Combining diverse information sources with the II-CC-FF paradigm

Size: px
Start display at page:

Download "Combining diverse information sources with the II-CC-FF paradigm"

Transcription

1 Combining diverse information sources with the II-CC-FF paradigm Céline Cunen (joint work with Nils Lid Hjort) University of Oslo 18/07/2017 1/25

2 The Problem - Combination of information We have independent data sources 1,..., k providing information about parameters ψ 1,..., ψ k. Our interest is in the overall focus parameter φ = φ(ψ 1,..., ψ k ). II-CC-FF: a general framework to provide inference for φ in cases like this. Similar to likelihood synthesis from Schweder and Hjort (1996) Beyond ordinary meta-analysis: not restricted to cases where the sources inform on the same parameter we can deal with complex functions of the parameters from each source: φ = φ(ψ 1,..., ψ k ) we can deal with cases where we only have summary statistics from some or all of the sources we can handle very diverse sources for example combining parametric and non-parametric analyses 2/25

3 Confidence distributions (CD) Confidence distribution Confidence density Confidence curve C(µ) c(µ) cc(µ) µ µ µ a posterior without having to specify a prior a sample-dependent distribution function on the parameter space can be used for inference (for example for constructing CIs of all levels) 3/25

4 Requirements for CDs Definition A function C(θ, Y ) is called a confidence distribution for a parameter θ if: C(θ, Y ) is a cumulative distribution function on the parameter space at the true parameter value θ = θ 0, C(θ 0, Y ) as a function of the random sample Y follows the uniform distribution U[0,1] The second requirement ensures that all confidence intervals have the correct coverage. More on CDs in Confidence, Likelihood, Probability. (Schweder and Hjort, 2016.) 4/25

5 Outline II-CC-FF - general procedure and some illustrations Examples illustrating what II-CC-FF can do Classic meta-analysis More complex meta-analysis: Blood loss Random effects: All Blacks Very diverse sources: First word confidence curves γ 5/25

6 II-CC-FF - overview Combining information, for inference about a focus parameter φ = φ(ψ 1,..., ψ k ): II: Independent Inspection: From data source y i to estimates and intervals, in the form of a confidence distribution/curve: y i = C i (ψ i ) CC: Confidence Conversion: From the confidence distribution to a confidence log-likelihood, C i (ψ i ) = l c,i (ψ i ) FF: Focused Fusion: Use the combined confidence log-likelihood l f = k i=1 l c,i(ψ i ) to construct a CD for the given focus φ = φ(ψ 1,..., ψ k ), often via profiling: l f (ψ 1,..., ψ k ) = C fusion (φ) 6/25

7 CC - Confidence Conversion The most difficult step? C i (ψ i ) = l c,i (ψ i ) In some cases we will already have a log-likelihood for ψ i from the II-step and then there are no problems. In other cases, the confidence curves from the II-step are not constructed via likelihoods. Then we need to do something else (and be more careful). A simple and general method - the normal conversion: l c (ψ) = 1 2 Γ 1 1 (cc(ψ, y)) = 1 2 {Φ 1 (C(ψ, y))} 2. [Note that the confidence log-likelihood is not equal to the log-confidence density (log C(ψ)/ ψ). Except under the normal model.] 7/25

8 CD theorem via Wilks approximation In many regular cases we have, at the true parameter value ψ 0 : 2{l n,prof ( ˆψ) l n,prof (ψ 0 )} d χ 2 1, as the sample size n increases. This gives us our favourite approximate confidence curve construction, cc(ψ) = Γ 1 (2{l n,prof ( ˆψ) l n,prof (ψ)}). 8/25

9 We can deal with 1: Classic meta-analysis Assume all sources inform on the exact same parameter ψ 1 = = ψ k = ψ, and that each source provide estimators ˆψ i that are normally distributed N(ψ, σ 2 j ) with known σ js. II: Data source y i leads to C i (ψ) = Φ((ψ ˆψ i )/σ i ). CC: From C i (ψ) to l c,i (ψ) = 1 2 (ψ ˆψ i ) 2 /σ 2 i. FF: Summing l f (ψ) = k i=1 l c,i(ψ) leads to the classic answer k i=1 ˆψ = ˆψ ( ) i /σi 2 k k N ψ, ( 1/σ 2 i=1 1/σ2 i ) 1. i i=1 9/25

10 We can deal with 2: more complicated meta-analysis We do not have access to the full dataset (only summaries), and the studies differ in their reported outcomes: some studies report continuous outcomes, others report counts of a binary outcome. Example from Whitehead et al. (1999): Blood loss during labor. Does treatment with oxytocic drugs help reduce blood loss? Total of 11 studies, 6 studies report summary statistics of the continuous outcome (the actual blood loss in ml): Treatment n Mean SD Study 1 Control Treatment Study studies report counts of a binary outcome (yes = blood loss greater than 500 ml): Treatment Yes No Total Study 7 Control Treatment Study /25

11 We can deal with 2: more complicated meta-analysis Model: y ij = α i + βz ij + ɛ ij ɛ ij N(0, σ 2 ) II and CC: If study i has a continuous outcome we have l c,i (α i, β, σ) = (n 1 + n 2 ) log(σ) {(n 1 1)s (n 2 1)s n 1 (ȳ 1 α i ) 2 + n 2 (ȳ 2 α i β) 2 }/(2σ 2 ). If study i has a binary outcome we have l b,i (α i, β, σ) = x 01 log{φ((500 α i )/σ)} + x 11 log{1 Φ((500 α i )/σ)} + x 02 log{φ((500 α i β)/σ)} + x 12 log{1 Φ((500 α i β)/σ)}. FF: Summing l f (α 1,..., α k, β, σ) = k c i=1 l c,i(α i, β, σ) + k b i=1 l b,i(α i, β, σ) and then profiling l f,prof (β) = l f (ˆα 1 (β),..., ˆα k (β), β, ˆσ(β)) and we get a combined confidence curve for β by using the Wilks approximation cc(β) = Γ 1 {2(l f,prof ( ˆβ) l f,prof (β))}. 11/25

12 We can deal with 2: more complicated meta-analysis confidence curve Oxytocic drugs is seen to decrease blood loss. β 12/25

13 We can deal with 3: Random effects! 13/25

14 We can deal with 3: Random effects We have measures of passage times in 10 Rugby games ( studies). There are 5 games before a certain change of rules and 5 after. Model: y ij Gamma(a i, b i ) Say we are interested in the standard deviation of passage times κ i = a i /b i. It is relatively straightforward to construct confidence curves for each κ i (by profiling and Wilks approximation). II: cc i (κ i ) = Γ 1 {2(l i,prof (ˆκ i ) l i,prof (κ i ))} 14/25

15 We can deal with 3: Random effects confidence curve Before After κ There seems to be smaller standard deviations in passage times (smaller κs) after the rule change. But there is substantial spread in the mean κs between different games - do we need random effects? 15/25

16 We can deal with 3: Random effects We assume : Before rule change κ 1,...κ 5 N(κ B, τ 2 B ) and After rule change κ 6,...κ 10 N(κ A, τ 2 A ). We are interested in making confidence curves for κ B, κ A, and the ratio between them δ = κ B /κ A. CC: We already have the l i,prof (κ i ) from the II-step, but now we need l i (κ B, τ B ) (and similarly for the parameters after the rule change): l i (κ B, τ B ) = log[ exp{l i,prof (κ i ) l i,prof (ˆκ i )} 1 τ B φ (We integrate numerically or use Laplace approximation) ( κi κ B τ B ) dκ i ] 16/25

17 We can deal with 3: Random effects FF: Summing l f (κ B, τ B ) = k B i=1 l i (κ B, τ B ), profile to get l f,prof (κ B ) and Wilks approximation to get cc(κ B ). Similarly for cc(κ A ). confidence curve Before After κ 17/25

18 We can deal with 3: Random effects The ratio δ = κ B /κ A. Sum, profile and Wilks: l ff (κ B, δ) = l f,prof,b (κ B ) + l f,prof,a (κ B /δ), then l ff (δ) = l ff (ˆκ B (δ), δ). confidence curve δ 18/25

19 We can deal with 4: Very diverse sources We have two sources: A large study: 1640 parents report the age (in months) at which their child said its first word. Ranges from 1 (!) to 25. A small study: 51 parents report the age (in months) at which their child said its first word. Here we have some covariate information: gender (of the child). Focus: When do girls start to speak? And when do boys start to speak? Model: proportional hazards model (no censoring here - but we could have dealt with that too!) Data from: Schneider, Yurovsky & Frank (2015). Large-scale investigations of variability in children s first words. In CogSci2015 Proceedings. 19/25

20 We can deal with 4: age at first word Focus: probability that a child with covariate information x 0 does not speak at the age of 12 months S(t 0 x0) = e H 0(t 0 )e xt 0 β = S 0 (t 0 ) ext 0 β = (1 F 0 (t 0 )) ext 0 β with t 0 = 12. Large study: will give information about F 0 at t 0 - = cc 1 (F 0 (t 0 )). Non-parametric! Small study: will give information about β = cc 2 (β). Cox model - Semi-parametric! with II-CC-FF we can combine these and obtain a cc for S(t 0 x0) with t 0 = /25

21 We can deal with 4: age at first word Obtaining a confidence curve for the baseline F 0 (t 0 ). An exact CD based on the binomial distribution. confidence curve F 0 (12) 21/25

22 We can deal with 4: age at first word Obtaining a confidence curve for the coefficient β (taking care to define gender as 1/-1, so that the value 0 corresponds to the overall mean) Approximate CD based on the normal distribution (here we only need the summary statistics: estimate and standard error). confidence curve /25

23 We can deal with 4: age at first word FF: summing and profiling l f,prof (S(t 0 x0)) = max{l f (F 0 (t 0 ), β) : (1 F 0 (t 0 )) ext 0 β = S(t 0 x 0 )} and then Wilks approximation. confidence curve Girl Boy S(12) 23/25

24 We can deal with 4: age at first word Comparing with results from small source only. confidence curve Girl Boy S(12) 24/25

25 Concluding remarks and references What can II-CC-FF do? Deal with summary statistics Deal with complex functions of the parameters from each source: φ = φ(ψ 1,..., ψ k ) Deal with very diverse sources (hard and soft data,...) References: Liu, Liu and Xie (2015): Multivariate meta-analysis of heterogeneous studies using only summary statistics: efficiency and robustness. JASA. Schneider & Frank (2015). Large-scale investigations of variability in children s first words. In CogSci2015 Proceedings. Schweder & Hjort (1996). Bayesian synthesis or likelihood synthesis what does Borel s paradox say? Reports of the International Whaling Commision, 46. Schweder & Hjort (2013). Integrating confidence intervals, likelihoods and confidence distributions. Proceedings 59th World Statistics Congress. Schweder & Hjort (2016). Confidence, Likelihood, Probability. Cambridge University Press. Whitehead, Bailey and Elbourne (1999). Combining summaries of binary outcomes with those of continuous outcomes in a meta-analysis. Journal of Biopharmaceutical Statistics. 25/25

Data Fusion with Confidence Curves: The II-CC-FF Paradigm

Data Fusion with Confidence Curves: The II-CC-FF Paradigm 1/23 Data Fusion with Confidence Curves: The II-CC-FF Paradigm Nils Lid Hjort (with Céline Cunen) Department of Mathematics, University of Oslo BFF4, Harvard, May 2017 2/23 The problem: Combining information

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

Confidence is epistemic probability

Confidence is epistemic probability Confidence is epistemic probability Tore Schweder Dept of Economics University of Oslo Oslo Workshop, 11. May 2015 Oslo Workshop, 11. May 2015 1 / Overview 1662 Confidence is epistemic probability Confidence

More information

BFF Four: Are we Converging?

BFF Four: Are we Converging? BFF Four: Are we Converging? Nancy Reid May 2, 2017 Classical Approaches: A Look Way Back Nature of Probability BFF one to three: a look back Comparisons Are we getting there? BFF Four Harvard, May 2017

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Part 2: One-parameter models

Part 2: One-parameter models Part 2: One-parameter models 1 Bernoulli/binomial models Return to iid Y 1,...,Y n Bin(1, ). The sampling model/likelihood is p(y 1,...,y n ) = P y i (1 ) n P y i When combined with a prior p( ), Bayes

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

MAS3301 Bayesian Statistics Problems 5 and Solutions

MAS3301 Bayesian Statistics Problems 5 and Solutions MAS3301 Bayesian Statistics Problems 5 and Solutions Semester 008-9 Problems 5 1. (Some of this question is also in Problems 4). I recorded the attendance of students at tutorials for a module. Suppose

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data Yehua Li Department of Statistics University of Georgia Yongtao

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Jin Kyung Park International Vaccine Institute Min Woo Chae Seoul National University R. Leon Ochiai International

More information

Practical considerations for survival models

Practical considerations for survival models Including historical data in the analysis of clinical trials using the modified power prior Practical considerations for survival models David Dejardin 1 2, Joost van Rosmalen 3 and Emmanuel Lesaffre 1

More information

Group Sequential Tests for Delayed Responses

Group Sequential Tests for Delayed Responses Group Sequential Tests for Delayed Responses Lisa Hampson Department of Mathematics and Statistics, Lancaster University, UK Chris Jennison Department of Mathematical Sciences, University of Bath, UK Read

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data Comparison of multiple imputation methods for systematically and sporadically missing multilevel data V. Audigier, I. White, S. Jolani, T. Debray, M. Quartagno, J. Carpenter, S. van Buuren, M. Resche-Rigon

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test L. García Barrado 1 E. Coart 2 T. Burzykowski 1,2 1 Interuniversity Institute for Biostatistics and

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke BIOL 51A - Biostatistics 1 1 Lecture 1: Intro to Biostatistics Smoking: hazardous? FEV (l) 1 2 3 4 5 No Yes Smoke BIOL 51A - Biostatistics 1 2 Box Plot a.k.a box-and-whisker diagram or candlestick chart

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Bernoulli and Poisson models

Bernoulli and Poisson models Bernoulli and Poisson models Bernoulli/binomial models Return to iid Y 1,...,Y n Bin(1, ). The sampling model/likelihood is p(y 1,...,y n ) = P y i (1 ) n P y i When combined with a prior p( ), Bayes rule

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Survival Analysis for Case-Cohort Studies

Survival Analysis for Case-Cohort Studies Survival Analysis for ase-ohort Studies Petr Klášterecký Dept. of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, harles University, Prague, zech Republic e-mail: petr.klasterecky@matfyz.cz

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

1 Introduction. 2 Example

1 Introduction. 2 Example Statistics: Multilevel modelling Richard Buxton. 2008. Introduction Multilevel modelling is an approach that can be used to handle clustered or grouped data. Suppose we are trying to discover some of the

More information

Personalized Treatment Selection Based on Randomized Clinical Trials. Tianxi Cai Department of Biostatistics Harvard School of Public Health

Personalized Treatment Selection Based on Randomized Clinical Trials. Tianxi Cai Department of Biostatistics Harvard School of Public Health Personalized Treatment Selection Based on Randomized Clinical Trials Tianxi Cai Department of Biostatistics Harvard School of Public Health Outline Motivation A systematic approach to separating subpopulations

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 CS students: don t forget to re-register in CS-535D. Even if you just audit this course, please do register.

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

BIOS 312: Precision of Statistical Inference

BIOS 312: Precision of Statistical Inference and Power/Sample Size and Standard Errors BIOS 312: of Statistical Inference Chris Slaughter Department of Biostatistics, Vanderbilt University School of Medicine January 3, 2013 Outline Overview and Power/Sample

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

One-stage dose-response meta-analysis

One-stage dose-response meta-analysis One-stage dose-response meta-analysis Nicola Orsini, Alessio Crippa Biostatistics Team Department of Public Health Sciences Karolinska Institutet http://ki.se/en/phs/biostatistics-team 2017 Nordic and

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Graduate Econometrics I: What is econometrics?

Graduate Econometrics I: What is econometrics? Graduate Econometrics I: What is econometrics? Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: What is econometrics?

More information

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Test of Association between Two Ordinal Variables while Adjusting for Covariates

Test of Association between Two Ordinal Variables while Adjusting for Covariates Test of Association between Two Ordinal Variables while Adjusting for Covariates Chun Li, Bryan Shepherd Department of Biostatistics Vanderbilt University May 13, 2009 Examples Amblyopia http://www.medindia.net/

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris.

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris. /pgf/stepx/.initial=1cm, /pgf/stepy/.initial=1cm, /pgf/step/.code=1/pgf/stepx/.expanded=- 10.95415pt,/pgf/stepy/.expanded=- 10.95415pt, /pgf/step/.value required /pgf/images/width/.estore in= /pgf/images/height/.estore

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Statistical Analysis of List Experiments

Statistical Analysis of List Experiments Statistical Analysis of List Experiments Graeme Blair Kosuke Imai Princeton University December 17, 2010 Blair and Imai (Princeton) List Experiments Political Methodology Seminar 1 / 32 Motivation Surveys

More information

Estimating viability

Estimating viability Estimating viability Introduction Being able to make predictions with known (or estimated) viabilities, doesn t do us a heck of a lot of good unless we can figure out what those viabilities are. Fortunately,

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data International Mathematical Forum, 3, 2008, no. 33, 1643-1654 Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data A. Al-khedhairi Department of Statistics and O.R. Faculty

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University September 28,

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti Good Confidence Intervals for Categorical Data Analyses Alan Agresti Department of Statistics, University of Florida visiting Statistics Department, Harvard University LSHTM, July 22, 2011 p. 1/36 Outline

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models 26 March 2014 Overview Continuously observed data Three-state illness-death General robust estimator Interval

More information

Probabilistic Index Models

Probabilistic Index Models Probabilistic Index Models Jan De Neve Department of Data Analysis Ghent University M3 Storrs, Conneticut, USA May 23, 2017 Jan.DeNeve@UGent.be 1 / 37 Introduction 2 / 37 Introduction to Probabilistic

More information

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Modeling Sub-Visible Particle Data Product Held at Accelerated Stability Conditions José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Outline Sub-Visible Particle (SbVP) Poisson Negative Binomial

More information

The Hybrid Likelihood: Combining Parametric and Empirical Likelihoods

The Hybrid Likelihood: Combining Parametric and Empirical Likelihoods 1/25 The Hybrid Likelihood: Combining Parametric and Empirical Likelihoods Nils Lid Hjort (with Ingrid Van Keilegom and Ian McKeague) Department of Mathematics, University of Oslo Building Bridges (at

More information

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS 776 1 14 G-Estimation G-Estimation of Structural Nested Models ( 14) Outline 14.1 The causal question revisited 14.2 Exchangeability revisited

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

Treatment and analysis of data Applied statistics Lecture 4: Estimation

Treatment and analysis of data Applied statistics Lecture 4: Estimation Treatment and analysis of data Applied statistics Lecture 4: Estimation Topics covered: Hierarchy of estimation methods Modelling of data The likelihood function The Maximum Likelihood Estimate (MLE) Confidence

More information

TGDR: An Introduction

TGDR: An Introduction TGDR: An Introduction Julian Wolfson Student Seminar March 28, 2007 1 Variable Selection 2 Penalization, Solution Paths and TGDR 3 Applying TGDR 4 Extensions 5 Final Thoughts Some motivating examples We

More information

Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research

Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research Research Methods Festival Oxford 9 th July 014 George Leckie

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Distribution-free ROC Analysis Using Binary Regression Techniques

Distribution-free ROC Analysis Using Binary Regression Techniques Distribution-free Analysis Using Binary Techniques Todd A. Alonzo and Margaret S. Pepe As interpreted by: Andrew J. Spieker University of Washington Dept. of Biostatistics Introductory Talk No, not that!

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36

Last week. posterior marginal density. exact conditional density. LTCC Likelihood Theory Week 3 November 19, /36 Last week Nuisance parameters f (y; ψ, λ), l(ψ, λ) posterior marginal density π m (ψ) =. c (2π) q el P(ψ) l P ( ˆψ) j P ( ˆψ) 1/2 π(ψ, ˆλ ψ ) j λλ ( ˆψ, ˆλ) 1/2 π( ˆψ, ˆλ) j λλ (ψ, ˆλ ψ ) 1/2 l p (ψ) =

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. semi-parametric likelihood, partial likelihood 3. empirical likelihood,

More information

Model Assumptions; Predicting Heterogeneity of Variance

Model Assumptions; Predicting Heterogeneity of Variance Model Assumptions; Predicting Heterogeneity of Variance Today s topics: Model assumptions Normality Constant variance Predicting heterogeneity of variance CLP 945: Lecture 6 1 Checking for Violations of

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus Multivariate Capability Analysis Using Statgraphics Presented by Dr. Neil W. Polhemus Multivariate Capability Analysis Used to demonstrate conformance of a process to requirements or specifications that

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Centering Predictor and Mediator Variables in Multilevel and Time-Series Models

Centering Predictor and Mediator Variables in Multilevel and Time-Series Models Centering Predictor and Mediator Variables in Multilevel and Time-Series Models Tihomir Asparouhov and Bengt Muthén Part 2 May 7, 2018 Tihomir Asparouhov and Bengt Muthén Part 2 Muthén & Muthén 1/ 42 Overview

More information

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Patrick J. Heagerty PhD Department of Biostatistics University of Washington 166 ISCB 2010 Session Four Outline Examples

More information