To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

Size: px
Start display at page:

Download "To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:"

Transcription

1 Joel Anderson ST Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings of a pmf and a cdf (regarding discrete random variables) are similar to histograms and step functions. The pmf consists of several lines drawn at each point with the height scaled to match the relative probability of that event (similar to a histogram). A cdf will start at zero and increase each time it hits an event on the x axis by a set amount, and then remain constant until it hits another event, creating a step-like feel. For examples of the two functions, see Figure 3.3 on page 93 and Figure 3.6 on page 97 of the Devore textbook. We now turn to finding different characteristics of probability sets that are characterized by pmf s and/or cdf s. First, to find the median of such a set use the cdf to find where F(x p ) = ½, where x p is the median. If an exact value cannot be found, then it must be estimated through interpolation. An example is shown below: To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y= and y=2, respectively). Then we interpolate: If a probability mass function is not known, it can be derived from the cdf by measuring the jumps between the steps of the cdf. For example, the above function would yield the following pmf, written as a table for continuous use: y p(y) We can also check our resulting pmf by making sure that all of the values add to : Using this method, we can go back to a pmf from a cdf, or rederive a cdf using integration. In short, having one of the two makes it possible to get the other. Next, we look at the expected value of a given pmf, which is symbolized by E(X) or µ x (remember that greek letters correspond to the actual population, while capital letters correspond to measurements regarding the sample). The expected value of a probability function can be thought of as the center of mass or balancing point of the function: what is the point that all of the probabilities are closest to (the average, in essence). We calculate it with the following formula: As an example, we can calculate the expected value of the pmf used earlier:

2 y p(y) y*p(y) For more examples of this calculation or pictures showing the balancing point analogy, see the section in the Devore textbook starting at page 03. The variance of a probability function carries the same meaning as it does for other data sets, however it can be calculated using a shortcut formula that uses the expected value of the function. This makes calculations of the variance much easier. We can derive the shortcut formula as shown below: To demonstrate that using these two formulas gives the same result, we calculate the variance of the previous function: y p(y) y 2 *p(y) Variance using shortcut method: = 5 4 = y y-µ (y-µ) (y-µ) 2 p(x) Variance using original method: = We see that the two methods yield the same result, but that the shortcut significantly decreases the amount of work involved (and in turn decreases the opportunity for error in calculation). Next, we look at what happens to the values when the function is changed in a linear fashion (i.e. X becomes ax+b). For example, suppose that the function y represented an amount of skittles each child has in his or her possession. Next, all children are given one skittle, or perhaps each one is given as many skittles as they have again (doubling their skittles). Is there an easy way to find the expected value and variance of the new data set without calculating them afresh? Of course there is, or I wouldn t be discussing this. 2

3 This seems too simple to be true. Why would teachers allow crib sheets on tests if formulas were ever this easy to remember? We can prove that this transformation is correct using the following derivation: Unfortunately, the transformations for the variance and standard deviation are not quite as simple. They are shown below. Note that b has no effect on the end result. This is because each of the values will still vary from the expected value (which has shifted by b units, remember) from the same amount that they did before, meaning that they will not appear in the variance or standard deviation. To illustrate the concepts of the cdf further, number 23 on page 99 of the Devore text was done in class. The problem as well as the solutions may be found in the attached handout passed out at the end of class. The final topic covered in this lecture is the Bernoulli variable, as well as the binomial variable formula that typically accompanies this class of variables. A Bernoulli variable is one that may only take one of two values: success or failure, 0 or, pass or fail, etc... The Bernoulli variable may be used in a the binomial formula when given the probability of success (however success may be defined is left to the user) is given as p. Bernoulli variables have special properties regarding variance and the expected value: And, in general: With n being the number of trials the variable is given, we may calculate the probability of having x successes using this formula: This formula comes from the fact that you can model n trials as a tree with n levels and 2 n terminal nodes. To find the probability of having x number of successes, we label each edge with the respective probability, find the probability of each path and add them together. That is what this formula does. For more example problems, see numbers 27, 37, 39, 46, 47, and 7 in Chapter 3 of the Devore text. 3

4 4

5 5

6 2/0/ Lecture Summary Random Variable function is defined on the sample space of the experiment and assigns a numerical variable to each possible outcome of the experiment. It is denoted by capital letters (ex. X, Y, Z) Probability Distribution or probability mass function (pmf) of a discrete rv is defined for every number x by p(x)=p(x=x)=p(all s ɛ S: X(s) = x). Probability of x occurring n # of times Example: flipping a fair coin three times 7/8 H T CDF H H T H T T H T H T H T X= # of Heads P(x=2) = 3/8 P(x<2) = /2 P(x 2) = 7/8 PMF below 3/8 / /8 /8 The Cumulative Distribution function (cdf) F(x) of a discrete rv variable X with pmf p(x) is defined for every number x by F(x) = P(X x) = p(y). It is the cumulative (add) probabilities of the experiment for a discrete rv variable. For any number x, F(x) is the probability that the observed value of X will be at most x. P(a X b) = F(b)-F(a-), a- is the largest possible X value that is strictly less than a.

7 2/0/ Lecture Summary Exercise Section 3.2 #3 in Devore A mail-order computer business has six telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. x P(x) F(x) Calculate the probability of each of the following events a) At most three lines are in use P(x 3) =.70 b) Fewer than three lines are in use P(x<3) = F(2) =.45 c) At least three lines are in use P(x 3) = -F(2) = -.45 =.55 d) Between two and five lines, inclusive, are in use P(2 x 5) = F(5)-F() = =.7 e) Between two and four lines, inclusive, are not in use P(2 x 4) = F(4)-F() = =.65 f) At least four lines are not in use P(x 4) = F(2) =.45

8

9

10

11

12

13

14

15 Lecture Summary Feb 0 Jeffrey Brown ST February 0 th s lecture focused on the introduction and discussion of the differences between discrete and continuous variables. The difference was portrayed showing a tree of different events with each variable type. Discrete Continuous The discrete example shows the discrete random variable X, the number of heads in 3 coin flips. If we recorded every possible outcome after the third flip, we would find all values X can equal; hence discrete. In the continuous example, the continuous random variable X is the number of tails recorded in a row. We cannot record all possible values of X in this case since we can see in the tree there can be anywhere from 0 tails to Ti, or infinite; hence continuous. During lecture, we discussed how new variables can be introduced to the discrete random variable, such as Y, the number of heads minus the number of tails, and Z, 2*Y. The second portion of class we discussed probability mass functions and cumulative distribution functions. A probability mass function of a discrete random valuable redefines every number x that the variable X can equal. The graph of the function is then the probability that X=x. This can be represented by a dot plot with values probability values for each value of x. In

16 the coin flip example above, the probability that X = is 3/8, since 3 out of the 8 total outcomes have 3 total number of heads. A cumulative distribution function for a discrete random variable is similar but instead displays the probability that X is less than or equal to x. This can be represented by a bar graph with heights between each 2 values of x equal to the probability that X is within those values. In the coin flip example above, the probability that X is less than or equal to 2 is 7/8 since 7 out of the 8 possible outcomes has either 2, or 0 total number of heads.

17 Lecture 6 Summary Will Lowder Random Variables Text 3.,3.2 Cartoon Guide Ch.4 IV in Sun notes Associating the outcomes from choosing a random variable from a given sample space to certain outcomes Ex: x=number of heads y=number of tails x Y A Random Variable (rv) is a function defined on a sample space of an experiment that assigns a value to every possible outcome Ex: Flipping a coin creates rv X. X({H})= and X({T})=0 The Probability Mass Function of an rv is defined by p(x) for every random number x A Bernoulli random variable is one that only has two possible outcomes Because the sample space for a coin toss is S={H,T} it is a Bernoulli rv Define Y=height above sealevel in the US in feet S={-282=<Y=<4494} Probability Mass Function is Pr(X=x) Cumulative Distribution Function is Pr(X=<x)=F(x) Pr(X=xi)=F(xi)-F(xi-)

18 A company has 6 phone lines. The following table represents the probability that a number is in use at a given time X P(X) F(X) Ex. Pr(X=<3)=.70 Pr(x<3)=.45 Pr(X=>3)=-Pr(X<3) Pr(2=<X=<5)=F(5)-F()

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume?

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume? Stat 400, section.1-.2 Random Variables & Probability Distributions notes by Tim Pilachowski For a given situation, or experiment, observations are made and data is recorded. A sample space S must contain

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2]

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] PROBABILITY MASS FUNCTION (PMF) DEFINITION): Let X be a discrete random variable. Then, its pmf, denoted as p X(k), is defined as follows: p X(k) :=

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

Homework 2. Spring 2019 (Due Thursday February 7)

Homework 2. Spring 2019 (Due Thursday February 7) ECE 302: Probabilistic Methods in Electrical and Computer Engineering Spring 2019 Instructor: Prof. A. R. Reibman Homework 2 Spring 2019 (Due Thursday February 7) Homework is due on Thursday February 7

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions Fault-Tolerant Computer System Design ECE 60872/CS 590 Topic 2: Discrete Distributions Saurabh Bagchi ECE/CS Purdue University Outline Basic probability Conditional probability Independence of events Series-parallel

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Intro to probability concepts

Intro to probability concepts October 31, 2017 Serge Lang lecture This year s Serge Lang Undergraduate Lecture will be given by Keith Devlin of our main athletic rival. The title is When the precision of mathematics meets the messiness

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Introduction to Probability and Statistics Slides 3 Chapter 3

Introduction to Probability and Statistics Slides 3 Chapter 3 Introduction to Probability and Statistics Slides 3 Chapter 3 Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008 Dr. Ammar M. Sarhan

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES VARIABLE Studying the behavior of random variables, and more importantly functions of random variables is essential for both the

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve. The curve is called the probability

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning 1 INF4080 2018 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning 2 Probability distributions Lecture 5, 5 September Today 3 Recap: Bayes theorem Discrete random variable Probability distribution Discrete

More information

Chapter 3. Chapter 3 sections

Chapter 3. Chapter 3 sections sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional Distributions 3.7 Multivariate Distributions

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

Lecture 2. Distributions and Random Variables

Lecture 2. Distributions and Random Variables Lecture 2. Distributions and Random Variables Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers March 2013. Click on red text for extra material.

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 4 Student Lecture Notes 4-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 4 Using Probability and Probability Distributions Fundamentals of Business Statistics Murali Shanker

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

Discrete Distributions

Discrete Distributions Discrete Distributions Applications of the Binomial Distribution A manufacturing plant labels items as either defective or acceptable A firm bidding for contracts will either get a contract or not A marketing

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

STAT 430/510 Probability Lecture 7: Random Variable and Expectation

STAT 430/510 Probability Lecture 7: Random Variable and Expectation STAT 430/510 Probability Lecture 7: Random Variable and Expectation Pengyuan (Penelope) Wang June 2, 2011 Review Properties of Probability Conditional Probability The Law of Total Probability Bayes Formula

More information

Topic 3 - Discrete distributions

Topic 3 - Discrete distributions Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution and process 1 A random variable is a function which

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1 IEOR 3106: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

There are two basic kinds of random variables continuous and discrete.

There are two basic kinds of random variables continuous and discrete. Summary of Lectures 5 and 6 Random Variables The random variable is usually represented by an upper case letter, say X. A measured value of the random variable is denoted by the corresponding lower case

More information

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Two Classes of R.V. Discrete R.V. Bernoulli Binomial Geometric Poisson Continuous R.V. Uniform Exponential,

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park April 3, 2009 1 Introduction Is the coin fair or not? In part one of the course we introduced the idea of separating sampling variation from a

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

A random variable is a quantity whose value is determined by the outcome of an experiment.

A random variable is a quantity whose value is determined by the outcome of an experiment. Random Variables A random variable is a quantity whose value is determined by the outcome of an experiment. Before the experiment is carried out, all we know is the range of possible values. Birthday example

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009

S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009 S2 QUESTIONS TAKEN FROM JANUARY 2006, JANUARY 2007, JANUARY 2008, JANUARY 2009 SECTION 1 The binomial and Poisson distributions. Students will be expected to use these distributions to model a real-world

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15 MA 250 Probability and Statistics Nazar Khan PUCIT Lecture 15 RANDOM VARIABLES Random Variables Random variables come in 2 types 1. Discrete set of outputs is real valued, countable set 2. Continuous set

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Continuous r.v. s: cdf s, Expected Values

Continuous r.v. s: cdf s, Expected Values Continuous r.v. s: cdf s, Expected Values Engineering Statistics Section 4.2 Josh Engwer TTU 29 February 2016 Josh Engwer (TTU) Continuous r.v. s: cdf s, Expected Values 29 February 2016 1 / 17 PART I

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

MgtOp 215 Chapter 5 Dr. Ahn

MgtOp 215 Chapter 5 Dr. Ahn MgtOp 215 Chapter 5 Dr. Ahn Random variable: a variable that assumes its values corresponding to a various outcomes of a random experiment, therefore its value cannot be predicted with certainty. Discrete

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Random Variables Shiu-Sheng Chen Department of Economics National Taiwan University October 5, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I October 5, 2016

More information

STATISTICS 1 REVISION NOTES

STATISTICS 1 REVISION NOTES STATISTICS 1 REVISION NOTES Statistical Model Representing and summarising Sample Data Key words: Quantitative Data This is data in NUMERICAL FORM such as shoe size, height etc. Qualitative Data This is

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions Week 5 Random Variables and Their Distributions Week 5 Objectives This week we give more general definitions of mean value, variance and percentiles, and introduce the first probability models for discrete

More information

Exam 2 Review Math 118 Sections 1 and 2

Exam 2 Review Math 118 Sections 1 and 2 Exam 2 Review Math 118 Sections 1 and 2 This exam will cover sections 2.4, 2.5, 3.1-3.3, 4.1-4.3 and 5.1-5.2 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University Lecture 14 Text: A Course in Probability by Weiss 5.6 STAT 225 Introduction to Probability Models February 23, 2014 Whitney Huang Purdue University 14.1 Agenda 14.2 Review So far, we have covered Bernoulli

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Discrete Probability Distributions

Discrete Probability Distributions 37 Contents Discrete Probability Distributions 37.1 Discrete Probability Distributions 2 37.2 The Binomial Distribution 17 37.3 The Poisson Distribution 37 37.4 The Hypergeometric Distribution 53 Learning

More information

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017

First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017 First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017 You will have 70 minutes to complete this exam. Graphing calculators, notes, and textbooks are not permitted. I pledge

More information