Nonlinear Dynamical Systems Ninth Class

Size: px
Start display at page:

Download "Nonlinear Dynamical Systems Ninth Class"

Transcription

1 Nonlinear Dynamical Systems Ninth Class Alexandre Nolasco de Carvalho September 21, 2017

2 Lemma Let {T (t) : t 0} be a dynamically gradient semigroup in a metric space X, with a global attractor A and a disjoint collection of isolated invariant sets Ξ = {Ξ 1,, Ξ n }. Then there exists 1 i n such that Ξ i is a local attractor.

3 Proof: Assume that there are no local attractors in Ξ. Since Ξ 1 is not a local attractor, then for ɛ 0 > 0 suitably small, given ɛ > 0 there exists x 1 O ɛ (Ξ 1 ) A and a real number τ 1 such that T (τ 1 )x 1 / O ɛ0 (Ξ 1 ). By property (G1), there exists t 1 >τ 1 such that T (t 1 )x 1 O ɛ (Ξ j ) for some 1 j n. If j = 1, property (G2) gives us a contradiction. If not, since Ξ j is not a local attractor, we can repeat the argument to construct an ɛ chain, since there are only a finite numbers of elements in Ξ, for each small ɛ > 0, which contradicts (G2) and concludes the result.

4 Next we describe the construction of a Morse decomposition of the attractor of a dynamically gradient semigroup. Let {T (t) : t 0} be a dynamically gradient semigroup with associated disjoint collection of isolated invariant sets Ξ = {Ξ 1,, Ξ n }. If (reordering as needed) Ξ 1 is a local attractor for {T (t):t 0} and Ξ 1 = {a A : ω(a) Ξ 1 = }, then each Ξ i, i >1 is contained in Ξ 1 and that for any a / A\{Ξ 1 Ξ 1 } and global solution φ : R A with φ(0) = a we have that Ξ 1 t φ j (t) t Ξ 1.

5 We already know that Ξ 1 is invariant under the action of {T (t) : t 0} and hence we can consider the restriction T 1 (t) of T (t) to Ξ 1 =: {Ξ 1 } 0. Note that making this restriction, we have removed all possible global solutions φ : R A such that φ(t) Ξ 1 as t ; that is, if φ 1 : R A is a global solution of {T 1 (t) : t 0} and φ 1 (t) Ξ i, then i > 1.

6 Also, it is simple to see that {T 1 (t) : t 0} is a dynamically gradient semigroup in Ξ 1 with disjoint collection of isolated invariant sets {Ξ 2,, Ξ n }, and this implies that if a global t solution φ : R A satisfies Ξ j φ(t) t Ξ 1, then we must have j 1. We may assume, without loss of generality, that Ξ 2 is a local attractor for the semigroup {T 1 (t) : t 0} in Ξ 1.

7 If {Ξ 2 } 1 is the repeller associated to the isolated invariant set Ξ 2 for {T 1 (t) : t 0} in Ξ 1 we may proceed and consider the restriction {T 2 (t) : t 0} of the semigroup {T 1 (t) : t 0} to {Ξ 2 } 1 and {T 2(t) : t 0} is a dynamically gradient semigroup in {Ξ 2 } 1 with associated disjoint collection of isolated invariant sets {Ξ 3,, Ξ n }. Note that is this case, we have removed all the global solutions φ : R X such that φ(t) Ξ 2 as t and therefore, if t Ξ j φ(t) t Ξ 2 then j 2.

8 Proceeding with this until all isolated invariant sets are exhausted we obtain a reordering of {Ξ 1,, Ξ n } in such a way that Ξ j is a local attractor for the restriction of {T (t) : t 0} to {Ξ j 1 } j 2 ({Ξ 0 } 1 = A). With the construction above, if a global solution φ : R A satisfies t Ξ l ξ(t) t Ξ k (1) then l k.

9 This proves that this reordering of Ξ = {Ξ 1,, Ξ n } (which we denote the same) is a Morse decomposition to A. Now we will prove that, for a suitably chosen sequence of local attractors = A 0 A 1 A 2 A n = A, we can construct the Morse decomposition given by Ξ, and to this end, using W u (Ξ i ) = {x X : there exists a global solution ξ : R X with ξ(0) = x such that ξ(t) t Ξ i }, we can define A 0 =, A 1 = Ξ 1 and for j = 2, 3,, n A j = j W u (Ξ i ). (2) i=1

10 It is clear that A n = A. With this construction, we can prove that each A j, j = 0,, n, is a local attractor, and if we consider the correspondent repellers A j, then the sequence of attractor-repeller pairs {(A j, A j )} j=0,,n generates exactly the Morse decomposition given by Ξ; that is, Ξ j = A j A j 1 for all j = 1,, n and n j=0 (A j A j ) = n i=1 Ξ i.

11 Lemma The A j defined in (2) is compact, for each j = 0,, n. Proof: Le {x k } k N be a sequence in A j = j i=1 W u (Ξ i ) such that x k x A. Clearly, there is a 1 i 1 j and subsequence, which we denote the same, such that x k W u (Ξ i1 ). If {x k } converges to j i=1 Ξ i it follows that x A j. Assume that dist({x k : k N}, j i=1 Ξ i) > 0. Through each x k (taking subsequences if needed) there are global solutions ξ k : R A and ξ k (t) t Ξ i1 and ξ k (t) t Ξ i0 t there are a global solutions ζ l :R A with Ξ i some i 0. Then ζ l (t) t Ξ j, i 0 i < j i 1, 1 l i 1 i 0. ζ l0 (0) = x and and therefore x W u (Ξ l0 ) A j.

12 Theorem Let {T (t) : t 0} be a dynamically gradient semigroup with associated disjoint collection of isolated invariant sets Ξ = {Ξ 1,, Ξ n } reordered in such a way that it is a Morse decomposition. Then A j defined in (2) is a local attractor for {T (t) : t 0} in X and Ξ j = A j A j 1, j = 1,, n.

13 Proof: From a previous lemma, it is sufficient to prove that A j = A j 1 W u (Ξ j ) is a local attractor for {T (t) : t 0} restricted to A. It follows from the fact that A j and n i=j+1 Ξ i are compact and disjoint (exercise: prove that A j and Ξ i are disjoint for all i > j) that there exists δ 0 >0 such that O δ0 (A j ) ( n i=j+1 Ξ i)=. If there are δ < δ 0 and δ < δ such that γ + (O δ (A j )) O δ (A j ), then ω(o δ (A j )) attracts O δ (A j ) and (as ω(o δ (A j )) is invariant) is contained in A j proving that A j is a local attractor.

14 If not, there is a sequence {x k } k N in A \ A j with d(x k, A j ) k 0, for each x k a global solution ξ k : R A through x k which converges to n i=j+1 Ξ k i as t and a sequence t k, such that d(ξ k (t), A j ) δ for all t [0, t k ] and d(ξ k (t k ), A j ) = δ. In this way, we construct a global solution ξ : R A such that ξ(0) / A j and d(ξ(t), A j ) δ for all t 0. This and the fact that {T (t): t 0} is a dynamically gradient semigroup gives us a contradiction, since ξ(t) Ξ k as t for some 1 k j, which implies that ξ(0) A j.

15 To prove that Ξ j = A j A j 1 note that A j = j W u (Ξ i ) i=1 and A j 1 = {z A : ω(z) A j 1 = }. Hence, given z A j A j 1 we have that the global solution ξ : R A through z must satisfy that {Ξ i : 1 i j} t ξ(t) t {Ξ i : j i n}.

16 As a consequence, together with the fact that {T (t) : t 0} is a dinamically gradient semigroup with disjoint collection of isolated invariant sets {Ξ 1,, Ξ n }, for which any global solution t ξ : R A satisfies Ξ l ξ(t) t Ξ k with l k, we obtain that z Ξ j. This shows that A j A j 1 Ξ j. The other inclusion is immediate from the definition of A j and A j 1.

17 Proposition Let {T (t) : t 0} be a dinamically gradient semigroup with associated disjoint collection of isolated invariant sets Ξ = {Ξ 1,, Ξ n } reordered in such a way that it is a Morse decomposition. Then, n (A j A j ) = j=0 n i=1 Ξ i

18 Proof: If z n i=1 Ξ i, let k {1, 2,, n} be such that z Ξ k = A k A k 1. Hence z A k A k+1 A n and z A k 1 A k 2 A 0. Thus z n j=k k 1 A j A j j=1 n j=k k 1 (A j A j ) (A j A j ) = j=0 proving the inclusion n i=1 Ξ i n j=0 A j A j. n (A j A j ), j=0

19 Now, let z n j=0 (A j A j ) and I := {i 1, i 2,, i k } J := {j 1, j 2,, j l } such that I J = {0, 1,, n} with I J = and z A i for all i I and z A j for all j J. Clearly, if i := min I, necessarily I = {i, i + 1, i + 2,, n} and J = {0, 1,, i 1}, consequently z A i and z A i 1. So, z A i A i 1 = Ξ i, from which we conclude that n j=0 (A j A j ) n i=1 Ξ i and the proof is completed.

Nonlinear Dynamical Systems Eighth Class

Nonlinear Dynamical Systems Eighth Class Nonlinear Dynamical Systems Eighth Class Alexandre Nolasco de Carvalho September 19, 2017 Now we exhibit a Morse decomposition for a dynamically gradient semigroup and use it to prove that a dynamically

More information

Nonlinear Dynamical Systems Lecture - 01

Nonlinear Dynamical Systems Lecture - 01 Nonlinear Dynamical Systems Lecture - 01 Alexandre Nolasco de Carvalho August 08, 2017 Presentation Course contents Aims and purpose of the course Bibliography Motivation To explain what is a dynamical

More information

1.7. Stability and attractors. Consider the autonomous differential equation. (7.1) ẋ = f(x),

1.7. Stability and attractors. Consider the autonomous differential equation. (7.1) ẋ = f(x), 1.7. Stability and attractors. Consider the autonomous differential equation (7.1) ẋ = f(x), where f C r (lr d, lr d ), r 1. For notation, for any x lr d, c lr, we let B(x, c) = { ξ lr d : ξ x < c }. Suppose

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

A Note on Some Properties of Local Random Attractors

A Note on Some Properties of Local Random Attractors Northeast. Math. J. 24(2)(2008), 163 172 A Note on Some Properties of Local Random Attractors LIU Zhen-xin ( ) (School of Mathematics, Jilin University, Changchun, 130012) SU Meng-long ( ) (Mathematics

More information

ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY

ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY AND ω-limit SETS CHRIS GOOD AND JONATHAN MEDDAUGH Abstract. Let f : X X be a continuous map on a compact metric space, let ω f be the collection of ω-limit

More information

Lattice Structures for Attractors II

Lattice Structures for Attractors II Lattice Structures for Attractors II WILLIAM D. KALIES Florida Atlantic University 777 Glades Road Boca Raton, FL 33431, USA KONSTANTIN MISCHAIKOW Rutgers University 110 Frelinghusen Road Piscataway, NJ

More information

NOTES AND ERRATA FOR RECURRENCE AND TOPOLOGY. (τ + arg z) + 1

NOTES AND ERRATA FOR RECURRENCE AND TOPOLOGY. (τ + arg z) + 1 NOTES AND ERRATA FOR RECURRENCE AND TOPOLOGY JOHN M. ALONGI p.11 Replace ρ(t, z) = ρ(t, z) = p.11 Replace sin 2 z e τ ] 2 (τ + arg z) + 1 1 + z (e τ dτ. sin 2 (τ + arg z) + 1 z 2 z e τ ] 2 1 + z (e τ dτ.

More information

An Algorithmic Approach to Chain Recurrence

An Algorithmic Approach to Chain Recurrence An Algorithmic Approach to Chain Recurrence W.D. Kalies, K. Mischaikow, and R.C.A.M. VanderVorst October 10, 2005 ABSTRACT. In this paper we give a new definition of the chain recurrent set of a continuous

More information

Putzer s Algorithm. Norman Lebovitz. September 8, 2016

Putzer s Algorithm. Norman Lebovitz. September 8, 2016 Putzer s Algorithm Norman Lebovitz September 8, 2016 1 Putzer s algorithm The differential equation dx = Ax, (1) dt where A is an n n matrix of constants, possesses the fundamental matrix solution exp(at),

More information

HYPERBOLIC SETS WITH NONEMPTY INTERIOR

HYPERBOLIC SETS WITH NONEMPTY INTERIOR HYPERBOLIC SETS WITH NONEMPTY INTERIOR TODD FISHER, UNIVERSITY OF MARYLAND Abstract. In this paper we study hyperbolic sets with nonempty interior. We prove the folklore theorem that every transitive hyperbolic

More information

THE CONLEY ATTRACTORS OF AN ITERATED FUNCTION SYSTEM

THE CONLEY ATTRACTORS OF AN ITERATED FUNCTION SYSTEM Bull. Aust. Math. Soc. 88 (2013), 267 279 doi:10.1017/s0004972713000348 THE CONLEY ATTRACTORS OF AN ITERATED FUNCTION SYSTEM MICHAEL F. BARNSLEY and ANDREW VINCE (Received 15 August 2012; accepted 21 February

More information

Lattice Structures for Attractors I

Lattice Structures for Attractors I Lattice Structures for Attractors I WILLIAM D. KALIES Florida Atlantic University 777 Glades Road Boca Raton, FL 33431, USA KONSTANTIN MISCHAIKOW Rutgers University 110 Frelinghusen Road Piscataway, NJ

More information

LECTURE 5: THE METHOD OF STATIONARY PHASE

LECTURE 5: THE METHOD OF STATIONARY PHASE LECTURE 5: THE METHOD OF STATIONARY PHASE Some notions.. A crash course on Fourier transform For j =,, n, j = x j. D j = i j. For any multi-index α = (α,, α n ) N n. α = α + + α n. α! = α! α n!. x α =

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Errata and additional material for Infinite-Dimensional Dynamical Systems

Errata and additional material for Infinite-Dimensional Dynamical Systems Errata and additional material for Infinite-Dimensional Dynamical Systems Many thanks to all who have sent me errata, including: Marco Cabral, Carmen Chicone, Marcus Garvie, Grzegorz Lukaszewicz, Edgardo

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Appendix B Convex analysis

Appendix B Convex analysis This version: 28/02/2014 Appendix B Convex analysis In this appendix we review a few basic notions of convexity and related notions that will be important for us at various times. B.1 The Hausdorff distance

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

We will outline two proofs of the main theorem:

We will outline two proofs of the main theorem: Chapter 4 Higher Genus Surfaces 4.1 The Main Result We will outline two proofs of the main theorem: Theorem 4.1.1. Let Σ be a closed oriented surface of genus g > 1. Then every homotopy class of homeomorphisms

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N.

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N. ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS Emerson A. M. de Abreu Alexandre N. Carvalho Abstract Under fairly general conditions one can prove that

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Notes for Functional Analysis

Notes for Functional Analysis Notes for Functional Analysis Wang Zuoqin (typed by Xiyu Zhai) November 6, 2015 1 Lecture 18 1.1 The convex hull Let X be any vector space, and E X a subset. Definition 1.1. The convex hull of E is the

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

which element of ξ contains the outcome conveys all the available information.

which element of ξ contains the outcome conveys all the available information. CHAPTER III MEASURE THEORETIC ENTROPY In this chapter we define the measure theoretic entropy or metric entropy of a measure preserving transformation. Equalities are to be understood modulo null sets;

More information

arxiv: v1 [math.ap] 31 May 2007

arxiv: v1 [math.ap] 31 May 2007 ARMA manuscript No. (will be inserted by the editor) arxiv:75.4531v1 [math.ap] 31 May 27 Attractors for gradient flows of non convex functionals and applications Riccarda Rossi, Antonio Segatti, Ulisse

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li Summer Jump-Start Program for Analysis, 01 Song-Ying Li 1 Lecture 6: Uniformly continuity and sequence of functions 1.1 Uniform Continuity Definition 1.1 Let (X, d 1 ) and (Y, d ) are metric spaces and

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

Ch6 Addition Proofs of Theorems on permutations.

Ch6 Addition Proofs of Theorems on permutations. Ch6 Addition Proofs of Theorems on permutations. Definition Two permutations ρ and π of a set A are disjoint if every element moved by ρ is fixed by π and every element moved by π is fixed by ρ. (In other

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

Riesz Representation Theorems

Riesz Representation Theorems Chapter 6 Riesz Representation Theorems 6.1 Dual Spaces Definition 6.1.1. Let V and W be vector spaces over R. We let L(V, W ) = {T : V W T is linear}. The space L(V, R) is denoted by V and elements of

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

TOPOLOGY HW 2. x x ± y

TOPOLOGY HW 2. x x ± y TOPOLOGY HW 2 CLAY SHONKWILER 20.9 Show that the euclidean metric d on R n is a metric, as follows: If x, y R n and c R, define x + y = (x 1 + y 1,..., x n + y n ), cx = (cx 1,..., cx n ), x y = x 1 y

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 While these notes are under construction, I expect there will be many typos. The main reference for this is volume 1 of Hörmander, The analysis of liner

More information

The Schwarzian Derivative

The Schwarzian Derivative February 14, 2005 10-1 The Schwarzian Derivative There is a very useful quantity Sf defined for a C 3 one-dimensional map f, called the Schwarzian derivative of f. Here is the definition. Set Sf(x) = f

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC

More information

INTRODUCTION TO FURSTENBERG S 2 3 CONJECTURE

INTRODUCTION TO FURSTENBERG S 2 3 CONJECTURE INTRODUCTION TO FURSTENBERG S 2 3 CONJECTURE BEN CALL Abstract. In this paper, we introduce the rudiments of ergodic theory and entropy necessary to study Rudolph s partial solution to the 2 3 problem

More information

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION 1 INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION Eduard EMELYANOV Ankara TURKEY 2007 2 FOREWORD This book grew out of a one-semester course for graduate students that the author have taught at

More information

Segment Description of Turbulence

Segment Description of Turbulence Dynamics of PDE, Vol.4, No.3, 283-291, 2007 Segment Description of Turbulence Y. Charles Li Communicated by Y. Charles Li, received August 25, 2007. Abstract. We propose a segment description for turbulent

More information

MAS3706 Topology. Revision Lectures, May I do not answer enquiries as to what material will be in the exam.

MAS3706 Topology. Revision Lectures, May I do not answer  enquiries as to what material will be in the exam. MAS3706 Topology Revision Lectures, May 208 Z.A.Lykova It is essential that you read and try to understand the lecture notes from the beginning to the end. Many questions from the exam paper will be similar

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat.

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat. À È Ê ÇÄÁ Ë ËÌ ÅË Problem: A class of dynamical systems characterized by a fast divergence of the orbits A paradigmatic example: the Arnold cat. The closure of a homoclinic orbit. The shadowing lemma.

More information

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance Lecture 5 - Hausdorff and Gromov-Hausdorff Distance August 1, 2011 1 Definition and Basic Properties Given a metric space X, the set of closed sets of X supports a metric, the Hausdorff metric. If A is

More information

Homework 1 Real Analysis

Homework 1 Real Analysis Homework 1 Real Analysis Joshua Ruiter March 23, 2018 Note on notation: When I use the symbol, it does not imply that the subset is proper. In writing A X, I mean only that a A = a X, leaving open the

More information

BIHARMONIC WAVE MAPS INTO SPHERES

BIHARMONIC WAVE MAPS INTO SPHERES BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.

More information

NON-HYPERBOLIC ONE-DIMENSIONAL INVARIANT SETS WITH A COUNTABLY INFINITE COLLECTION OF INHOMOGENEITIES

NON-HYPERBOLIC ONE-DIMENSIONAL INVARIANT SETS WITH A COUNTABLY INFINITE COLLECTION OF INHOMOGENEITIES NON-HYPERBOLIC ONE-DIMENSIONAL INVARIANT SETS WITH A COUNTABLY INFINITE COLLECTION OF INHOMOGENEITIES CHRIS GOOD, ROBIN KNIGHT, AND BRIAN RAINES Abstract. In this paper we examine the structure of countable

More information

arxiv: v2 [math.ds] 3 Jan 2019

arxiv: v2 [math.ds] 3 Jan 2019 SHADOWING, ASYMPTOTIC SHADOWING AND S-LIMIT SHADOWING CHRIS GOOD, PIOTR OPROCHA, AND MATE PULJIZ arxiv:1701.05383v2 [math.ds] 3 Jan 2019 Abstract. We study three notions of shadowing: classical shadowing,

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

Lecture 4: Harmonic forms

Lecture 4: Harmonic forms Lecture 4: Harmonic forms Jonathan Evans 29th September 2010 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 1 / 15 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 2 / 15

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Fundamental Properties of Holomorphic Functions

Fundamental Properties of Holomorphic Functions Complex Analysis Contents Chapter 1. Fundamental Properties of Holomorphic Functions 5 1. Basic definitions 5 2. Integration and Integral formulas 6 3. Some consequences of the integral formulas 8 Chapter

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS DAN-ANDREI GEBA Abstract. We obtain a sharp local well-posedness result for an equation of wave maps type with variable coefficients.

More information

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS Electronic Journal of Differential Equations, Vol. 2929, No. 117, pp. 1 15. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MEAN VALUE THEOREMS FOR

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

THE HUTCHINSON BARNSLEY THEORY FOR INFINITE ITERATED FUNCTION SYSTEMS

THE HUTCHINSON BARNSLEY THEORY FOR INFINITE ITERATED FUNCTION SYSTEMS Bull. Austral. Math. Soc. Vol. 72 2005) [441 454] 39b12, 47a35, 47h09, 54h25 THE HUTCHINSON BARNSLEY THEORY FOR INFINITE ITERATED FUNCTION SYSTEMS Gertruda Gwóźdź- Lukawska and Jacek Jachymski We show

More information

Trace Diagnostics using Temporal Implicants

Trace Diagnostics using Temporal Implicants Trace Diagnostics using Temporal Implicants ATVA 15 Thomas Ferrère 1 Dejan Nickovic 2 Oded Maler 1 1 VERIMAG, University of Grenoble / CNRS 2 Austrian Institute of Technology October 14, 2015 Motivation

More information

Observability for deterministic systems and high-gain observers

Observability for deterministic systems and high-gain observers Observability for deterministic systems and high-gain observers design. Part 1. March 29, 2011 Introduction and problem description Definition of observability Consequences of instantaneous observability

More information

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS TODD FISHER Abstract. We show there is a residual set of non-anosov C Axiom A diffeomorphisms with the no cycles property whose elements have trivial centralizer.

More information

Math 4200, Problem set 3

Math 4200, Problem set 3 Math, Problem set 3 Solutions September, 13 Problem 1. ẍ = ω x. Solution. Following the general theory of conservative systems with one degree of freedom let us define the kinetic energy T and potential

More information

Weak Topologies, Reflexivity, Adjoint operators

Weak Topologies, Reflexivity, Adjoint operators Chapter 2 Weak Topologies, Reflexivity, Adjoint operators 2.1 Topological vector spaces and locally convex spaces Definition 2.1.1. [Topological Vector Spaces and Locally convex Spaces] Let E be a vector

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

A topological semigroup structure on the space of actions modulo weak equivalence.

A topological semigroup structure on the space of actions modulo weak equivalence. A topological semigroup structure on the space of actions modulo wea equivalence. Peter Burton January 8, 08 Abstract We introduce a topology on the space of actions modulo wea equivalence finer than the

More information

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X.

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X. Chapter 6 Completeness Lecture 18 Recall from Definition 2.22 that a Cauchy sequence in (X, d) is a sequence whose terms get closer and closer together, without any limit being specified. In the Euclidean

More information

MAT1000 ASSIGNMENT 1. a k 3 k. x =

MAT1000 ASSIGNMENT 1. a k 3 k. x = MAT1000 ASSIGNMENT 1 VITALY KUZNETSOV Question 1 (Exercise 2 on page 37). Tne Cantor set C can also be described in terms of ternary expansions. (a) Every number in [0, 1] has a ternary expansion x = a

More information

DYNAMICAL CUBES AND A CRITERIA FOR SYSTEMS HAVING PRODUCT EXTENSIONS

DYNAMICAL CUBES AND A CRITERIA FOR SYSTEMS HAVING PRODUCT EXTENSIONS DYNAMICAL CUBES AND A CRITERIA FOR SYSTEMS HAVING PRODUCT EXTENSIONS SEBASTIÁN DONOSO AND WENBO SUN Abstract. For minimal Z 2 -topological dynamical systems, we introduce a cube structure and a variation

More information

Takens embedding theorem for infinite-dimensional dynamical systems

Takens embedding theorem for infinite-dimensional dynamical systems Takens embedding theorem for infinite-dimensional dynamical systems James C. Robinson Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. E-mail: jcr@maths.warwick.ac.uk Abstract. Takens

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

NOTES ON BARNSLEY FERN

NOTES ON BARNSLEY FERN NOTES ON BARNSLEY FERN ERIC MARTIN 1. Affine transformations An affine transformation on the plane is a mapping T that preserves collinearity and ratios of distances: given two points A and B, if C is

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

of the set A. Note that the cross-section A ω :={t R + : (t,ω) A} is empty when ω/ π A. It would be impossible to have (ψ(ω), ω) A for such an ω.

of the set A. Note that the cross-section A ω :={t R + : (t,ω) A} is empty when ω/ π A. It would be impossible to have (ψ(ω), ω) A for such an ω. AN-1 Analytic sets For a discrete-time process {X n } adapted to a filtration {F n : n N}, the prime example of a stopping time is τ = inf{n N : X n B}, the first time the process enters some Borel set

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

On the order bound of one-point algebraic geometry codes.

On the order bound of one-point algebraic geometry codes. On the order bound of one-point algebraic geometry codes. Anna Oneto and Grazia Tamone 1 Abstract. Let S ={s i} i IN IN be a numerical semigroup. For each i IN, let ν(s i) denote the number of pairs (s

More information

Notes on Distributions

Notes on Distributions Notes on Distributions Functional Analysis 1 Locally Convex Spaces Definition 1. A vector space (over R or C) is said to be a topological vector space (TVS) if it is a Hausdorff topological space and the

More information

ATTRACTORS FOR THE STOCHASTIC 3D NAVIER-STOKES EQUATIONS

ATTRACTORS FOR THE STOCHASTIC 3D NAVIER-STOKES EQUATIONS Stochastics and Dynamics c World Scientific Publishing Company ATTRACTORS FOR THE STOCHASTIC 3D NAVIER-STOKES EQUATIONS PEDRO MARÍN-RUBIO Dpto. Ecuaciones Diferenciales y Análisis Numérico Universidad

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

Krein-Rutman Theorem and the Principal Eigenvalue

Krein-Rutman Theorem and the Principal Eigenvalue Chapter 1 Krein-Rutman Theorem and the Principal Eigenvalue The Krein-Rutman theorem plays a very important role in nonlinear partial differential equations, as it provides the abstract basis for the proof

More information

WITTEN HELLFER SJÖSTRAND THEORY. 1.DeRham Hodge Theorem. 2.WHS-Theorem. 3.Mathematics behind WHS-Theorem. 4.WHS-Theorem in the presence of.

WITTEN HELLFER SJÖSTRAND THEORY. 1.DeRham Hodge Theorem. 2.WHS-Theorem. 3.Mathematics behind WHS-Theorem. 4.WHS-Theorem in the presence of. WITTEN HELLFER SJÖSTRAND THEORY 1.DeRham Hodge Theorem 2.WHS-Theorem 3.Mathematics behind WHS-Theorem 4.WHS-Theorem in the presence of symmetry 1 2 Notations M closed smooth manifold, (V, V ) euclidean

More information

Section 9.2 introduces the description of Markov processes in terms of their transition probabilities and proves the existence of such processes.

Section 9.2 introduces the description of Markov processes in terms of their transition probabilities and proves the existence of such processes. Chapter 9 Markov Processes This lecture begins our study of Markov processes. Section 9.1 is mainly ideological : it formally defines the Markov property for one-parameter processes, and explains why it

More information

GROUND STATES OF NONLINEAR SCHRÖDINGER SYSTEM WITH MIXED COUPLINGS arxiv: v1 [math.ap] 13 Mar 2019

GROUND STATES OF NONLINEAR SCHRÖDINGER SYSTEM WITH MIXED COUPLINGS arxiv: v1 [math.ap] 13 Mar 2019 GROUND STATES OF NONLINEAR SCHRÖDINGER SYSTEM WITH MIXED COUPLINGS arxiv:1903.05340v1 [math.ap] 13 Mar 2019 JUNCHENG WEI AND YUANZE WU Abstract. We consider the following k-coupled nonlinear Schrödinger

More information

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets Convergence in Metric Spaces Functional Analysis Lecture 3: Convergence and Continuity in Metric Spaces Bengt Ove Turesson September 4, 2016 Suppose that (X, d) is a metric space. A sequence (x n ) X is

More information

INVARIANT MANIFOLDS WITH BOUNDARY FOR JUMP-DIFFUSIONS

INVARIANT MANIFOLDS WITH BOUNDARY FOR JUMP-DIFFUSIONS INVARIANT MANIFOLDS WITH BOUNDARY FOR JUMP-DIFFUSIONS DAMIR FILIPOVIĆ, STFAN TAPP, AND JOSF TICHMANN Abstract. We provide necessary and sufficient conditions for stochastic invariance of finite dimensional

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

Filters in Analysis and Topology

Filters in Analysis and Topology Filters in Analysis and Topology David MacIver July 1, 2004 Abstract The study of filters is a very natural way to talk about convergence in an arbitrary topological space, and carries over nicely into

More information

Assignment #10 Morgan Schreffler 1 of 7

Assignment #10 Morgan Schreffler 1 of 7 Assignment #10 Morgan Schreffler 1 of 7 Lee, Chapter 4 Exercise 10 Let S be the square I I with the order topology generated by the dictionary topology. (a) Show that S has the least uppper bound property.

More information

Math 699 Reading Course, Spring 2007 Rouben Rostamian Homogenization of Differential Equations May 11, 2007 by Alen Agheksanterian

Math 699 Reading Course, Spring 2007 Rouben Rostamian Homogenization of Differential Equations May 11, 2007 by Alen Agheksanterian . Introduction Math 699 Reading Course, Spring 007 Rouben Rostamian Homogenization of ifferential Equations May, 007 by Alen Agheksanterian In this brief note, we will use several results from functional

More information

arxiv: v2 [math.ds] 4 Dec 2012

arxiv: v2 [math.ds] 4 Dec 2012 SOME CONSEQUENCES OF THE SHADOWING PROPERTY IN LOW DIMENSIONS ANDRES KOROPECKI AND ENRIQUE R. PUJALS arxiv:1109.5074v2 [math.ds] 4 Dec 2012 Abstract. We consider low-dimensional systems with the shadowing

More information

SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS

SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS SHADOWING AND ω-limit SETS OF CIRCULAR JULIA SETS ANDREW D. BARWELL, JONATHAN MEDDAUGH, AND BRIAN E. RAINES Abstract. In this paper we consider quadratic polynomials on the complex plane f c(z) = z 2 +

More information