Autonomous Helicopter Flight via Reinforcement Learning

Size: px
Start display at page:

Download "Autonomous Helicopter Flight via Reinforcement Learning"

Transcription

1 Autonomous Helicopter Flight via Reinforcement Learning Authors: Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry Presenters: Shiv Ballianda, Jerrolyn Hebert, Shuiwang Ji, Kenley Malveaux, Huy Pham

2 Presentation Outline Introduction to Reinforcement Learning (Huy) Background Information (Shuiwang) Pegasus Reinforcement Learning Algorithm (Jerri) Using Algorithm for Helicopter Flight (Kenley and Shiv) Conclusions (Shiv)

3 Context of Reinforcement Learning Artificial Intelligence Psychology Reinforcement Learning (RL) Control Theory and Operations Research Neuroscience Artificial Neural Networks

4 What is Reinforcement Learning? Learning from interaction Goal-oriented learning Learning about, from, and while interacting with an external environment Learning what to do how to map situations to actions so as to maximize a numerical reward signal

5 Supervised Learning Training Info = desired (target) outputs Inputs Supervised Learning System Outputs Error = (target output actual output)

6 Reinforcement Learning Training Info = evaluations ( rewards / penalties ) Inputs RL System Outputs ( actions ) Objective: get as much reward as possible

7 Key Features of RL Learner is not told which actions to take Trial-and-Error search Possibility of delayed reward Sacrifice short-term gains for greater long-term gains The need to explore and exploit Considers the whole problem of a goaldirected agent interacting with an uncertain environment

8 RL Problem Agent State Reward Action Environment Environment a0 a1 s0 s1 s2 r0 r1 a2 r2 Goal: Learn to choose actions that maximize r 0 +γ r 1 +γ 2 r 2 +, where 0 γ <1

9 Set of states S Set of actions A Elements of RL Actions may be non-deterministic Set of reinforcement signals (rewards) Rewards may be delayed

10 Example 1 Tic Tac Toe State: board Action: next move Reward: 1 for win, -1 for loss, 0 for draw Problem: Find π:s A that maximizes R

11 Example 2 Mobile Robot State: location of robot, people Action: motion Reward: number of happy faces Problem: Find π:s A that maximizes R

12 Presentation Outline Introduction to Reinforcement Learning (Huy) Background Information (Shuiwang) Pegasus Reinforcement Learning Algorithm (Jerri) Using Algorithm for Helicopter Flight (Kenley and Shiv) Conclusions (Shiv)

13 The Agent-Environment Interface Agent and environment interact at discrete time steps : t = 0,1, 2, K Agent observes state at step t: s t S produces action at step t : a t A(s t ) gets resulting reward: r t +1 R and resulting next state: s t s t a t r t +1 s t +1 a t +1 r t +2 s t +2 t +2 a r t +3 st a t +3

14 The Agent Learns a Policy Policy at step t, π t : a mapping from states to action probabilities π t (s, a) = probability that a t = a when s t = s Reinforcement learning methods specify how the agent changes its policy as a result of experience. Roughly, the agent s goal is to get as much reward as it can over the long run.

15 Returns Suppose the sequence of rewards after step t is : r t +1, r t+2,r t + 3, K What do we want to maximize?

16 Returns Discounted return: k =0 R t = r t +1 +γ r t+2 + γ 2 r t +3 +L = γ k r t + k+1, where γ, 0 γ 1, is the discount rate. shortsighted 0 γ 1 farsighted

17 The Markov Property What the state should include? 2. More than immediate sensations, may be complex structures built up over time from the sequence of sensations. 4. But not complete history of past sensations. 6. Ideally, a state signal that summarizes past sensations compactly, yet in such a way that all relevant information is retained.

18 The Markov Property In short, we don t blame an agent for not knowing something that matters, but only for having known something and then forgotten it.

19 The Markov Property A state signal that succeeds in retaining all relevant information is said to be Markov, or to have the Markov property. For example, the current checker configuration Also referred to as independence of path property.

20 The Markov Property The state can include immediate sensations, highly processed sensations, and structures built up over time from sequences of sensations. Ideally, a state should summarize past sensations so as to retain all essential information, i.e., it should have the Markov Property: { } { }.,,,,,,,,,and histories, for all,, Pr,,,,,,,,, Pr a s r a s r a s r s a r s r s s a s r a s r a s r r s s t t t t t t t t t t t t t t t t = = = = =

21 Markov Decision Processes If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP). If state and action sets are finite, it is a finite MDP. To define a finite MDP, you need to give: state and action sets one-step dynamics defined by transition probabilities: P a ss = t+ { s = s s = s, a = a} for all s, s S, a A( ). Pr 1 s t t

22 Monte Carlo Methods Monte Carlo methods require only experiences, online or simulated Monte Carlo methods are ways of solving RL problems based on averaging sample returns

23 Monte Carlo Policy Evaluation Goal: learn V π (s) Given: some number of transitions under π which contain s Idea: Average returns observed after visits to s Every-Visit MC: average returns for every time s is visited First-visit MC: average returns only for first time s is visited Both converge asymptotically

24 Other application of Monte Carlo methods Monte Carlo Estimation of Action Values Q π (s,a) -- average return starting from state s and action a following π Monte Carlo Control: MC policy iteration and Policy improvement step

25 Presentation Outline Introduction to Reinforcement Learning (Huy) Background Information (Shuiwang) Pegasus Reinforcement Learning Algorithm (Jerri) Using Algorithm for Helicopter Flight (Kenley and Shiv) Conclusions (Shiv)

26 Pegasus Algorithm: Variable Explanation MDP Space with: S state space s 0 initial state: s 0 in S A action space P sa state transition probabilities R: S -> R reward function γ discount factor Π family of policies: π: S -> A

27 Pegasus Algorithm: Policy Discovery Goal is to find a policy (π) in Π such that: U =E [ R s 0 R s 1 2 R s 2... ] E the expectation over the random sequence of states visited over time when π is executed starting at state s 0 U universal set of states

28 Pegasus Algorithm: Estimating the Universal Set Define an estimate Û(π) of U(π) via Monte Carlo m U = 1 m i =1 R s' i R s' i H m number of scenarios to test R s' i H H ε horizon time, truncation of steps that introduces at most ε/2 error to the approximation

29 Pegasus Algorithm: s' is defined as: State Transitions s i, p i 1, p i 2,... s' i k =g s i,a, p i k Pseudo-random numbers are used to ensure the results are deterministic g (s, a, p) deterministically transitions to the next state by using the state transition probabilities, P sa

30 Pegasus Algorithm: Truncation Error To avoid an infinite sum, a truncation point must be selected. H ε is defined as: H =log 1 /2 R max Introduces at most ε/2 error into approximation

31 Pegasus Algorithm: Û Estimation Error If m is at most polynomial in all quantities of interest and if Û is averaged over m number of samples, then Û has a high probability to be a uniformly good estimate of U. U U

32 Pegasus Algorithm: Example Reward Function The reward calculation for hovering is based on where the helicopter currently is and where it is supposed to be hovering. Reward function for hovering: R s = x x x 2 y y y 2 z z z 2 w w w 2 R a R a = ẋ ẋ 2 ẏ ẏ 2 ż ż 2 ẇ ẇ 2 (x', y', z', w') desired hovering position and orientation α k weights chosen to scale the terms

33 Presentation Outline Introduction to Reinforcement Learning (Huy) Background Information (Shuiwang) Pegasus Reinforcement Learning Algorithm (Jerri) Using Algorithm for Helicopter Flight (Kenley and Shiv) Conclusions (Shiv)

34 Helicopter Control Longitudinal and latitudinal pitch control Controls the angle of the plane that the helicopter s rotors spin in Main rotor blade pitch control Controls the thrust of the main rotor Tail rotor blade pitch control Controls the thrust of the tail rotor

35 Yamaha R-50 Helicopter Helicopter Instrumentation Inertial Navigation system (INS) 3 orthogonally positioned (x, y, z) accelerometers 3 orthogonally positioned (x, y, z) rate gyroscopes Differential GPS system with a ground station Gives position estimates accurate to within 2 cm Digital compass

36 On-board Sensor Information Sensor Data provided at 50 Hz after integration through a Kalman filter. Position (x, y, z) Velocity (x, y, z ) Orientation (Φ (roll), Θ (pitch), ω (yaw)) Angular velocities (Φ (roll rate), Θ (pitch rate), ω (yaw rate))

37 Helicopter Modeling Model Development Flight data was from a human pilot was recorded to obtain a the 12 dimensional helicopter state and 4 dimensional control measurements that would be used to facilitate model fitting To exploit state and control symmetries found when operating a helicopter facing in different directions a body state coordinated system was developed replacing the external state system

38 Position Prediction Model Fitting y= T x Locally weighted linear regression A set of input and output vectors were used to create a prediction system This linear regression equation was designed to predict the output state of the helicopter given a control input vector = X T W X 1 X T W y y= T x W ii =exp 1 2 x x i T 1 x x i

39 Predicted Position vs. Actual State

40 Presentation Outline Introduction to Reinforcement Learning (Huy) Background Information (Shuiwang) Pegasus Reinforcement Learning Algorithm (Jerri) Using Algorithm for Helicopter Flight (Kenley and Shiv) Conclusions (Shiv)

41 Previous Attempts μ- synthesis H 2 H α

42 Flying Competition Maneuvers

43 Reward Functions Trajectory Flying Trajectory Following R s = x x x 2 y y y 2 z z z 2 w w w 2 R a R a = ẋ ẋ 2 ẏ ẏ 2 ż ż 2 ẇ ẇ 2 (x', y', z', w') desired hovering position and orientation

44 Success

45 Conclusion Pros Very flexible model Performs better than other approaches Often does converge to optimal Real world applications Cons The paper not too detailed Augmentation not explained in detail

46 Q & A Thank You

47 References Ng, Andrew, et. al., Autonomous Helicopter Flight via Reinforcement Learning Ng, Andrew and Michael Jordan, Pegasus: A Policy Search Method for Large MDPs and POMDPs RLAIcourse.html

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1 Reinforcement Learning Mainly based on Reinforcement Learning An Introduction by Richard Sutton and Andrew Barto Slides are mainly based on the course material provided by the

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

Reinforcement Learning II

Reinforcement Learning II Reinforcement Learning II Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 25: Learning 4 Victor R. Lesser CMPSCI 683 Fall 2010 Final Exam Information Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res Ctr Rm A301 2 Hours but obviously you can leave early! Open Book

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Q-learning Tutorial. CSC411 Geoffrey Roeder. Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava

Q-learning Tutorial. CSC411 Geoffrey Roeder. Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava Q-learning Tutorial CSC411 Geoffrey Roeder Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava Tutorial Agenda Refresh RL terminology through Tic Tac Toe Deterministic

More information

Lecture 23: Reinforcement Learning

Lecture 23: Reinforcement Learning Lecture 23: Reinforcement Learning MDPs revisited Model-based learning Monte Carlo value function estimation Temporal-difference (TD) learning Exploration November 23, 2006 1 COMP-424 Lecture 23 Recall:

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage.

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage. Course basics CSE 190: Reinforcement Learning: An Introduction The website for the class is linked off my homepage. Grades will be based on programming assignments, homeworks, and class participation.

More information

Reinforcement Learning. Up until now we have been

Reinforcement Learning. Up until now we have been Reinforcement Learning Slides by Rich Sutton Mods by Dan Lizotte Refer to Reinforcement Learning: An Introduction by Sutton and Barto Alpaydin Chapter 16 Up until now we have been Supervised Learning Classifying,

More information

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Deep Reinforcement Learning STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Outline Introduction to Reinforcement Learning AlphaGo (Deep RL for Computer Go)

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Reinforcement Learning

Reinforcement Learning CS7/CS7 Fall 005 Supervised Learning: Training examples: (x,y) Direct feedback y for each input x Sequence of decisions with eventual feedback No teacher that critiques individual actions Learn to act

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Reading Response: Due Wednesday R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Another Example Get to the top of the hill as quickly as possible. reward = 1 for each step where

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Computational Reinforcement Learning: An Introduction

Computational Reinforcement Learning: An Introduction Computational Reinforcement Learning: An Introduction Andrew Barto Autonomous Learning Laboratory School of Computer Science University of Massachusetts Amherst barto@cs.umass.edu 1 Artificial Intelligence

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

CS 598 Statistical Reinforcement Learning. Nan Jiang

CS 598 Statistical Reinforcement Learning. Nan Jiang CS 598 Statistical Reinforcement Learning Nan Jiang Overview What s this course about? A grad-level seminar course on theory of RL 3 What s this course about? A grad-level seminar course on theory of RL

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Some AI Planning Problems

Some AI Planning Problems Course Logistics CS533: Intelligent Agents and Decision Making M, W, F: 1:00 1:50 Instructor: Alan Fern (KEC2071) Office hours: by appointment (see me after class or send email) Emailing me: include CS533

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Markov Decision Processes (and a small amount of reinforcement learning)

Markov Decision Processes (and a small amount of reinforcement learning) Markov Decision Processes (and a small amount of reinforcement learning) Slides adapted from: Brian Williams, MIT Manuela Veloso, Andrew Moore, Reid Simmons, & Tom Mitchell, CMU Nicholas Roy 16.4/13 Session

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Cyber Rodent Project Some slides from: David Silver, Radford Neal CSC411: Machine Learning and Data Mining, Winter 2017 Michael Guerzhoy 1 Reinforcement Learning Supervised learning:

More information

An Introduction to Reinforcement Learning

An Introduction to Reinforcement Learning An Introduction to Reinforcement Learning Shivaram Kalyanakrishnan shivaram@cse.iitb.ac.in Department of Computer Science and Engineering Indian Institute of Technology Bombay April 2018 What is Reinforcement

More information

The PVTOL Aircraft. 2.1 Introduction

The PVTOL Aircraft. 2.1 Introduction 2 The PVTOL Aircraft 2.1 Introduction We introduce in this chapter the well-known Planar Vertical Take-Off and Landing (PVTOL) aircraft problem. The PVTOL represents a challenging nonlinear systems control

More information

RL 14: Simplifications of POMDPs

RL 14: Simplifications of POMDPs RL 14: Simplifications of POMDPs Michael Herrmann University of Edinburgh, School of Informatics 04/03/2016 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning Introduction to Reinforcement Learning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe Machine Learning Summer School, September 2011,

More information

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING Slides adapted from Tom Mitchell and Peter Abeel Machine Learning: Jordan Boyd-Graber UMD Machine Learning

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

Reinforcement Learning (1)

Reinforcement Learning (1) Reinforcement Learning 1 Reinforcement Learning (1) Machine Learning 64-360, Part II Norman Hendrich University of Hamburg, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg hendrich@informatik.uni-hamburg.de

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Reinforcement Learning. Spring 2018 Defining MDPs, Planning

Reinforcement Learning. Spring 2018 Defining MDPs, Planning Reinforcement Learning Spring 2018 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Notes on Reinforcement Learning

Notes on Reinforcement Learning 1 Introduction Notes on Reinforcement Learning Paulo Eduardo Rauber 2014 Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative reward signals.

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2017 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach B. Bischoff 1, D. Nguyen-Tuong 1,H.Markert 1 anda.knoll 2 1- Robert Bosch GmbH - Corporate Research Robert-Bosch-Str. 2, 71701

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2018 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

Maximum Margin Planning

Maximum Margin Planning Maximum Margin Planning Nathan Ratliff, Drew Bagnell and Martin Zinkevich Presenters: Ashesh Jain, Michael Hu CS6784 Class Presentation Theme 1. Supervised learning 2. Unsupervised learning 3. Reinforcement

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Stuart Russell, UC Berkeley Stuart Russell, UC Berkeley 1 Outline Sequential decision making Dynamic programming algorithms Reinforcement learning algorithms temporal difference

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Department of Systems and Computer Engineering Carleton University Ottawa, Canada KS 5B6 Email: mawheda@sce.carleton.ca

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN Reinforcement Learning for Continuous Action using Stochastic Gradient Ascent Hajime KIMURA, Shigenobu KOBAYASHI Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku Yokohama 226-852 JAPAN Abstract:

More information

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525 Markov Models and Reinforcement Learning Stephen G. Ware CSCI 4525 / 5525 Camera Vacuum World (CVW) 2 discrete rooms with cameras that detect dirt. A mobile robot with a vacuum. The goal is to ensure both

More information