Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/ /12

Size: px
Start display at page:

Download "Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/ /12"

Transcription

1 BIO5312 Biostatistics R Session 03: Random Number and Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall /13/ /12

2 Random Number Generator Random number generators have many important applications in gambling, statistical sampling, computer simulations, and other areas where producing an unpredictable random sequence is desirable. A generator of genuinely random numbers means a mechanism for producing a sequence of random variables, X 1, X 2, X 3, X n, with the property that 1) Each X i is uniformly distributed between 0 and 1. 2) The X i are mutually independent. True vs. pseudo-random numbers 1) First method measures some physical phenomenon that is expected to be random and then compensates for possible bases in the measurement process such as atmospheric noise and thermal noise. True random numbers 2) Second method uses computational algorithms that can produce long sequences of apparently random results, which are in fact completely determined by a shorter initial value, known as a seed value. Pseudo-random numbers A linear congruential generator is a reoccurrence of the following form: Ii 1 aii mod m, Xi 1 Ii 1 / m, Where the multiplier a and the modulus m are integer constants that determine the values generated, given an initial value (seed) X 0. 1) Park and Miller method: a= = , m= ) L Ecuyer method: a = , m= /13/ /12

3 General Sampling Methods Assuming we have a random number generator to produce a sequence of random variables, U 1, U 2, U 3, U n, which are mutually independent and uniformly distributed between 0 and 1. How can we obtain a sequence of variables obeying some certain distribution such as normal. Inverse transform method is the simple but very important one among many others. 1) Suppose we want to sample from a cumulative distribution function F(x); i.e. we want to generate a random variable X with the property that P(X <x) =F(x) for all x. 2) The inverse transform method sets X= F -1 (U), where U~Unif[0,1]. 9/13/ /12

4 Generate Random Integers In R Examples using the sample() function # set work directory > setwd("c:/users/junchao/desktop/biostatistics_5312/2016/lab_03") # generate a random integer between 1 to 20 >sample(1:20,1) # generate 10 random integers between 1 to 20 with repeats are allowed > sample(1:20,10,replace=t) # select 10 states randomly without repeats >sample(state.name,10,replace=f) # sample 52 states randomly without repeats >sample(state.name,52,replace=f) # sample 52 states randomly with repeats sample(state.name,52,replace=t) # sample 50 states randomly without repeats >sample(state.name,50,replace=f) 9/13/ /12

5 Generate Random Floats Examples using the runif() function # generate 10 random numbers between 0 and 1 >runif(10,0,1) # generate 1000 random numbers between 1.5 to 10.5 > y=runif(1000,1.5,10.5) # check the histogram >hist(y) # generate 10,000 random numbers between 1.5 to 10.5 > y=runif(10000,1.5,10.5) # check the histogram, any difference? >hist(y) # set the seed for the random number generator >set.seed(12345) # generate 1000 random numbers and set to x x=runif(1000,1.5,10.5) # generate another 1000 random numbers and set to y > y=runif(1000,1.5,10.5) # reset random number seed to >set.seed(12345) # generate another 1000 random numbers and set to z >z=runif(1000,1.5,10.5) # plot scatter plots for x-y and x-z >plot(x,y,xlab="x",ylab="y") >plot(x,z,xlab="x",ylab="z") 9/13/ /12

6 Generate Random Floats: Continued Examples plots from the previous slide 9/13/ /12

7 Binomial Distribution Examples using the dbinom(), pbinom(), rbinom() # check the help >help(dbinom) # get a binomial distribution with n=10,p=0.05 >x=0:10 >y=dbinom(x,10,0.05) >plot(x,y,xlab="k",ylab="pr(k)",main="n=10,p=0.05") # get a binomial distribution with n=10,p=0.95 >y=dbinom(x,10,0.95) >plot(x,y,xlab="k",ylab="pr(k)",main="n=10,p=0.95") # get a binomial distribution with n=10,p=0.50 >y=dbinom(x,10,0.50) >plot(x,y,xlab="k",ylab="pr(k)",main="n=10,p=0.50") # get the cumulative probability function >y=pbinom(x,10,0.5) >plot(x,y,xlab= k,ylab= CDF of Pr(k),main= n=10,p=0.50 ) # generate 1000 random numbers from the binomial distribution >z=rbinom(1000,10,0.5) >hist(z) 9/13/ /12

8 Binomial Distribution: Continued Some plots from the previous slide 9/13/ /12

9 Poisson Distribution Examples using the dpois(), ppois(), rpois() # check the help >help(dpois) # get a Poisson distribution with lambda*t=4.6 >x=0:10 >y=dpois(x,4.6) >plot(x,y,xlab="k",ylab="pr(k)",main="lambda*t=4.6") # get a Poisson distribution with lambda*t=1.15 >y=dpois(x,1.15) >plot(x,y,xlab="k",ylab="pr(k)",main="lambda*t=1.15") # get the cumulative probability function >y=ppois(x,4.6) >plot(x,y,xlab="k",ylab="cdf of Pr(k)",main="lambda*t=4.6") # generate 1000 random numbers from the Poisson distribution >z=rpois(1000,4.6) hist(z) # Poisson approximation to the Binomial distribution >x=0:20 >y=dbinom(x,100,0.05) >z=dpois(x,5.0) >plot(x,y,xlab="k",ylab="pr(k)",col="red", main="red: Binomial,n=100,p=0.05 \n green: Poisson, lambda*t=5.0") > points(x,z,col="green") 9/13/ /12

10 Poisson Distribution: Continued Some plots from the previous slide 9/13/ /12

11 Normal Distribution Examples using the dnorm(), pnorm(), rnorm() # check the help >help(dnorm) # get a normal distribution with mean=2,sd=4 >x=c(-5:9) >y=dnorm(x,2,4) >plot(x,y,xlab="x",ylab="pr(x)",main="normal, mean=2, sd=4") # generate 1000 random numbers from the normal distribution >z=rnorm(1000,2,4) # get PDF of z >hist(z,freq=f) # add y values as red points > points(x,y,co="red") # normal approximation to the binomial distribution > x=0:20 > y=dbinom(x,25,0.4) # normal distribution with mean=np, variance=npq >z=dnorm(x,10,sqrt(6)) >plot(x,y,xlab="x",ylab="pr(x)",col="red",main="red: binomial\n green : normal") >points(x,z,col="green") # normal approximation to the Poisson distribution >y=dpois(x,10) >z=dnorm(x,10,sqrt(10)) >plot(x,y,xlab="x",ylab="pr(x)",col="red",main="red: poisson\n green : normal") > points(x,z,col="green") 9/13/ /12

12 Normal Distribution: Continued Some plots from the previous slide 9/13/ /12

13 The End 9/13/ /12

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions A probability distribution describes how the values of a random variable are distributed. For example, the collection of all possible outcomes of a sequence of coin tossing

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

R Functions for Probability Distributions

R Functions for Probability Distributions R Functions for Probability Distributions Young W. Lim 2018-03-22 Thr Young W. Lim R Functions for Probability Distributions 2018-03-22 Thr 1 / 15 Outline 1 R Functions for Probability Distributions Based

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Lecture 09: Sep 19, Randomness. Random Variables Sampling Probability Distributions Caching. James Balamuta STAT UIUC

Lecture 09: Sep 19, Randomness. Random Variables Sampling Probability Distributions Caching. James Balamuta STAT UIUC Lecture 09: Sep 19, 2018 Randomness Random Variables Sampling Probability Distributions Caching James Balamuta STAT 385 @ UIUC Announcements hw03 is due on Friday, Sep 21st, 2018 @ 6:00 PM Quiz 04 covers

More information

Math/Stat 3850 Exam 1

Math/Stat 3850 Exam 1 2/21/18 Name: Math/Stat 3850 Exam 1 There are 10 questions, worth a total of 100 points. You may use R, your calculator, and any written or internet resources on this test, although you are not allowed

More information

Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014 Introduction Introduction Random Numbers (RNs) are a necessary basic ingredient in the simulation

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33 BIO5312 Biostatistics Lecture 03: Discrete and Continuous Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 9/13/2016 1/33 Introduction In this lecture,

More information

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring

Independent Events. Two events are independent if knowing that one occurs does not change the probability of the other occurring Independent Events Two events are independent if knowing that one occurs does not change the probability of the other occurring Conditional probability is denoted P(A B), which is defined to be: P(A and

More information

Random number generators

Random number generators s generators Comp Sci 1570 Introduction to Outline s 1 2 s generator s The of a sequence of s or symbols that cannot be reasonably predicted better than by a random chance, usually through a random- generator

More information

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary

CPSC 531: Random Numbers. Jonathan Hudson Department of Computer Science University of Calgary CPSC 531: Random Numbers Jonathan Hudson Department of Computer Science University of Calgary http://www.ucalgary.ca/~hudsonj/531f17 Introduction In simulations, we generate random values for variables

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds

( x) ( ) F ( ) ( ) ( ) Prob( ) ( ) ( ) X x F x f s ds Applied Numerical Analysis Pseudo Random Number Generator Lecturer: Emad Fatemizadeh What is random number: A sequence in which each term is unpredictable 29, 95, 11, 60, 22 Application: Monte Carlo Simulations

More information

Using R in 200D Luke Sonnet

Using R in 200D Luke Sonnet Using R in 200D Luke Sonnet Contents Working with data frames 1 Working with variables........................................... 1 Analyzing data............................................... 3 Random

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Chapter 3. Chapter 3 sections

Chapter 3. Chapter 3 sections sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional Distributions 3.7 Multivariate Distributions

More information

Quantitative Understanding in Biology Module I: Statistics Lecture II: Probability Density Functions and the Normal Distribution

Quantitative Understanding in Biology Module I: Statistics Lecture II: Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology Module I: Statistics Lecture II: Probability Density Functions and the Normal Distribution The Binomial Distribution Consider a series of N repeated, independent yes/no

More information

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer General information on labs During the rst half of the course MASA01 we will have

More information

How Monte Carlo Sampling Contributes to Data Analysis. Outline

How Monte Carlo Sampling Contributes to Data Analysis. Outline http://www.math.umd.edu/~evs/mmistat09.pdf How Monte Carlo Sampling Contributes to Data Analysis Eric Slud, Mathematics Department, UMCP Objective: to explain an experimental approach to Probability &

More information

R Based Probability Distributions

R Based Probability Distributions General Comments R Based Probability Distributions When a parameter name is ollowed by an equal sign, the value given is the deault. Consider a random variable that has the range, a x b. The parameter,

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Chapter 4 - Lecture 3 The Normal Distribution

Chapter 4 - Lecture 3 The Normal Distribution Chapter 4 - Lecture 3 The October 28th, 2009 Chapter 4 - Lecture 3 The Standard Chapter 4 - Lecture 3 The Standard Normal distribution is a statistical unicorn It is the most important distribution in

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

Inverse Transform Simulations

Inverse Transform Simulations 0 20000 50000 0 20000 50000 Inverse Transform Simulations (a) Using the Inverse Transform Method, write R codes to draw 100,000 observations from the following distributions (b) Check our simulations with

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

Random Number Generators

Random Number Generators 1/18 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/18 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

Random number generation

Random number generation CE 391F April 4, 2013 ANNOUNCEMENTS Homework 3 due today Homework 4 coming... Announcements Webinar announcement Femke van Wageningen-Kessels from TU Delft will be giving a webinar titled Traffic Flow

More information

Experiment, Sample Space, and Event. Event Operations

Experiment, Sample Space, and Event. Event Operations STAT 503 Probability and Probability Distributions 1 Experiment, Sample Space, and Event Experiment: the process of obtaining observations. Sample space: all possible outcomes of an experiment. Event:

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

UNIT 5:Random number generation And Variation Generation

UNIT 5:Random number generation And Variation Generation UNIT 5:Random number generation And Variation Generation RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the simulation of almost all discrete systems. Most computer languages

More information

Statistische Methoden der Datenanalyse. Kapitel 3: Die Monte-Carlo-Methode

Statistische Methoden der Datenanalyse. Kapitel 3: Die Monte-Carlo-Methode 1 Statistische Methoden der Datenanalyse Kapitel 3: Die Monte-Carlo-Methode Professor Markus Schumacher Freiburg / Sommersemester 2009 Basiert auf Vorlesungen und Folien von Glen Cowan und Abbildungen

More information

Introduction to R and Programming

Introduction to R and Programming Introduction to R and Programming Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

Math493 - Fall HW 4 Solutions

Math493 - Fall HW 4 Solutions Math493 - Fall 2017 - HW 4 Solutions Renato Feres - Wash. U. Preliminaries We have up to this point ignored a central aspect of the Monte Carlo method: How to estimate errors? Clearly, the larger the sample

More information

Transformations of Standard Uniform Distributions

Transformations of Standard Uniform Distributions Transformations of Standard Uniform Distributions We have seen that the R function runif uses a random number generator to simulate a sample from the standard uniform distribution UNIF(0, 1). All of our

More information

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections 9.8-9.9 Fall 2011 Lecture 8 Part 1 (Fall 2011) Probability Distributions Lecture 8 Part 1 1 / 19 Probability

More information

Slides 3: Random Numbers

Slides 3: Random Numbers Slides 3: Random Numbers We previously considered a few examples of simulating real processes. In order to mimic real randomness of events such as arrival times we considered the use of random numbers

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

Generating Random Variables

Generating Random Variables Generating Random Variables These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single

More information

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba B.N.Bandodkar College of Science, Thane Random-Number Generation Mrs M.J.Gholba Properties of Random Numbers A sequence of random numbers, R, R,., must have two important statistical properties, uniformity

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Chapter Learning Objectives. Probability Distributions and Probability Density Functions. Continuous Random Variables

Chapter Learning Objectives. Probability Distributions and Probability Density Functions. Continuous Random Variables Chapter 4: Continuous Random Variables and Probability s 4-1 Continuous Random Variables 4-2 Probability s and Probability Density Functions 4-3 Cumulative Functions 4-4 Mean and Variance of a Continuous

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Hands-on Generating Random

Hands-on Generating Random CVIP Laboratory Hands-on Generating Random Variables Shireen Elhabian Aly Farag October 2007 The heart of Monte Carlo simulation for statistical inference. Generate synthetic data to test our algorithms,

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Probability theory and statistical analysis: a review Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Concepts assumed known Histograms, mean, median, spread, quantiles Probability,

More information

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable.

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable. Continuous Random Variables Today we are learning... What continuous random variables are and how to use them. I will know if I have been successful if... I can give a definition of a continuous random

More information

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 20 Randomness and Monte Carlo J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) CS 357 1 / 40 What we ll do: Random number generators Monte-Carlo integration

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Seungchul Baek Department of Mathematics and Statistics, UMBC STAT 633: Statistical Computing 1 / 67 Introduction Simulation is a very powerful tool for statisticians. It allows

More information

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint Chapter 4: Monte Carlo Methods Paisan Nakmahachalasint Introduction Monte Carlo Methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /15/ /12

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /15/ /12 BIO5312 Biostatistics R Session 12: Principal Component Analysis Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/15/2016 1 /12 Matrix Operations I: Constructing matrix(data,

More information

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference Solé Prillaman Harvard University February 11, 2015 1 / 48 LOGISTICS Reading Assignment- Unifying Political Methodology chs 2 and 4. Problem Set 3-

More information

The Poisson Distribution

The Poisson Distribution The Poisson Distribution Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 5, 2004 Statistics 371 Last modified: February 4, 2004 The Poisson Distribution The Poisson distribution

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

STOR Lecture 14. Jointly distributed Random Variables - II

STOR Lecture 14. Jointly distributed Random Variables - II STOR 435.001 Lecture 14 Jointly distributed Random Variables - II Jan Hannig UNC Chapel Hill 1 / 24 Discrete case: Independence is equivalent to p(x, y) = p X (x)p Y (y), all x, y, where p(x, y) is the

More information

Generation from simple discrete distributions

Generation from simple discrete distributions S-38.3148 Simulation of data networks / Generation of random variables 1(18) Generation from simple discrete distributions Note! This is just a more clear and readable version of the same slide that was

More information

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016

Lecture 1: Random number generation, permutation test, and the bootstrap. August 25, 2016 Lecture 1: Random number generation, permutation test, and the bootstrap August 25, 2016 Statistical simulation 1/21 Statistical simulation (Monte Carlo) is an important part of statistical method research.

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 2: Random Numbers http://www.wiley.com/go/smed What are random numbers good for (according to D.E. Knuth) simulation sampling numerical analysis computer

More information

Lehmer Random Number Generators: Introduction

Lehmer Random Number Generators: Introduction Lehmer Random Number Generators: Introduction Revised version of the slides based on the book Discrete-Event Simulation: a first course LL Leemis & SK Park Section(s) 21, 22 c 2006 Pearson Ed, Inc 0-13-142917-5

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Mainz, May 2, 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler 2. Random Numbers 2.1 Why random numbers:

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Math Key Homework 3 (Chapter 4)

Math Key Homework 3 (Chapter 4) Math 3339 - Key Homework 3 (Chapter 4) Name: PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline. Print

More information

The Normal Distribution

The Normal Distribution The Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 10, 2004 Statistics 371 Last modified: February 11, 2004 The The (AKA Gaussian Distribution) is our first distribution

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Chapter 3: Methods for Generating Random Variables

Chapter 3: Methods for Generating Random Variables Chapter 3: Methods for Generating Random Variables Lecturer: Zhao Jianhua Department of Statistics Yunnan University of Finance and Economics Outline 3.1 Introduction Random Generators of Common Probability

More information

MAS1802: Problem Solving II (Statistical Computing with R)

MAS1802: Problem Solving II (Statistical Computing with R) MAS1802: Problem Solving II (Statistical Computing with R) Dr Lee Fawcett School of Mathematics, Statistics & Physics Semester 2, 2017/2018 Part V Random Number Generation Some thoughts... When writing

More information

Random numbers and generators

Random numbers and generators Chapter 2 Random numbers and generators Random numbers can be generated experimentally, like throwing dice or from radioactive decay measurements. In numerical calculations one needs, however, huge set

More information

Computer Applications for Engineers ET 601

Computer Applications for Engineers ET 601 Computer Applications for Engineers ET 601 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Random Variables (Con t) 1 Office Hours: (BKD 3601-7) Wednesday 9:30-11:30 Wednesday 16:00-17:00 Thursday

More information

How does the computer generate observations from various distributions specified after input analysis?

How does the computer generate observations from various distributions specified after input analysis? 1 How does the computer generate observations from various distributions specified after input analysis? There are two main components to the generation of observations from probability distributions.

More information

Review of Statistical Terminology

Review of Statistical Terminology Review of Statistical Terminology An experiment is a process whose outcome is not known with certainty. The experiment s sample space S is the set of all possible outcomes. A random variable is a function

More information

Pembangkitan Bilangan Acak dan Resampling

Pembangkitan Bilangan Acak dan Resampling Pembangkitan Bilangan Acak dan Resampling τρ Pembangkitan Bilangan Acak Resampling Jackknife Bootstrap Topics Random Generators in R Distribution R name Additional Arguments beta beta shape1, shape2, ncp

More information

SIMULATION SEMINAR SERIES INPUT PROBABILITY DISTRIBUTIONS

SIMULATION SEMINAR SERIES INPUT PROBABILITY DISTRIBUTIONS SIMULATION SEMINAR SERIES INPUT PROBABILITY DISTRIBUTIONS Zeynep F. EREN DOGU PURPOSE & OVERVIEW Stochastic simulations involve random inputs, so produce random outputs too. The quality of the output is

More information

Pseudo-Random Generators

Pseudo-Random Generators Pseudo-Random Generators Why do we need random numbers? Simulation Sampling Numerical analysis Computer programming (e.g. randomized algorithm) Elementary and critical element in many cryptographic protocols

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

TMA4265: Stochastic Processes

TMA4265: Stochastic Processes General information TMA4265: Stochastic Processes Andrea Riebler August 18th, 2015 You find all important information on the course webpage: https://wiki.math.ntnu.no/tma4265/2015h/start Please check this

More information

Pseudo-Random Generators

Pseudo-Random Generators Pseudo-Random Generators Topics Why do we need random numbers? Truly random and Pseudo-random numbers. Definition of pseudo-random-generator What do we expect from pseudorandomness? Testing for pseudo-randomness.

More information

TMA4265: Stochastic Processes

TMA4265: Stochastic Processes General information You nd all important information on the course webpage: TMA4265: Stochastic Processes https://wiki.math.ntnu.no/tma4265/2014h/start Please check this website regularly! Lecturers: Andrea

More information

Dr. Iyad Jafar. Adapted from the publisher slides

Dr. Iyad Jafar. Adapted from the publisher slides Computer Applications Lab Lab 9 Probability, Statistics, Interpolation, and Calculus Chapter 7 Dr. Iyad Jafar Adapted from the publisher slides Outline Statistics and Probability Histograms Normal and

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

Monte Carlo Techniques

Monte Carlo Techniques Physics 75.502 Part III: Monte Carlo Methods 40 Monte Carlo Techniques Monte Carlo refers to any procedure that makes use of random numbers. Monte Carlo methods are used in: Simulation of natural phenomena

More information

Statistical Computing Session 4: Random Simulation

Statistical Computing Session 4: Random Simulation Statistical Computing Session 4: Random Simulation Paul Eilers & Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center p.eilers@erasmusmc.nl Masters Track Statistical Sciences,

More information

Density Curves & Normal Distributions

Density Curves & Normal Distributions Density Curves & Normal Distributions Sections 4.1 & 4.2 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Topics. Pseudo-Random Generators. Pseudo-Random Numbers. Truly Random Numbers

Topics. Pseudo-Random Generators. Pseudo-Random Numbers. Truly Random Numbers Topics Pseudo-Random Generators Why do we need random numbers? Truly random and Pseudo-random numbers. Definition of pseudo-random-generator What do we expect from pseudorandomness? Testing for pseudo-randomness.

More information

2008 Winton. Review of Statistical Terminology

2008 Winton. Review of Statistical Terminology 1 Review of Statistical Terminology 2 Formal Terminology An experiment is a process whose outcome is not known with certainty The experiment s sample space S is the set of all possible outcomes. A random

More information

FW 544: Computer Lab Probability basics in R

FW 544: Computer Lab Probability basics in R FW 544: Computer Lab Probability basics in R During this laboratory, students will be taught the properties and uses of several continuous and discrete statistical distributions that are commonly used

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny September 27 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 31 Kerrich s experiment Introduction 10,000 coin flips Expectation and

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information