S6880 #6. Random Number Generation #2: Testing RNGs

Size: px
Start display at page:

Download "S6880 #6. Random Number Generation #2: Testing RNGs"

Transcription

1 S6880 #6 Random Number Generation #2: Testing RNGs

2 1 Testing Uniform RNGs Theoretical Tests Outline 2 Empirical Tests for Independence Gap Tests Runs Test Coupon Collectors Test The Poker Test 3 Other Tests Tests for Uniformity Tests of Pairs, and k-tuples 4 Test Suites for RNGs Test Suites for RNGs (WMU) S6880 #6 S6880, Class Notes #6 2 / 20

3 Theoretical Tests no realizations of the generator needed, decide whether the period is large enough. Use spectral test. It requires the assumption that the generator is of full period. The method compares, for n-tuples (x 1,..., x n ) = x, the Fourier transformation of the probability function f (x) of theoretically uniform with respect to the Fourier transformation of the probability function g(x) of the generator. (WMU) S6880 #6 S6880, Class Notes #6 3 / 20

4 Example, Knuth (1969) for mixed-congruential generator. Denote the Fourier transforms of f and g by F and G, respectively. f U{0, 1,, m 1} n U(R). F = exp{ 2πi m (s x)}f (x), s = (s 1,..., s n ) x R { 1, if s = 0 = (0,, 0) = 0, elsewhere Can show that G(s) 0 for some s 0 which indicate the departures from random uniformity. Let A = {s : s 0, n 1 k=0 s jα k m 0}, ν n = min s, c n = πn/2 νn n (Knuth, 1969) s A )!m Larger value of c n generally indicate more randomness. Knuth recommended c 2, c 3, c for minimal acceptability of the generator ideally, c n > 1, n. ( n 2 (WMU) S6880 #6 S6880, Class Notes #6 4 / 20

5 1 Testing Uniform RNGs Theoretical Tests Outline 2 Empirical Tests for Independence Gap Tests Runs Test Coupon Collectors Test The Poker Test 3 Other Tests Tests for Uniformity Tests of Pairs, and k-tuples 4 Test Suites for RNGs Test Suites for RNGs (WMU) S6880 #6 S6880, Class Notes #6 5 / 20

6 Gap Tests Empirical tests need realizations of the generator. Fix 0 < α < β < 1 and consider the lengths of gaps for which U i (α, β). [ ) u 4 u 7 u 2 u 1 u 5 u 6 u 3 0 α β 1 Gap lengths are 0, 3, 0,... Theoretically, if U i s are independent, then the distribution of gap length should be geometric with parameter P(α < U i < β) = β α and that successive gap lengths are independent. Can use a chi-square test. (WMU) S6880 #6 S6880, Class Notes #6 6 / 20

7 Gaps Test Example U 1 =.563, U 2 =.624, U i 1 (U i 1 + U i 2 ). Then U 3 =.187, U 4 =.811,... > u <- c(.563,.624, numeric(48)) > for(i in 3:50)u[i] <- zapsmall(u[i-2]+u[i-1]) %% 1 > u [1] [11] [21] [31] [41] Take α =.4 and β =.6 then the gap lengths are 0, 7, 0, 1, 0, 0, 1, 0, 0, 3, 0, 5, 0, 4, 0, 5, 0, 0, 1, 0, 0, 4, 0, 5 (WMU) S6880 #6 S6880, Class Notes #6 7 / 20

8 Gaps Test Example, cont d k > 7 O n = 24 E Note: Gap length Geometric(.2) (since β α =.2) > round(c(dgeom(0:7,.2), pgeom(7,.2,lower=f))*24, 2) [1] (WMU) S6880 #6 S6880, Class Notes #6 8 / 20

9 Runs Test runs up = increasing subsequences runs down = decreasing subsequences Can consider runs up only runs down only runs up and down (WMU) S6880 #6 S6880, Class Notes #6 9 / 20

10 Runs Tests, cont d 1 Total number of runs, T = 5 in the example above. See nonparametric books for critical values for n < 25. For n 25, use approximation test with continuity correction: T N ( 2n 1, 3 16n 29) 90 2 Number of runs of each given length (Levene & Wolfowitz, 1944): #terms 1, runs up and down e.g. above : 1, 2, 1, 1, 3 length of a run = #terms, runs up only or runs down only e.g. above : 2, 1, 2, 4 (WMU) S6880 #6 S6880, Class Notes #6 10 / 20

11 Runs Tests, cont d In a sequence of length n: { #runs of length i, for i = 1, 2,, 5 n i = #runs of length 6 or greater, for i = 6. Denote E(R i ), the expected number of runs of length i, for i = 1,, 5; and E(R 6 ), the expected number of runs of length 6 or greater. It can be shown E(R i ) = { (2i 2 +6i+2)n (i+3)! 2i3 +6i 2 2i 8 (i+3)!, i = 1, 2,, 5 2(7n 41) 8!, i = 6. (WMU) S6880 #6 S6880, Class Notes #6 11 / 20

12 Runs Tests, cont d Let cov 1 (R) = [a ij ] = (symmetric) T = 1 n 6 6 [n i E(R i )][n j E(R j )]a ij i=1 j=1 Under H 0 of independence, T χ 2 (6) for large n (WMU) S6880 #6 S6880, Class Notes #6 12 / 20

13 Coupon Collectors Test Denote L, the length of sequences needed to collect all integers 0, 1,, k 1. Assume that each integer has probability 1 k of being collected (discrete uniform!) Then the length has distribution P(L = n) = 1 k 1 ( ) k 1 k n 1 ( 1) j (k 1 j) n 1, n = k, k + 1, j j=0 E(L) = k ( 1 k + 1 k ) 1 Var(L) = k 2( 1 k (k 1) ) 1 2 k ( 1 k + 1 k ) 1 from von Schelling (1954), American Mathematics Monthly. Observe sequence of digits until obtaining m complete sets and then use chi-square test. (WMU) S6880 #6 S6880, Class Notes #6 13 / 20

14 The Poker Test Consider various patterns analogous to poker hands in groups of five consecutive digits in a sample. For example, say partition in g = 5 different hands C 1 = { five of a kind }, C 2 = { full house, four of a kind }, C 3 = { three of a kind, two pairs }, C 4 = { one pair }, C 5 = { all different }. n groups of five consecutive digits were sampled, O i = observed # of times (groups) having hand C i. H 0 : digits i.i.d. discrete uniform. Then calculate Use χ 2 (4) test. E i = np(c i H 0 ) = expected #times having C i (WMU) S6880 #6 S6880, Class Notes #6 14 / 20

15 Other Tests include (but not limited to) permutation test digit frequency test serial correlation test (WMU) S6880 #6 S6880, Class Notes #6 15 / 20

16 1 Testing Uniform RNGs Theoretical Tests Outline 2 Empirical Tests for Independence Gap Tests Runs Test Coupon Collectors Test The Poker Test 3 Other Tests Tests for Uniformity Tests of Pairs, and k-tuples 4 Test Suites for RNGs Test Suites for RNGs (WMU) S6880 #6 S6880, Class Notes #6 16 / 20

17 Tests for Uniformity Kolmogorov-Smirov test: max F n (x) x using empirical C.D.F. F n. Chi-square test based on dividing (0,1) into intervals (WMU) S6880 #6 S6880, Class Notes #6 17 / 20

18 Tests of Uniformity of k-tuples {(U ki,, U ki +k 1)}, dividing [0, 1] k into a number of small regions. These types of tests require a large number of observations. (WMU) S6880 #6 S6880, Class Notes #6 18 / 20

19 1 Testing Uniform RNGs Theoretical Tests Outline 2 Empirical Tests for Independence Gap Tests Runs Test Coupon Collectors Test The Poker Test 3 Other Tests Tests for Uniformity Tests of Pairs, and k-tuples 4 Test Suites for RNGs Test Suites for RNGs (WMU) S6880 #6 S6880, Class Notes #6 19 / 20

20 Test Suites for Random Number Generators Knuth s TAOCP (The Art Of Computer Programming, Vol. 2) was the de facto standard test suite for a long time since George Marsaglia s Diehard test batteries, 1995 to present NIST RNG test suite, 2001 TestU01: L Ecuyer, P. & Simard, R. (2007) ACM Trans. on Math. Software 33(4) (WMU) S6880 #6 S6880, Class Notes #6 20 / 20

21 Test Suites for Random Number Generators Knuth s TAOCP (The Art Of Computer Programming, Vol. 2) was the de facto standard test suite for a long time since George Marsaglia s Diehard test batteries, 1995 to present NIST RNG test suite, 2001 TestU01: L Ecuyer, P. & Simard, R. (2007) ACM Trans. on Math. Software 33(4) (WMU) S6880 #6 S6880, Class Notes #6 20 / 20

22 Test Suites for Random Number Generators Knuth s TAOCP (The Art Of Computer Programming, Vol. 2) was the de facto standard test suite for a long time since George Marsaglia s Diehard test batteries, 1995 to present NIST RNG test suite, 2001 TestU01: L Ecuyer, P. & Simard, R. (2007) ACM Trans. on Math. Software 33(4) (WMU) S6880 #6 S6880, Class Notes #6 20 / 20

23 Test Suites for Random Number Generators Knuth s TAOCP (The Art Of Computer Programming, Vol. 2) was the de facto standard test suite for a long time since George Marsaglia s Diehard test batteries, 1995 to present NIST RNG test suite, 2001 TestU01: L Ecuyer, P. & Simard, R. (2007) ACM Trans. on Math. Software 33(4) (WMU) S6880 #6 S6880, Class Notes #6 20 / 20

24 Test Suites for Random Number Generators Knuth s TAOCP (The Art Of Computer Programming, Vol. 2) was the de facto standard test suite for a long time since George Marsaglia s Diehard test batteries, 1995 to present NIST RNG test suite, 2001 TestU01: L Ecuyer, P. & Simard, R. (2007) ACM Trans. on Math. Software 33(4) (WMU) S6880 #6 S6880, Class Notes #6 20 / 20

Lehmer Random Number Generators: Introduction

Lehmer Random Number Generators: Introduction Lehmer Random Number Generators: Introduction Revised version of the slides based on the book Discrete-Event Simulation: a first course LL Leemis & SK Park Section(s) 21, 22 c 2006 Pearson Ed, Inc 0-13-142917-5

More information

A Repetition Test for Pseudo-Random Number Generators

A Repetition Test for Pseudo-Random Number Generators Monte Carlo Methods and Appl., Vol. 12, No. 5-6, pp. 385 393 (2006) c VSP 2006 A Repetition Test for Pseudo-Random Number Generators Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen SAM, Mathematik, ETHZ,

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Uniform random numbers generators

Uniform random numbers generators Uniform random numbers generators Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2707/ OUTLINE: The need for random numbers; Basic steps in generation; Uniformly

More information

1.1 Linear Congruential Method D. H. Lehmer [15] introduced in 1948 the idea of generating a random number sequence using the following formula: X n+1

1.1 Linear Congruential Method D. H. Lehmer [15] introduced in 1948 the idea of generating a random number sequence using the following formula: X n+1 Testing Pseudo-Random Number Generators Abstract Julian Ortiz C. and Clayton V. Deutsch (jmo1@ualberta.ca - cdeutsch@civil.ualberta.ca) Department of Civil& Environmental Engineering, University of Alberta

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 2: Random Numbers http://www.wiley.com/go/smed What are random numbers good for (according to D.E. Knuth) simulation sampling numerical analysis computer

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Uniform Random Binary Floating Point Number Generation

Uniform Random Binary Floating Point Number Generation Uniform Random Binary Floating Point Number Generation Prof. Dr. Thomas Morgenstern, Phone: ++49.3943-659-337, Fax: ++49.3943-659-399, tmorgenstern@hs-harz.de, Hochschule Harz, Friedrichstr. 57-59, 38855

More information

( ) ( ) Monte Carlo Methods Interested in. E f X = f x d x. Examples:

( ) ( ) Monte Carlo Methods Interested in. E f X = f x d x. Examples: Monte Carlo Methods Interested in Examples: µ E f X = f x d x Type I error rate of a hypothesis test Mean width of a confidence interval procedure Evaluating a likelihood Finding posterior mean and variance

More information

Testing the Reliability of Statistical Tests for Pseudorandom Number Generators

Testing the Reliability of Statistical Tests for Pseudorandom Number Generators Testing the Reliability of Statistical Tests for Pseudorandom Number Generators Hiroshi Haramoto (Ehime Univ.) joint work with Makoto Matsumoto (Hiroshima Univ.) July, 3rd, 2018 This work is supported

More information

So far we discussed random number generators that need to have the maximum length period.

So far we discussed random number generators that need to have the maximum length period. So far we discussed random number generators that need to have the maximum length period. Even the increment series has the maximum length period yet it is by no means random How do we decide if a generator

More information

Slides 3: Random Numbers

Slides 3: Random Numbers Slides 3: Random Numbers We previously considered a few examples of simulating real processes. In order to mimic real randomness of events such as arrival times we considered the use of random numbers

More information

Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014 Introduction Introduction Random Numbers (RNs) are a necessary basic ingredient in the simulation

More information

Sum-discrepancy test on pseudorandom number generators

Sum-discrepancy test on pseudorandom number generators Sum-discrepancy test on pseudorandom number generators Makoto Matsumoto a,, Takuji Nishimura b a Faculty of Science, Hiroshima University, Hiroshima 739-8526, JAPAN b Faculty of Science, Yamagata University,

More information

Random number generation

Random number generation CE 391F April 4, 2013 ANNOUNCEMENTS Homework 3 due today Homework 4 coming... Announcements Webinar announcement Femke van Wageningen-Kessels from TU Delft will be giving a webinar titled Traffic Flow

More information

Pseudo-Random Numbers Generators. Anne GILLE-GENEST. March 1, Premia Introduction Definitions Good generators...

Pseudo-Random Numbers Generators. Anne GILLE-GENEST. March 1, Premia Introduction Definitions Good generators... 14 pages 1 Pseudo-Random Numbers Generators Anne GILLE-GENEST March 1, 2012 Contents Premia 14 1 Introduction 2 1.1 Definitions............................. 2 1.2 Good generators..........................

More information

Uniform and Exponential Random Floating Point Number Generation

Uniform and Exponential Random Floating Point Number Generation Uniform and Exponential Random Floating Point Number Generation Thomas Morgenstern Hochschule Harz, Friedrichstr. 57-59, D-38855 Wernigerode tmorgenstern@hs-harz.de Summary. Pseudo random number generators

More information

Tae-Soo Kim and Young-Kyun Yang

Tae-Soo Kim and Young-Kyun Yang Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 85 93 ON THE INITIAL SEED OF THE RANDOM NUMBER GENERATORS Tae-Soo Kim and Young-Kyun Yang Abstract. A good arithmetic random number generator should possess

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors ANZIAM J. 48 (CTAC2006) pp.c188 C202, 2007 C188 Some long-period random number generators using shifts and xors Richard P. Brent 1 (Received 6 July 2006; revised 2 July 2007) Abstract Marsaglia recently

More information

Random Number Generators: Metrics and Tests for Uniformity and Randomness

Random Number Generators: Metrics and Tests for Uniformity and Randomness Random Number Generators: Metrics and Tests for Uniformity and Randomness E. A. Yfantis and J. B. Pedersen Image Processing, Computer Vision and Machine Intelligence Lab School of Computer Science College

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 43 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA March 1, 2016 2 / 43 Outline 1 Introduction 2 Some Generators We Won t

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors Some long-period random number generators using shifts and xors Richard. P. Brent 2 July 2007 Abstract Marsaglia recently introduced a class of xorshift random number generators (RNGs) with periods 2 n

More information

On the Xorshift Random Number Generators

On the Xorshift Random Number Generators On the Xorshift Random Number Generators FRANÇOIS PANNETON and PIERRE L ECUYER Université de Montréal G. Marsaglia introduced recently a class of very fast xorshift random number generators, whose implementation

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 41 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/13/16 2 / 41 Outline 1 Introduction 2 Some Lousy Generators We Won t

More information

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

Resolution-Stationary Random Number Generators

Resolution-Stationary Random Number Generators Resolution-Stationary Random Number Generators Francois Panneton Caisse Centrale Desjardins, 1 Complexe Desjardins, bureau 2822 Montral (Québec), H5B 1B3, Canada Pierre L Ecuyer Département d Informatique

More information

Generating Uniform Random Numbers

Generating Uniform Random Numbers 1 / 44 Generating Uniform Random Numbers Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/29/17 2 / 44 Outline 1 Introduction 2 Some Lousy Generators We Won t

More information

2 P. L'Ecuyer and R. Simard otherwise perform well in the spectral test, fail this independence test in a decisive way. LCGs with multipliers that hav

2 P. L'Ecuyer and R. Simard otherwise perform well in the spectral test, fail this independence test in a decisive way. LCGs with multipliers that hav Beware of Linear Congruential Generators with Multipliers of the form a = 2 q 2 r Pierre L'Ecuyer and Richard Simard Linear congruential random number generators with Mersenne prime modulus and multipliers

More information

Some long-period random number generators using shifts and xors

Some long-period random number generators using shifts and xors Introduction Some long-period random number generators using shifts and xors Richard P. Brent MSI & RSISE, ANU Canberra, ACT 0200 CTAC06@rpbrent.com Marsaglia recently proposed a class of uniform random

More information

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary CPSC 531: Random Numbers Jonathan Hudson Department of Computer Science University of Calgary http://www.ucalgary.ca/~hudsonj/531f17 Introduction In simulations, we generate random values for variables

More information

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba B.N.Bandodkar College of Science, Thane Random-Number Generation Mrs M.J.Gholba Properties of Random Numbers A sequence of random numbers, R, R,., must have two important statistical properties, uniformity

More information

Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds. Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds. HISTORY OF UNIFORM RANDOM NUMBER GENERATION Pierre L Ecuyer

More information

NEW RESULTS CONCERNING THE POWER OF NIST RANDOMNESS TESTS

NEW RESULTS CONCERNING THE POWER OF NIST RANDOMNESS TESTS THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 18, Special Issue 2017, pp 381-388 NEW RESULTS CONCERNING THE POWER OF NIST RANDOMNESS TESTS Carmina GEORGESCU,

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

2008 Winton. Review of Statistical Terminology

2008 Winton. Review of Statistical Terminology 1 Review of Statistical Terminology 2 Formal Terminology An experiment is a process whose outcome is not known with certainty The experiment s sample space S is the set of all possible outcomes. A random

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

Random Numbers. Pierre L Ecuyer

Random Numbers. Pierre L Ecuyer 1 Random Numbers Pierre L Ecuyer Université de Montréal, Montréal, Québec, Canada Random numbers generators (RNGs) are available from many computer software libraries. Their purpose is to produce sequences

More information

A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES

A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. I (April, 2017), pp. 185-193 A NEW RANDOM NUMBER GENERATOR USING FIBONACCI SERIES KOTTA NAGALAKSHMI RACHANA 1 AND SOUBHIK

More information

A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers

A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers University of Colorado Boulder From the SelectedWorks of Paul Beale 2014 A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers Paul Beale, University

More information

Uniform Random Number Generators

Uniform Random Number Generators JHU 553.633/433: Monte Carlo Methods J. C. Spall 25 September 2017 CHAPTER 2 RANDOM NUMBER GENERATION Motivation and criteria for generators Linear generators (e.g., linear congruential generators) Multiple

More information

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring Independent Events Two events are independent if knowing that one occurs does not change the probability of the other occurring Conditional probability is denoted P(A B), which is defined to be: P(A and

More information

Connexions and the Gumbel Distribution

Connexions and the Gumbel Distribution Connexions and the Gumbel Distribution Myron Hlynka Department of Mathematics and Statistics University of Windsor Windsor, ON, Canada. October, 2016 Myron Hlynka (University of Windsor) Connexions and

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation APPM 7400 Lesson 3: Testing Random Number Generators Part II: Uniformity September 5, 2018 Lesson 3: Testing Random Number GeneratorsPart II: Uniformity Stochastic Simulation September

More information

Application of Variance Homogeneity Tests Under Violation of Normality Assumption

Application of Variance Homogeneity Tests Under Violation of Normality Assumption Application of Variance Homogeneity Tests Under Violation of Normality Assumption Alisa A. Gorbunova, Boris Yu. Lemeshko Novosibirsk State Technical University Novosibirsk, Russia e-mail: gorbunova.alisa@gmail.com

More information

Using Information Theory Approach to Randomness Testing

Using Information Theory Approach to Randomness Testing Using Information Theory Approach to Randomness Testing B. Ya. Ryabko and V.A. Monarev Abstract We address the problem of detecting deviations of binary sequence from randomness,which is very important

More information

arxiv: v1 [math.nt] 20 Jun 2017

arxiv: v1 [math.nt] 20 Jun 2017 Pseudorandom number generator based on the Bernoulli map on cubic algebraic integers Asaki Saito 1, and Akihiro Yamaguchi 2 1 Future University Hakodate, 116-2 Kamedanakano-cho, arxiv:1706.08472v1 [math.nt]

More information

Random Variate Generation

Random Variate Generation Random Variate Generation 28-1 Overview 1. Inverse transformation 2. Rejection 3. Composition 4. Convolution 5. Characterization 28-2 Random-Variate Generation General Techniques Only a few techniques

More information

Random Number Generators - a brief assessment of those available

Random Number Generators - a brief assessment of those available Random Number Generators - a brief assessment of those available Anna Mills March 30, 2003 1 Introduction Nothing in nature is random...a thing appears random only through the incompleteness of our knowledge.

More information

Monte Carlo Methods. Dirk P. Kroese. Department of Mathematics School of Mathematics and Physics The University of Queensland

Monte Carlo Methods. Dirk P. Kroese. Department of Mathematics School of Mathematics and Physics The University of Queensland Monte Carlo Methods Dirk P. Kroese Department of Mathematics School of Mathematics and Physics The University of Queensland kroese@maths.uq.edu.au http://www.maths.uq.edu.au/~kroese c These notes were

More information

Antipodal Labelings for Cycles

Antipodal Labelings for Cycles Antipodal Labelings for Cycles Justie Su-Tzu Juan and Daphne Der-Fen Liu Submitted: December 2006; revised: August 2007 Abstract Let G be a graph with diameter d. An antipodal labeling of G is a function

More information

Stochastic Simulation of Communication Networks

Stochastic Simulation of Communication Networks Stochastic Simulation of Communication Networks Part 2 Amanpreet Singh (aps) Dr.-Ing Umar Toseef (umr) (@comnets.uni-bremen.de) Prof. Dr. C. Görg www.comnets.uni-bremen.de VSIM 2-1 Table of Contents 1

More information

Consistency of Modularity Clustering on Random Geometric Graphs

Consistency of Modularity Clustering on Random Geometric Graphs Consistency of Modularity Clustering on Random Geometric Graphs Erik Davis The University of Arizona May 10, 2016 Outline Introduction to Modularity Clustering Pointwise Convergence Convergence of Optimal

More information

Pseudorandom number generators based on random covers for finite groups

Pseudorandom number generators based on random covers for finite groups Pseudorandom number generators based on random covers for finite groups Pascal Marquardt Pavol Svaba Tran van Trung Institut für Experimentelle Mathematik Universität Duisburg-Essen Ellernstrasse 29 45326

More information

arxiv:hep-lat/ v2 10 Aug 1993

arxiv:hep-lat/ v2 10 Aug 1993 1 A Comparative Study of Some Pseudorandom Number Generators I. Vattulainen 1, K. Kankaala 1,2, J. Saarinen 1, and T. Ala-Nissila 1,3 arxiv:hep-lat/9304008 v2 10 Aug 1993 1 Department of Electrical Engineering

More information

Review of Statistical Terminology

Review of Statistical Terminology Review of Statistical Terminology An experiment is a process whose outcome is not known with certainty. The experiment s sample space S is the set of all possible outcomes. A random variable is a function

More information

L3 Monte-Carlo integration

L3 Monte-Carlo integration RNG MC IS Examination RNG MC IS Examination Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 Monte-Carlo integration Generating pseudo-random numbers: Rejection sampling Conditional

More information

5 Introduction to the Theory of Order Statistics and Rank Statistics

5 Introduction to the Theory of Order Statistics and Rank Statistics 5 Introduction to the Theory of Order Statistics and Rank Statistics This section will contain a summary of important definitions and theorems that will be useful for understanding the theory of order

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

Statistics 3657 : Moment Approximations

Statistics 3657 : Moment Approximations Statistics 3657 : Moment Approximations Preliminaries Suppose that we have a r.v. and that we wish to calculate the expectation of g) for some function g. Of course we could calculate it as Eg)) by the

More information

NONPARAMETRIC TESTS. LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-12

NONPARAMETRIC TESTS. LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-12 NONPARAMETRIC TESTS LALMOHAN BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-1 lmb@iasri.res.in 1. Introduction Testing (usually called hypothesis testing ) play a major

More information

Sources of randomness

Sources of randomness Random Number Generator Chapter 7 In simulations, we generate random values for variables with a specified distribution Ex., model service times using the exponential distribution Generation of random

More information

Testing Independence of Parallel Pseudorandom Number Streams. Incorporating the Data s Multivariate Nature. Chester Ismay

Testing Independence of Parallel Pseudorandom Number Streams. Incorporating the Data s Multivariate Nature. Chester Ismay Testing Independence of Parallel Pseudorandom Number Streams Incorporating the Data s Multivariate Nature by Chester Ismay A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree

More information

PREDICTING MASKED LINEAR PSEUDORANDOM NUMBER GENERATORS OVER FINITE FIELDS

PREDICTING MASKED LINEAR PSEUDORANDOM NUMBER GENERATORS OVER FINITE FIELDS PREDICTING MASKED LINEAR PSEUDORANDOM NUMBER GENERATORS OVER FINITE FIELDS JAIME GUTIERREZ, ÁLVAR IBEAS, DOMINGO GÓMEZ-PEREZ, AND IGOR E. SHPARLINSKI Abstract. We study the security of the linear generator

More information

The performance of a maximum-period multiple recursive generator (MRG) depends on the choices of the

The performance of a maximum-period multiple recursive generator (MRG) depends on the choices of the Published online ahead of print October 17, 2011 INFORMS Journal on Computing Articles in Advance, pp. 1 12 issn 1091-9856 eissn 1526-5528 http://dx.doi.org/10.1287/ijoc.1110.0477 2011 INFORMS Large-Order

More information

Random numbers and generators

Random numbers and generators Chapter 2 Random numbers and generators Random numbers can be generated experimentally, like throwing dice or from radioactive decay measurements. In numerical calculations one needs, however, huge set

More information

We examine some properties of the points produced by certain classes of long-period linear multiple recursive

We examine some properties of the points produced by certain classes of long-period linear multiple recursive INFORMS Journal on Computing Articles in Advance, pp. 2 ISSN 09-9856 (print) ISSN 526-5528 (online) http://dx.doi.org/0.287/ijoc.203.0576 204 INFORMS On the Lattice Structure of a Special Class of Multiple

More information

A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers

A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers A new class of scalable parallel pseudorandom number generators based on Pohlig-Hellman exponentiation ciphers Paul D. Beale University of Colorado Boulder (Dated: December 9, 2014) We propose a new class

More information

Stochastic Simulation of

Stochastic Simulation of Stochastic Simulation of Communication Networks -WS 2014/2015 Part 2 Random Number Generation Prof. Dr. C. Görg www.comnets.uni-bremen.de VSIM 2-1 Table of Contents 1 General Introduction 2 Random Number

More information

Transformations and Expectations

Transformations and Expectations Transformations and Expectations 1 Distributions of Functions of a Random Variable If is a random variable with cdf F (x), then any function of, say g(), is also a random variable. Sine Y = g() is a function

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

meeeeeee~he EEEEEEE~hhhE *flflflflflflii 7 UCLSSFID S.-T-8-9AUG 82 JR CRIGLER. P A SHIELDS

meeeeeee~he EEEEEEE~hhhE *flflflflflflii 7 UCLSSFID S.-T-8-9AUG 82 JR CRIGLER. P A SHIELDS AD-AILS 412 NAVAL SURFACE WEAPONS CENTER DAHLGREN VA F/A 12/1 RANDOM: A COMPUTER PROGRAM FOR EVALUATING PSEUDO-UNIFORM RANDOM -ETC(U) 7 UCLSSFID S.-T-8-9AUG 82 JR CRIGLER. P A SHIELDS FI *flflflflflflii

More information

Numerical methods for lattice field theory

Numerical methods for lattice field theory Numerical methods for lattice field theory Mike Peardon Trinity College Dublin August 9, 2007 Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 9, 2007 1 / 37 Numerical

More information

Diagonal matrix solutions of a discrete-time Lyapunov inequality

Diagonal matrix solutions of a discrete-time Lyapunov inequality Diagonal matrix solutions of a discrete-time Lyapunov inequality Harald K. Wimmer Mathematisches Institut Universität Würzburg D-97074 Würzburg, Germany February 3, 1997 Abstract Diagonal solutions of

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

Generating Random Variables

Generating Random Variables Generating Random Variables Christian Robert Université Paris Dauphine and CREST, INSEE George Casella University of Florida Keywords and Phrases: Random Number Generator, Probability Integral Transform,

More information

A fast random number generator for stochastic simulations

A fast random number generator for stochastic simulations A fast random number generator for stochastic simulations Anthony J. C. Ladd Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611-6005, USA Abstract A discrete random number

More information

Finding Outliers in Monte Carlo Computations

Finding Outliers in Monte Carlo Computations Finding Outliers in Monte Carlo Computations Prof. Michael Mascagni Department of Computer Science Department of Mathematics Department of Scientific Computing Graduate Program in Molecular Biophysics

More information

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Statistical regularity Properties of relative frequency

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

arxiv: v1 [stat.me] 2 Mar 2015

arxiv: v1 [stat.me] 2 Mar 2015 Statistics Surveys Vol. 0 (2006) 1 8 ISSN: 1935-7516 Two samples test for discrete power-law distributions arxiv:1503.00643v1 [stat.me] 2 Mar 2015 Contents Alessandro Bessi IUSS Institute for Advanced

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania Monte Carlo Methods Jesús Fernández-Villaverde University of Pennsylvania 1 Why Monte Carlo? From previous chapter, we want to compute: 1. Posterior distribution: π ³ θ Y T,i = f(y T θ,i)π (θ i) R Θ i

More information

Are Declustered Earthquake Catalogs Poisson?

Are Declustered Earthquake Catalogs Poisson? Are Declustered Earthquake Catalogs Poisson? Philip B. Stark Department of Statistics, UC Berkeley Brad Luen Department of Mathematics, Reed College 14 October 2010 Department of Statistics, Penn State

More information

Notation Precedence Diagram

Notation Precedence Diagram Notation Precedence Diagram xix xxi CHAPTER 1 Introduction 1 1.1. Systems, Models, and Simulation 1 1.2. Verification, Approximation, and Validation 8 1.2.1. Verifying a Program 9 1.2.2. Approximation

More information

Division of Trinomials by Pentanomials and Orthogonal Arrays

Division of Trinomials by Pentanomials and Orthogonal Arrays Division of Trinomials by Pentanomials and Orthogonal Arrays School of Mathematics and Statistics Carleton University daniel@math.carleton.ca Joint work with M. Dewar, L. Moura, B. Stevens and Q. Wang

More information

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains ECE-517: Reinforcement Learning in Artificial Intelligence Lecture 4: Discrete-Time Markov Chains September 1, 215 Dr. Itamar Arel College of Engineering Department of Electrical Engineering & Computer

More information

Lecture 35. Summarizing Data - II

Lecture 35. Summarizing Data - II Math 48 - Mathematical Statistics Lecture 35. Summarizing Data - II April 26, 212 Konstantin Zuev (USC) Math 48, Lecture 35 April 26, 213 1 / 18 Agenda Quantile-Quantile Plots Histograms Kernel Probability

More information

Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function

Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function S. Kuriki (Inst. Stat. Math., Tokyo) and H.-K. Hwang (Academia Sinica) Bernoulli Society

More information

Stream Ciphers: Cryptanalytic Techniques

Stream Ciphers: Cryptanalytic Techniques Stream Ciphers: Cryptanalytic Techniques Thomas Johansson Department of Electrical and Information Technology. Lund University, Sweden ECRYPT Summer school 2007 (Lund University) Stream Ciphers: Cryptanalytic

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 11 Haijun Li Math 576: Quantitative Risk Management Week 11 1 / 21 Outline 1

More information

RECYCLING PHYSICAL RANDOM NUMBERS. Art B. Owen. Technical Report No September 2009

RECYCLING PHYSICAL RANDOM NUMBERS. Art B. Owen. Technical Report No September 2009 RECYCLING PHYSICAL RANDOM NUMBERS By Art B. Owen Technical Report No. 2009-11 September 2009 Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 RECYCLING PHYSICAL RANDOM NUMBERS

More information

IE 303 Discrete-Event Simulation L E C T U R E 6 : R A N D O M N U M B E R G E N E R A T I O N

IE 303 Discrete-Event Simulation L E C T U R E 6 : R A N D O M N U M B E R G E N E R A T I O N IE 303 Discrete-Event Simulation L E C T U R E 6 : R A N D O M N U M B E R G E N E R A T I O N Review of the Last Lecture Continuous Distributions Uniform distributions Exponential distributions and memoryless

More information

Asymptotic results for empirical measures of weighted sums of independent random variables

Asymptotic results for empirical measures of weighted sums of independent random variables Asymptotic results for empirical measures of weighted sums of independent random variables B. Bercu and W. Bryc University Bordeaux 1, France Workshop on Limit Theorems, University Paris 1 Paris, January

More information

On Walsh transform and matrix factorization 1

On Walsh transform and matrix factorization 1 Eighth International Workshop on Optimal Codes and Related Topics July 10-14, 2017, Sofia, Bulgaria pp. 55-60 On Walsh transform and matrix factorization 1 Iliya Bouyukliev iliyab@math.bas.bg Paskal Piperkov

More information

Recall the Basics of Hypothesis Testing

Recall the Basics of Hypothesis Testing Recall the Basics of Hypothesis Testing The level of significance α, (size of test) is defined as the probability of X falling in w (rejecting H 0 ) when H 0 is true: P(X w H 0 ) = α. H 0 TRUE H 1 TRUE

More information

Spectral Analysis of the MIXMAX Random Number Generators

Spectral Analysis of the MIXMAX Random Number Generators Submitted to iinforms Journal on Computing manuscript (Please, provide the manuscript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes

More information

Bivariate Paired Numerical Data

Bivariate Paired Numerical Data Bivariate Paired Numerical Data Pearson s correlation, Spearman s ρ and Kendall s τ, tests of independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information