acts

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 ) Fengfeng Hu, Yu Sun*, Binbin Peng

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Fengfeng Hu, Yu Sun*, Binbin Peng Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (14 ) 1651 1656 11th International Conference on Technology of Plasticity, ICTP 14, 19-4 October 14, Nagoya Congress Center,

More information

Delft University of Technology. Drag and power-loss in rowing due to velocity fluctuations. Greidanus, Arnoud; Delfos, Rene; Westerweel, Jerry

Delft University of Technology. Drag and power-loss in rowing due to velocity fluctuations. Greidanus, Arnoud; Delfos, Rene; Westerweel, Jerry Delft University of Technology Drag and power-loss in rowing due to velocity fluctuations Greidanus, Arnoud; Delfos, Rene; Westerweel, Jerry DOI 10.1016/j.proeng.2016.06.299 Publication date 2016 Document

More information

Lab 1: Projectiles and Numerical Integration

Lab 1: Projectiles and Numerical Integration E91: DYNAMICS Lab 1: Projectiles and Numerical Integration 1 Introduction The goal of this project is to investigate the dynamics of projectiles (balls) used in sports and study their trajectories using

More information

Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove

Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove G. H. Jang e-mail: ghjang@hanyang.ac.kr J. W. Yoon PREM, Department of Mechanical Engineering, Hanyang University, Seoul, 133-791, Korea Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering

More information

Multi-body power analysis of kicking motion based on a double pendulum

Multi-body power analysis of kicking motion based on a double pendulum Available online at wwwsciencedirectcom Procedia Engineering 34 (22 ) 28 223 9 th Conference of the International Sports Engineering Association (ISEA) Multi-body power analysis of kicking motion based

More information

1 of 7 4/5/2010 10:25 PM Name Date UNIT 3 TEST 1. In the formula F = Gm m /r, the quantity G: depends on the local value of g is used only when Earth is one of the two masses is greatest at the surface

More information

MEAM 211. Project 1. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania January 19, 2007

MEAM 211. Project 1. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania January 19, 2007 MEAM 211 Project 1 Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania January 19, 2007 1 Introduction The goal of this project is to investigate the dynamics of projectiles

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Study on the Heat Transfer Characteristics in aircraft icing

Study on the Heat Transfer Characteristics in aircraft icing Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

Available online at ScienceDirect. The Malaysian International Tribology Conference 2013, MITC2013

Available online at   ScienceDirect. The Malaysian International Tribology Conference 2013, MITC2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 68 ( 2013 ) 7 11 The Malaysian International Tribology Conference 2013, MITC2013 The Effect of External Grit Particle Size on

More information

Available online at ScienceDirect. Andrej Godina*, Bojan Acko

Available online at  ScienceDirect. Andrej Godina*, Bojan Acko Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 69 ( 014 ) 191 198 4th DAAAM International Symposium on Intelligent Manufacturing and Automation, 013 Measurement Uncertainty

More information

The physics and mathematics of javelin throwing

The physics and mathematics of javelin throwing The physics and mathematics of javelin throwing Professor Les Hatton CISM, University of Kingston May 24, 2005 Abstract Javelin flight is strictly governed by the laws of aerodynamics but there remain

More information

ScienceDirect. Simulating Friction Power Losses In Automotive Journal Bearings. H. Allmaier a, D.E. Sander a, F.M. Reich, a, *

ScienceDirect. Simulating Friction Power Losses In Automotive Journal Bearings. H. Allmaier a, D.E. Sander a, F.M. Reich, a, * Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 68 ( 2013 ) 49 55 The Malaysian International Tribology Conference 2013, MITC2013 Simulating Friction Power Losses In Automotive

More information

Signature redacted. Signature redacted JUL LIBRARIES ARCHIVES. Impact of Rim Weight and Torque in Discus Performance.

Signature redacted. Signature redacted JUL LIBRARIES ARCHIVES. Impact of Rim Weight and Torque in Discus Performance. Impact of Rim Weight and Torque in Discus Performance by Isabella Stuopis Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Computers & Fluids White

More information

Chapter 9 Momentum and Its Conservation

Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation In this chapter you will: Describe momentum and impulse and apply them to the interactions between objects. Relate Newton

More information

Crack detection in cantilever beam by frequency based method

Crack detection in cantilever beam by frequency based method Available online at www.sciencedirect.com Procedia Engineering 51 ( 2013 ) 770 775 Chemical, Civil and Mechanical Engineering Tracks of 3 rd Nirma University International Conference on Engineering (NUiCONE

More information

Available online at ScienceDirect. Procedia Engineering 125 (2015 )

Available online at   ScienceDirect. Procedia Engineering 125 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (015 ) 1065 1069 Te 5t International Conference of Euro Asia Civil Engineering Forum (EACEF-5) Identification of aerodynamic

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Available online at ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda*

Available online at   ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda* Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 62 ( 2013 ) 71 77 The 9 th Asia-Oceania Symposium on Fire Science and Technology Nuclear power plant explosions at Fukushima-Daiichi

More information

Available online at ScienceDirect. Procedia CIRP 36 (2015 ) CIRP 25th Design Conference Innovative Product Creation

Available online at  ScienceDirect. Procedia CIRP 36 (2015 ) CIRP 25th Design Conference Innovative Product Creation Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 36 (2015 ) 111 116 CIRP 25th Design Conference Innovative Product Creation Machine stiffness rating: Characterization and evaluation

More information

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data Available online at www.sciencedirect.com Procedia Environmental Sciences 1 (1 ) 78 713 11 International Conference on Environmental Science and Engineering (ICESE 11) Calculation of Earth s Dynamic Ellipticity

More information

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D) Exam Name 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity 2) An athlete participates in an interplanetary discus throw competition during an

More information

Mechanical energy transfer by internal force during the swing phase of running

Mechanical energy transfer by internal force during the swing phase of running Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 772 777 9 th Conference of the International Sports Engineering Association (ISEA) Mechanical energy transfer by internal force

More information

Available online at ScienceDirect. Procedia Engineering 157 (2016 )

Available online at  ScienceDirect. Procedia Engineering 157 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 157 (2016 ) 264 270 IX International Conference on Computational Heat and Mass Transfer, ICCHMT2016 A device for measuring the

More information

NordFoU: External Influences on Spray Patterns (EPAS) Report 18: Model for salt spreading simulation software 3S

NordFoU: External Influences on Spray Patterns (EPAS) Report 18: Model for salt spreading simulation software 3S NordFoU: External Influences on Spray Patterns (EPAS) Report 18: Model for salt spreading simulation software 3S Hisamitsu Takai and Jan Strøm Aarhus University, Dept. of Engineering, Engineering Centre

More information

Classical mechanics: Newton s laws of motion

Classical mechanics: Newton s laws of motion Classical mechanics: Newton s laws of motion Homework next week will be due on Thursday next week You will soon be receiving student evaluations Occam s razor Given two competing and equally successful

More information

Projectile Motion Exercises

Projectile Motion Exercises Projectile Motion 11.7 Exercises 1 A ball is thrown horizontally from a cliff with a speed of 10ms-I, at the same time as an identical ball is dropped from the cliff. Neglecting the effect of air resistance

More information

CHAPTER 6: Angular motion, projectile motion and fluid mechanics. Angular motion BIOMECHANICAL MOVEMENT. Three imaginary axes of rotation

CHAPTER 6: Angular motion, projectile motion and fluid mechanics. Angular motion BIOMECHANICAL MOVEMENT. Three imaginary axes of rotation BIOMECHANICAL MOVEMENT CHAPTER 6: Angular motion, projectile motion and fluid mechanics Angular motion Axis A figure 6.1 planes and axes Sagittal Frontal Angular motion is defined as the motion of a body

More information

ANALYSIS AND OPTIMIZATION OF A VERTICAL AXIS WIND TURBINE SAVONIUS-TYPE PANEL USING CFD TECHNIQUES

ANALYSIS AND OPTIMIZATION OF A VERTICAL AXIS WIND TURBINE SAVONIUS-TYPE PANEL USING CFD TECHNIQUES ANALYSIS AND OPTIMIZATION OF A VERTICAL AXIS WIND TURBINE SAVONIUS-TYPE PANEL USING CFD TECHNIQUES J. Vilarroig, S. Chiva*, R. Martínez and J. Segarra** *Author for correspondence ** Heliotec.SL Department

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (214 ) 599 64 1th International Conference on Mechanical Engineering, ICME 213 Validation criteria for DNS of turbulent heat

More information

6-1. Conservation law of mechanical energy

6-1. Conservation law of mechanical energy 6-1. Conservation law of mechanical energy 1. Purpose Investigate the mechanical energy conservation law and energy loss, by studying the kinetic and rotational energy of a marble wheel that is moving

More information

Mathematics AS/P2/M18 AS PAPER 2

Mathematics AS/P2/M18 AS PAPER 2 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks Mathematics AS PAPER 2 March Mock Exam (OCR Version) CM Time allowed: 1 hour and 30 minutes Instructions

More information

ANGULAR MOTION, PROJECTILE MOTION AND FLUID MECHANICS. Practice questions - text book pages SECTION TOPIC 2 CHAPTER

ANGULAR MOTION, PROJECTILE MOTION AND FLUID MECHANICS. Practice questions - text book pages SECTION TOPIC 2 CHAPTER SECTION TOPIC 2 4 CHAPTER CHAPTER 6 Practice questions - text book pages 96-99 1) Angle in radians is defined as: a. rate of turning. b. arc length subtending the angle divided by radius of the circle.

More information

UNDERSTANDING AND EVALUATION OF BADMINTON SHUTTLECOCKS THROUGH FLIGHT DYNAMICS AND EXPERIMENTAL APPROACH

UNDERSTANDING AND EVALUATION OF BADMINTON SHUTTLECOCKS THROUGH FLIGHT DYNAMICS AND EXPERIMENTAL APPROACH UNDERSTANDING AND EVALUATION OF BADMINTON SHUTTLECOCKS THROUGH FLIGHT DYNAMICS AND EXPERIMENTAL APPROACH LIN SHENGHUAI CALVIN School of Mechanical and Aerospace Engineering A thesis submitted to the Nanyang

More information

Available online at Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010.

Available online at   Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010. Available online at www.sciencedirect.com Procedia Engineering (010) 000 000 Procedia Engineering 4 (010) 99 105 ISAB-010 Procedia Engineering www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

More information

Available online at ScienceDirect. Procedia Engineering 100 (2015 ) 41 45

Available online at  ScienceDirect. Procedia Engineering 100 (2015 ) 41 45 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 100 (2015 41 45 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2014 Shear Stress Distribution

More information

Elementary Mechanics Using Matlab

Elementary Mechanics Using Matlab Anders Malthe-S0renssen Elementary Mechanics Using Matlab A Modern Course Combining Analytical and Numerical Techniques ^ Springer Contents 1 Introduction 1 1.1 Physics 1 1.2 Mechanics 2 1.3 Integrating

More information

Available online at ScienceDirect. 5th Fatigue Design Conference, Fatigue Design 2013

Available online at   ScienceDirect. 5th Fatigue Design Conference, Fatigue Design 2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 66 ( 2013 ) 626 634 5th Fatigue Design Conference, Fatigue Design 2013 Fatigue Damage Analysis on Aluminium Alloy Specimens

More information

CALCULATION OF TAKEOFF AND LANDING PERFORMANCE UNDER DIFFERENT ENVIRONMENTS

CALCULATION OF TAKEOFF AND LANDING PERFORMANCE UNDER DIFFERENT ENVIRONMENTS Sixth International Symposium on Physics of Fluids (ISPF6) International Journal of Modern Physics: Conference Series Vol. 4 (016) 1660174 (1 pages) The Author(s) DOI: 10.114/S010194516601745 CALCULATION

More information

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows Available online at www.sciencedirect.com Procedia CIRP 00 (2013) 000 000 www.elsevier.com/locate/procedia 2 nd International Through-life Engineering Services Conference Performance of a Vertical Axis

More information

Available online at ScienceDirect. Procedia Engineering 99 (2015 )

Available online at   ScienceDirect. Procedia Engineering 99 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 377 383 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 Effect of Recession

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Object Impact on the Free Surface and Added Mass Effect Laboratory Fall 2005 Prof. A. Techet

Object Impact on the Free Surface and Added Mass Effect Laboratory Fall 2005 Prof. A. Techet Object Impact on the Free Surface and Added Mass Effect.016 Laboratory Fall 005 Prof. A. Techet Introduction to Free Surface Impact Free surface impact of objects has applications to ocean engineering

More information

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

Fundamental aerodynamics of the soccer ball

Fundamental aerodynamics of the soccer ball T. Asai,* K. Seo, O. Kobayashi and R. Sakashita *Comprehensive Human Sciences, Tsukuba University, Tsukuba, Japan Faculty of Education, Art & Science, Yamagata University, Yamagata, Japan Department of

More information

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION Journal of Machine Engineering, 08, Vol. 8, No., 5 5 ISSN 895-7595 (Print) ISSN 9-807 (Online) Received: December 07 / Accepted: 0 August 08 / Published online: 8 September 08 Yingying ZHANG * Volker WITTSTOCK

More information

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy When something changes its velocity The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction On surface of earth, value is 9.8 ms-²; increases nearer

More information

Mechanical Engineering Science for Medical Engineers Level: 4 Credit value: 8 GLH: 62 TQT: 80

Mechanical Engineering Science for Medical Engineers Level: 4 Credit value: 8 GLH: 62 TQT: 80 This unit has 6 learning outcomes. 1. Be able to solve engineering problems that involve variable and constant acceleration motion. 1.1. Apply dimensional analysis to an equation involving units of length,

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at   ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 537 542 6th International Building Physics Conference, IBPC 2015 Characterization of fibrous insulating materials in their

More information

Flow Visualisation around Spinning and Non- Spinning Soccer Balls Using the Lattice Boltzmann Method

Flow Visualisation around Spinning and Non- Spinning Soccer Balls Using the Lattice Boltzmann Method Proceedings Flow Visualisation around Spinning and Non- Spinning Soccer Balls Using the Lattice Boltzmann Method Takeshi Asai 1, *, Sungchan Hong 1, Kaoru Kimachi 2, Keiko Abe 3, Hisashi Kai 3 and Atsushi

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

Numerical Analysis and Position Strategies of Tug-of-war. Yizhou TANG 1, Xin LIN 1,a,*

Numerical Analysis and Position Strategies of Tug-of-war. Yizhou TANG 1, Xin LIN 1,a,* International Conference on Education, Management and Computing Technology (ICEMCT 05) Numerical Analysis and Position Strategies of Tug-of-war Yizhou TANG, Xin LIN,a,* School of Economics and Management,

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

Chapter 19 Angular Momentum

Chapter 19 Angular Momentum Chapter 19 Angular Momentum Chapter 19 Angular Momentum... 2 19.1 Introduction... 2 19.2 Angular Momentum about a Point for a Particle... 3 19.2.1 Angular Momentum for a Point Particle... 3 19.2.2 Right-Hand-Rule

More information

2A/2B BIOMECHANICS 2 nd ed.

2A/2B BIOMECHANICS 2 nd ed. 2A/2B BIOMECHANICS 2 nd ed. www.flickr.com/photos/keithallison/4062960920/ 1 CONTENT Introduction to Biomechanics What is it? Benefits of Biomechanics Types of motion in Physical Activity Linear Angular

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly Mariyam Sattar 1, Cheng Wei 2, Awais Jalali 3 1, 2 Beihang University of Aeronautics and Astronautics,

More information

Project management model for constructing a renewable energy plant

Project management model for constructing a renewable energy plant Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 74 (207 ) 45 54 206 Global Congress on Manufacturing and Management Project management model for constructing a renewable energy

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

Reducing effect of softball-to-head impact by incorporating slip-surface in helmet

Reducing effect of softball-to-head impact by incorporating slip-surface in helmet Available online at www.sciencedirect.com Procedia Engineering 13 (2011) 415 421 5 th Asia-Pacific Congress on Sports Technology (APCST) Reducing effect of softball-to-head impact by incorporating slip-surface

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

Available online at ScienceDirect. Energy Procedia 74 (2015 )

Available online at   ScienceDirect. Energy Procedia 74 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 74 (2015 ) 1440 1451 International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability,

More information

15.3. Moment of inertia. Introduction. Prerequisites. Learning Outcomes

15.3. Moment of inertia. Introduction. Prerequisites. Learning Outcomes Moment of inertia 15.3 Introduction In this section we show how integration is used to calculate moments of inertia. These are essential for an understanding of the dynamics of rotating bodies such as

More information

PHYS 111 HOMEWORK #11

PHYS 111 HOMEWORK #11 PHYS 111 HOMEWORK #11 Due date: You have a choice here. You can submit this assignment on Tuesday, December and receive a 0 % bonus, or you can submit this for normal credit on Thursday, 4 December. If

More information