TXY diagram for water-formic acid at 1 atm

Size: px
Start display at page:

Download "TXY diagram for water-formic acid at 1 atm"

Transcription

1 CHE 323, November 5, Chemical Engineering Thermodynamics. Tutorial problem 7. From the azeotrope database: formic acid water azeotrope forms an azeotrope at 1 atm, T=380.25K, and with a composition of mol fraction of formic acid (HCOOH). For this system: a) Find the Margules parameters for this system (A12, A21). Is the interaction between water and formic acid attractive or net repulsive? b) Find the Henry s constant for formic acid in water at 25 C. Compared with values in the literature (ranging from 0.8 to 6 kpa) c) Find the composition and pressure of the formic acid azeotrope at 80 C. d) Construct a T-X-Y diagram at 1 atm. For x1(formic acid)= 0.1, 0.25, 0.75, 0.9. Hint: this is a repeated exercise of bubble point temperature calculations at these compositions. Note: it is highly encouraged that you work in teams and each member of the team makes one of these different calculations, and share the results. P formic acid,kpa=exp( /(t C )) P water,kpa=exp( /(t C )) Then the table of compositions is Temperature X Y1 Temperature, Celsius TXY diagram for water-formic acid at 1 atm Molar fraction (x,y) of formic acid

2 Solution: a) At T C = ( ) = C, then P formic acid,kpa= kpa, P water,kpa= kpa. When one has an Azeotrope, xi=yi. The liquid-vapour equilibrium equation at low pressures (fugacity coefficients ~1, Poyinting effect is negligible) is: xi*pi *γi = yi*p Then, because of the azeotrope, γi = P/ Pi Then, γformic acid = kpa/115.42kpa = Then, γwater = kpa/133.55kpa = A12 = 2ln(γ2,az)/x1,az - ln(γ1,az)(x1,az x2,az)/x2,az 2 = 2*ln(0.759)/ ln(0.878)*( ( ))/( )^2 = A21 = 2ln(γ1,az)/x2,az - ln(γ2,az)(x2,az x1,az)/x1,az 2 = 2*ln(0.878)/( )-ln(0.759)*( )/(0.5741)^2 = In this case, the interactions are close to being symmetric, and the negative sign means they are attractive interactions. As the composition of the azeotrope is close to equimolar. b) To find Hformic acid = P formic acid*γformic acid, xformic acid=>0 γformic acid, xformic acid=>0 = = exp(1^2*( *( )*0)) = Hformic acid,25 C = 0.426*exp( /( )) = 3.85 kpa which is consistent with the range of value indicated in the literature. c) To find the composition and pressure of the formic acid azeotrope at 80 C: γi = P/ Pi Which means that γ1 P1 = γ2 P2 or that γ1 P1 - γ2 P2 = 0, then P1 *exp (x2 2 (A12 +2(A21-A12)x1)) - P2 * exp (x1 2 (A21 +2(A12-A21)x2)) = 0 At 25 C, P1 = exp( /( )) = and P2 = exp( /( )) = Considering f(x1) = 61.82*exp ((1-x1)^2*(A12 +2(A21-A12)*x1)) 47.9*exp (x1^2*(a21 +2(A12- A21)*(1-x1))) By trial and error we can find the value of x1 that makes this function equal to zero For x1 = 0.5 f(0.5) = 61.82*EXP((1-0.5)^2*( *( )*0.5)) *EXP(0.5^2*( *( )*(1-0.5))) = For x1 = 0.3 f(0.3) = 61.82*EXP((1-0.3)^2*( *( )*0.3)) *EXP(0.3^2*( *( )*(1-0.3))) = For x1 = 0.35 f(0.35) = 61.82*EXP((1-0.35)^2*( *( )*0.35)) *EXP(0.35^2*( *( )*(1-0.35))) = For x1 = 0.33 f(0.33) = 61.82*EXP((1-0.33)^2*( *( )*0.33)) *EXP(0.33^2*( *( )*(1-0.33))) = close enough to the zero. Then x1azeotrope=y1azeotrope = 0.33, P = 61.82*EXP((1-0.33)^2*( *( )*0.33)) = kpa. This means that in some situations we can change the composition of the azeotrope if we change the temperature/pressure of the system, but only if the ratio of vapour pressures changes with changes in temperature.

3 To calculate the bubble point, all liquid, zi=xi, then we need to assure that Σ yi =1 But y i = x i γ i P i /P that incorporating into the bubble point condition leads to P = Σ x i γ i P i For x1= 0.1 For x1 = 0.1, γ1 = exp (x2 2 (A12 +2(A21-A12)x1)), γ1 = exp(0.9^2*( *( )*0.1)) = For x2 = 0.9, γ2 = exp (x1 2 (A21 +2(A12-A21)x2)), γ2 = exp(0.1^2*( *( )*0.9)) = Then, 0.1*0.511*exp( /(T C ))+0.9*0.991*exp( /(T C )) Pcalculated = 0.1*0.511*exp( /( ))+0.9*0.991*exp( /( )) = kpa Pcalculated = 0.1*0.511*exp( /( ))+0.9*0.991*exp( /( )) = Pcalculated = 0.1*0.511*exp( /( ))+0.9*0.991*exp( /( )) = Pcalculated = 0.1*0.511*exp( /( ))+0.9*0.991*exp( /( )) = kpa close enough to kpa (P=1 atm) In this case, y1 = 0.1*0.511*exp( /( ))/101.3 = For x1= 0.25 For x1 = 0.25, γ1 = exp (x2 2 (A12 +2(A21-A12)x1)), γ1 = exp(0.75^2*( *( )*0.25)) = For x2 = 0.75, γ2 = exp (x1 2 (A21 +2(A12-A21)x2)), γ2 = exp(0.25^2*( *( )*0.75)) = Then, 0.25*0.64*exp( /(T C ))+0.75*0.945*exp( /(T C )) Pcalculated = 0.25*0.64*exp( /( ))+0.75*0.945*exp( /( )) = Pcalculated = 0.25*0.64*exp( /( ))+0.75*0.945*exp( /( )) = kpa Pcalculated = 0.25*0.64*exp( /( ))+0.75*0.945*exp( /( )) = Pcalculated = 0.25*0.64*exp( /( ))+0.75*0.945*exp( /( )) = kpa close enough to kpa (P=1 atm) In this case, y1 = 0.25*0.640*exp( /( ))/101.3 = For x1= 0.75

4 For x1 = 0.75, γ1 = exp (x2 2 (A12 +2(A21-A12)x1)), γ1 = exp(0.25^2*( *( )*0.75)) = For x2 = 0.25, γ2 = exp (x1 2 (A21 +2(A12-A21)x2)), γ2 = exp(0.75^2*( *( )*0.25)) = Then, 0.75*0.959*exp( /(T C ))+0.25*0.640*exp( /(T C )) Pcalculated = 0.75*0.959*exp( /( ))+0.25*0.640*exp( /( )) = Pcalculated = 0.75*0.959*exp( /( ))+0.25*0.640*exp( /( )) = kpa Pcalculated = 0.75*0.959*exp( /( ))+0.25*0.640*exp( /( )) = Pcalculated = 0.75*0.959*exp( /( ))+0.25*0.640*exp( /( )) = kpa close enough to kpa. In this case, y1 = 0.75*0.959*exp( /( ))/101.3 = For x1= 0.9 For x1 = 0.9, γ1 = exp (x2 2 (A12 +2(A21-A12)x1)), γ1 = exp(0.1^2*( *( )*0.9)) = For x2 = 0.1, γ2 = exp (x1 2 (A21 +2(A12-A21)x2)), γ2 = exp(0.9^2*( *( )*0.1)) = Then, 0.9*0.994*exp( /(T C ))+0.1*0.541*exp( /(T C )) Pcalculated = 0.9*0.994*exp( /( ))+0.1*0.541*exp( /( )) = kpa Pcalculated = 0.9*0.994*exp( /( ))+0.1*0.541*exp( /( )) = Pcalculated = 0.9*0.994*exp( /( ))+0.1*0.541*exp( /( )) = 98.9 Pcalculated = 0.9*0.994*exp( /( ))+0.1*0.541*exp( /( )) = kpa close enough to kpa. In this case, y1 =0.9*0.994*exp( /( ))/101.3 = Then the table of compositions is Temperature = X Y

5 The T-X-Y diagram is Temperature, Celsius TXY diagram for water-formic acid at 1 atm T-X T-Y Molar fraction (x,y) of formic acid

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Modified Raoult's Law and Excess Gibbs Free Energy

Modified Raoult's Law and Excess Gibbs Free Energy ACTIVITY MODELS 1 Modified Raoult's Law and Excess Gibbs Free Energy Equilibrium criteria: f V i = L f i For vapor phase: f V i = y i i P For liquid phase, we may use an activity coefficient ( i ), giving:

More information

_".. psat. Alternatively, Eq. (10.5) may be solved for Xi, in which case summing over all species yields: P=----- (10.

_.. psat. Alternatively, Eq. (10.5) may be solved for Xi, in which case summing over all species yields: P=----- (10. tion 10.5. VLE by Modified Raoult's Law 359 the,ure )OUt Bubblepoint and dewpoint calculations made with this equation are only a bit more complex than the same calculations made with Raoult's law. Activity

More information

Ph.D. Qualifying Examination In Thermodynamics

Ph.D. Qualifying Examination In Thermodynamics Ph.D. Qualifying Examination In Thermodynamics May 2014 University of Texas at Austin Department of Chemical Engineering The exam is a closed book examination. There are five equally weighed problems on

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis Lecture 5. Single Equilibrium Stages (1) Phase Separation [Ch. 4] Degree of Freedom Analysis - Gibbs phase rule F CP2 -General analysis Binary Vapor-Liquid Systems - Examples of binary system - Phase equilibrium

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2015 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2015 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

The Advanced Chemical Engineering Thermodynamics. The thermodynamics properties of fluids (II) Ji-Sheng Chang Q&A_-10-11/17/2005(10)

The Advanced Chemical Engineering Thermodynamics. The thermodynamics properties of fluids (II) Ji-Sheng Chang Q&A_-10-11/17/2005(10) The Advanced Chemical Engineering Thermodynamics The thermodynamics properties of fluids (II) Q&A_-10-11/17/2005(10) Ji-Sheng Chang Property relations The residual Gibbs free energy The definition of residual

More information

6 Physical transformations of pure substances

6 Physical transformations of pure substances 6 Physical transformations of pure substances E6.b E6.2b E6.3b E6.4b Solutions to exercises Discussion questions Refer to Fig. 6.8. The white lines represent the regions of superheating and supercooling.

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

Separation of mixtures with azeotrope

Separation of mixtures with azeotrope Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Estado de México Equilibrium Thermodynamic Dra. Yara Almanza Challenging exercise Separation of mixtures with azeotrope Liliana Itzel

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2 Chemistry 360 Dr. Jean M. Standard Fall 2016 Name KEY Exam 3 Solutions 1.) (14 points) Consider the gas phase decomposition of chlorine dioxide, ClO 2, ClO 2 ( g) ClO ( g) + O ( g). At 200 K and a total

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of Experiment 11 IDEAL GAS Objectives 1. To set up a thermal machine laboratory model, 2. To raise an object of a given mass using the thermal machine model, and 3. To describe and explain the operation of

More information

10th edition 9th edition 8th edition

10th edition 9th edition 8th edition Assigned questions for Lecture 7 are listed below (there are two sets). The questions occur in the following editions of Physical Chemistry by P.W. Atkins: 10th edition 9th edition 8th edition Note: The

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

Name: Regents Chemistry: Notes: Unit 8 Gases.

Name: Regents Chemistry: Notes: Unit 8 Gases. Name: Regents Chemistry: Notes: Unit 8 Gases 1 Name: KEY IDEAS The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Vapor Pressure of Liquids Equilibria and Thermodynamics

Vapor Pressure of Liquids Equilibria and Thermodynamics Chemistry 1B-Foothill College Vapor Pressure of Liquids Equilibria and Thermodynamics In this exercise, you will investigate the relationship between the vapor pressure of a liquid and the thermodynamic

More information

UNIVESITY OF SWAZILAND FACl.JLTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

UNIVESITY OF SWAZILAND FACl.JLTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS UNIVESITY OF SWAZILAND FACl.LTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS Main Examination 2016/2017. COURSE NAME: Thermodynamics/Thermofluids COURSE CODE: PHY242/EEE202 TIME ALLOWED: 3 hours ANSWER

More information

Theory (NOTE: This theory is the same that we covered before in Experiment 11on the Ideal Gas model)

Theory (NOTE: This theory is the same that we covered before in Experiment 11on the Ideal Gas model) Experiment 12 CHARLES LAW Objectives 1. To set up a model of thermal machine, 2. To put to work the model to verify Charles law, 3. To describe and explain Charles law Theory (NOTE: This theory is the

More information

Liquids and Solutions

Liquids and Solutions Liquids and Solutions Introduction This course examines the properties of liquids and solutions at both the thermodynamic and the molecular level. The main topics are: Liquids, Ideal and Regular Solutions,

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes MTHSC 206 Section 12.5 Equations of Lines and Planes Definition A line in R 3 can be described by a point and a direction vector. Given the point r 0 and the direction vector v. Any point r on the line

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL

Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL THERMODYNAMICS MODEL For the description of phase equilibria today modern thermodynamic models are available. For vapor-liquid equilibria it can bedistinguished

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

The two major assumptions required to reduce VLE calculations to Raoult's law are:

The two major assumptions required to reduce VLE calculations to Raoult's law are: 10.4 SIMPLE MODELS FOR VAPOR/LIQUID EQUILIBRIUM The preceding section has described what is observed through experimental observation. When thermodynamics is applied to vapour/liquid equilibrium, the goal

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 11 SESSION 13 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 11 SESSION 13 (LEARNER NOTES) KINETIC THEORY OF GASES Learner Note: This section is related to chemical equilibrium and rates of reaction. Relationships in the section are very important. Emphasise the Kinetic Theory as this is again

More information

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 NAME: CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader

More information

Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols

Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols Sunghyun Jang, Moon Sam Shin, Yongjin Lee, Hwayong Kim * School of Chemical Engineering & Institute of Chemical Processes,

More information

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58 PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 6, 7, 37, 44, 46, 5, 58 14.1 An ideal gas is sealed in a rigid container at 5 C and. What will its temperature be when the pressure is incresed

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

- The empirical gas laws (including the ideal gas equation) do not always apply.

- The empirical gas laws (including the ideal gas equation) do not always apply. 145 At 300 C, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 15.0

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases.

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases. Physical Chemistry - Problem Drill 06: Phase Equilibrium No. 1 of 10 1. The Gibbs Phase Rule is F = C P + 2, how many degrees of freedom does a system have that has two independent components and two phases?

More information

Chemistry 425 September 29, 2010 Exam 1 Solutions

Chemistry 425 September 29, 2010 Exam 1 Solutions Chemistry 425 September 29, 2010 Exam 1 Solutions Name: Instructions: Please do not start working on the exam until you are told to begin. Check the exam to make sure that it contains exactly 6 different

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

Chapter 12 Intermolecular Forces of Attraction

Chapter 12 Intermolecular Forces of Attraction Chapter 12 Intermolecular Forces of Attraction Intermolecular Forces Attractive or Repulsive Forces between molecules. Molecule - - - - - - Molecule Intramolecular Forces bonding forces within the molecule.

More information

Final Exam Chem 260 (12/20/99) Name (printed) Signature

Final Exam Chem 260 (12/20/99) Name (printed) Signature Final Exam Chem 260 (12/20/99) Name (printed) Signature 1. For the reaction, (14 pts total) C(graph) + CO 2 (g) 2 CO(g) (a) Write the equilibrium constant expression: (2 pts) K = P CO 2 P CO2 (b) Using

More information

Can hematite nanoparticles be an environmental indicator?

Can hematite nanoparticles be an environmental indicator? Can hematite nanoparticles be an environmental indicator? Haibo Guo, a Huifang Xu, b and Amanda S. Barnard a 1 Chemical potential of water vapour At low temperatures and under high pressures, water vapour

More information

CSTR 1 CSTR 2 X A =?

CSTR 1 CSTR 2 X A =? hemical Engineering HE 33 F Applied Reaction Kinetics Fall 014 Problem Set 3 Due at the dropbox located in the hallway outside of WB 5 by Monday, Nov 3 rd, 014 at 5 pm Problem 1. onsider the following

More information

Chem 260 Quiz - Chapter 4 (11/19/99)

Chem 260 Quiz - Chapter 4 (11/19/99) Chem 260 Quiz - Chapter 4 (11/19/99) Name (print) Signature Terms in bold: phase transitions transition temperature phase diagram phase boundaries vapor pressure thermal analysis dynamic equilibrium boiling

More information

Solutions to Chem 203 TT1 Booklet

Solutions to Chem 203 TT1 Booklet Solutions to Chem 03 TT1 Booklet Chem03 TT1 Booklet Solutions to Gases Practice Problems Problem 1. Answer: C Increasing the temperature increases the kinetic energy of the molecules in the liquid causing

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 142 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. Volume of a 10'x10'x8' room 1) First, find the MOLES of gas using the ideal gas equation and the information given. 2) Convert

More information

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Solution W2009 NYB Final exam

Solution W2009 NYB Final exam Solution W009 NYB Final exam Question Consider one liter of solution with [H SO 4 3.75 mol/l. Then : Mass of solution: 000 ml x.3 g/ml 30 g solution mass of H SO 4 : 3.75 mol /L x 98.078 g/mol 368 g mass

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit. To Hand in

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit. To Hand in Problem Set #10 Assigned November 8, 013 Due Friday, November 15, 013 Please show all work or credit To Hand in 1. 1 . A least squares it o ln P versus 1/T gives the result 3. Hvaporization = 5.8 kj mol

More information

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients 2.1 Vapour Pressure Calculations The basis for all phase equilibrium calculations are the vapour pressures

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

Mass Transfer Operations

Mass Transfer Operations College of Engineering Tutorial # 1 Chemical Engineering Dept. 14/9/1428 1. Methane and helium gas mixture is contained in a tube at 101.32 k Pa pressure and 298 K. At one point the partial pressure methane

More information

Vapour pressure of water at high temperature

Vapour pressure of water at high temperature Vapour pressure of water at high temperature (Item No.: P2340100) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Thermal Properties and Processes

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Ideal Gas Law Stoichiometry

Ideal Gas Law Stoichiometry Assume you had the following, simple, chemical reaction: A B Volume of A (in Liters) Mass of A (in grams) Atoms, Molecules, or Particles of A Divide by Molar Mass Divide by 22.4L/mol Moles of A Divide

More information

QUIZZES RIEPJCPIγPJEJJJY

QUIZZES RIEPJCPIγPJEJJJY Che 3021 Thermodynamics I QUIZZES RIEPJCPIγPJEJJJY QUIZ 1. Find Molecular Weights: 1 1 CO 2 2 NaCl 3 Aspirin C 9 H 8 O 4 CO2 = NaCl = C9H8O4 = PIgPJC Quiz 1. Temperature conversion 1 Convert 94 o F, to

More information

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Lecture #20: Virial

More information

Exam 3, Chemistry 481, 8 December 2017

Exam 3, Chemistry 481, 8 December 2017 1 Exam 3, Chemistry 481, 8 December 2017 Show all work for full credit Useful constants: k B = 1.3807 10 23 J K 1 ; R (molar gas constant) = 8.314 J K 1 mol 1 Helmholz free energy: A = U S, so that da

More information

PHYSICAL CHEMISTRY CHEM330

PHYSICAL CHEMISTRY CHEM330 PHYSICAL CHEMISTRY CHEM330 Duration: 3 hours Total Marks: 100 Internal Examiner: External Examiner: Professor B S Martincigh Professor J C Swarts University of the Free State INSTRUCTIONS: 1. Answer five

More information

Calculating Fugacities in OLI Studio

Calculating Fugacities in OLI Studio Calculating Fugacities in OLI Studio If you are working at high pressures where only a water (aqueous) and hydrocarbon (second liquid) phase are present, you can still culate fugacities using values generated

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry S H 2 = S H 2 R ln P H2 P NH

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry  S H 2 = S H 2 R ln P H2 P NH N (g) + 3 H (g) NH 3 (g) S N = S H = S NH 3 = S N R ln P N S H R ln P H S NH 3 R ln P NH3 ΔS rxn = (S Rln P NH 3 NH3 ) (S N Rln P N ) 3 (S H Rln P H ) ΔS rxn = S S NH 3 N 3S H + Rln P P 3 N H ΔS rxn =

More information

This paper contains 7 questions in 5 pages (8 pages with answers). Check the question paper. is believed to follow the following

This paper contains 7 questions in 5 pages (8 pages with answers). Check the question paper. is believed to follow the following DEPARTMENT OF CHEMISTRY, IIT MADRAS CY 101: Equilibrium and Dynamics of Chemical Systems I B. Tech. End Semester Examination; 28 November, 2005 Mars: 60(this part); Time: 3 hours (total) This paper contains

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in 1. 2. 1 3. 4. The vapor pressure of an unknown solid is approximately given by ln(p/torr)

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Sample Exercise 14.1 (p. 578) For the reaction pictured at the bottom of the previous page, calculate the average rate at which A disappears over the time interval from 20 s to 40 s. (1.2 x 10-2 M/s) Practice

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Unit 13 Gas Laws. Gases

Unit 13 Gas Laws. Gases Unit 13 Gas Laws Gases The Gas Laws Kinetic Theory Revisited 1. Particles are far apart and have negligible volume. 2. Move in rapid, random, straight-line motion. 3. Collide elastically. 4. No attractive

More information

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2 CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies CHM202 Class #2 1 Chemistry, 5 th Edition Copyright 2017, W. W. Norton & Company CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter

More information

Institute of Petroleum Engineering

Institute of Petroleum Engineering Institute of etroleum Engineering Department of Reservoir Engineering ractical training of reservoir engineering Submitted by : Supervised from : Ahoua David Christian Hussain Yaled Dr.-Ing. Viktor Reitenbach

More information

Gases CHAPTER. Section 10.1 Properties of Gases

Gases CHAPTER. Section 10.1 Properties of Gases CHAPTER Gases 10 Section 10.1 Properties of Gases 2. The following are observed properties of gases: (a) Gases have a variable volume. (b) Gases expand infinitely. (c) Gases compress uniformly. (d) Gases

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM B March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed lease show

More information

PETE 310 Lectures # 36 to 37

PETE 310 Lectures # 36 to 37 PETE 310 Lectures # 36 to 37 Cubic Equations of State Last Lectures Instructional Objectives Know the data needed in the EOS to evaluate fluid properties Know how to use the EOS for single and for multicomponent

More information

Chemistry CP Putting It All Together II

Chemistry CP Putting It All Together II Chemistry CP Putting It All Together II Name: Date: Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when different

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

Using first law of thermodynamics for a constant pressure system: Using first law of thermodynamics for a constant volume system:

Using first law of thermodynamics for a constant pressure system: Using first law of thermodynamics for a constant volume system: TUTORIAL-10 Solution (19/04/2017) Thermodynamics for Aerospace Engineers (AS1300) Properties of ideal gas, their mixtures and adiabatic flame temperature For air take c v = 0.718 kj/kg K and c p = 1.005

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

CHAPTER SIX THERMODYNAMICS Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water

CHAPTER SIX THERMODYNAMICS Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water CHAPTER SIX THERMODYNAMICS 6.1. Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water 2 6.1. VAPOR-LIQUID EQUILIBRIUM IN A BINARY SYSTEM Keywords:

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

The Chemical Potential

The Chemical Potential CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential Here we complete our pivot towards chemical thermodynamics with the introduction of the Chemical Potential ( ). This concept was first introduced

More information

Lecture 6 Free energy and its uses

Lecture 6 Free energy and its uses Lecture 6 Free energy and its uses dg = VdP G - G o = PoP VdP G = G o (T) + RT ln P/P o for gases and G = G o (T) + V (P-P o ) for solids and liquids µ = µ o + RT ln P (for one mole) G = G o + RT ln Q

More information

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases Geology 633 Metamorphism and Lithosphere Evolution Thermodynamic calculation of mineral reactions I: Reactions involving pure phases The formulation for the free energy change of any reaction involving

More information

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another.

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another. Introduction: Virtually all commercial chemical processes involve operations in which material is transferred from one phase (gas, liquid, or solid) into another. rewing a cup of Coffee (Leaching) Removal

More information

Physical Chemistry Chapter 4 The Properties of Mixtures

Physical Chemistry Chapter 4 The Properties of Mixtures Physical Chemistry Chapter 4 The Properties of Mixtures by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Determine the fugacity and fugacity coefficients for pure species using generic

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

Part 1 (18 points) Define three out of six terms, given below.

Part 1 (18 points) Define three out of six terms, given below. Chemistry 45/456 3 August End-of-term Examination Professor G. Drobny Useful Constants and Conversions Universal Gas Constant= R = 8.31 J / mole K =.81 L atm / mole K Faraday s Constant= I= 96,458 Coulombs

More information