This reaction might be scaled up to make a larger quantity of product. For example, to make three times as much:

Size: px
Start display at page:

Download "This reaction might be scaled up to make a larger quantity of product. For example, to make three times as much:"

Transcription

1 The Limiting Reactant Problem When reactants are mixed, they are often combined in proportion: the number of moles of each reactant corresponds to the combining ratio predicted by the balanced chemical equation. For example, ammonia, an important starting material for the production of fertilizers, is prepared according to the following equation: N (g + H (g NH (g or 1 mole N reacts with mol H to produce mole NH 8.0 g N reacts with 6.0 g H to produce.0 g NH This reaction might be scaled up to make a larger quantity of product. For example, to make three times as much: or 8.0 g N reacts with 6.0 g H to produce.0 g NH 8.0 g N reacts with 18.0 g H to produce 10.0 g NH However, many real-life reactions involve the presence of one reactant in excess. A common example is the oxidation (combustion of a fuel, as in a furnace or automobile engine, which requires an excess of oxygen. In effect, the extent of the reaction is limited by the availability of the reactant that is in shortest supply. The limiting reactant is, therefore, the reactant that is in the shortest supply, based upon mole (not mass basis, and based upon the coefficients of the balanced equation. The limiting reactant limits and determines the maximum amount of product that may be obtained from a reaction for specified quant5ities of reactants. To find out which reactant is limiting, you can determine the amount (in moles of product which would form if each reactant were the limiting reactant, and selected the lesser quantity. Let s first consider a non-chemical example. You wish to make turkey sandwiches. Each sandwich will have two pieces of bread and three thin slices of turkey. You determine you have twelve pieces of bread and fifteen slices of turkey. Before you continue reading, think about that scenario. How many sandwiches could you make? If you determined that you can make five sandwiches, you are correct. There are a few ways to determine the answer, but the most common way is to determine the number of sandwiches you can make for each ingredient and see which will make the fewest. Twelve pieces of bread, at two pieces per sandwich, will make six sandwiches. Fifteen slices of turkey, at three slices per sandwich, will make five sandwiches. The fewest is five sandwiches and therefore the turkey iss the limiting reactant. Now consider the following chemical reaction.

2 A 50.6-g sample of Mg(OH reacts with 5.0 g of HCl as follows: What mass of MgCl, in grams, can be produced? Mg(OH (aq + HCl(aq MgCl (aq + H O(l Is this a limiting reactant problem? One way to determine this is to write what is known about any component of the reaction below that component: Mg(OH (aq + HCl(aq MgCl (aq + H O(l 50.6 g 5.0 g? g Notice that the quantity of both reactants is known. This is the indication that it is a limiting reactant problem. There is less HCl present, but this does not automatically mean that the HCl will be consumed before all the Mg(OH is exhausted. In other words, it is not necessarily the limiting reactant. To determine the mass of MgCl that will be produced, determine the moles of MgCl which will be produced for each reactant. Then, determine which quantity of MgCl is the smallest. This will determine the maximum amount of product that can form (in moles and will determine the limiting reactant. Based upon the Mg(OH quantity: 1mol Mg(OH 1mol MgCl 50.6 g Mg(OH Based upon the HCl quantity: mol MgCl 58. g Mg(OH 1mol Mg(OH 1mol HCl 6.5 g HCl 1mol MgCl mol HCl 5.0 g HCl mol MgCl At this point, a comparison can be made. The lesser amount of MgCl produced is mol MgCl. Therefore, the HCl is the limiting reactant. The problem can be finished based upon this value: 95. g MgCl mol MgCl 58.6 g MgCl 1mol MgCl

3 LIMITING REACTANT EXAMPLE PROBLEM 1: A 5.0-g sample of the base magnesium hydroxide, Mg(OH, is mixed with 5.0 g of phosphoric acid, H PO. A neutralization reaction takes place, which is represented by the balanced equation Mg(OH (s + H PO (aq Mg (PO (s + 6H O(l How many grams of Mg (PO are produced? Solution Strategy: The problem is a limiting reactant problem. This is identified by the fact that measured quantities of both reactants are given. Determine the moles of Mg (PO based first on the given quantity of Mg(OH and then for the given quantity of H PO. Finish the problem based upon the smaller quantity produced. Solution Step 1: Determine the moles of Mg (PO formed based upon the reactant Mg(OH. 1mol Mg(OH 1mol Mg (PO 5.0 g Mg(OH 0.1 mol Mg (PO 58. g Mg(OH mol Mg(OH Step : Determine the moles of Mg (PO formed based upon the reactant H PO. 1mol H PO 1mol Mg (PO 5.0 g H PO mol Mg (PO 98.0 g HPO mol HPO Step : Compare the amounts of Mg (PO produced, select the smaller quantity. The limiting reactant is Mg(OH because it produces the lesser amount of product. Step : Finish the problem based upon the limiting reactant quantity. That is, determine the gram amount of Mg (PO produced. 6.9 g Mg (PO 0.1 mol Mg (PO 7.6 g Mg (PO 1mol Mg (PO Does the answer make sense? Since 5.0-g quantity of Mg(OH is the limiting reactant and since the product Mg (PO has a greater molar mass than the reactants, it is expected that the mass of the product would be greater than 5.0 g but less than the mass of the two reactants combined (5.0 g g = 70 g. The answer falls within that range.

4 LIMITING REACTANT EXAMPLE PROBLEM : A mixture of 0.0 g of Fe O and 15.0 g Al is prepared. The mixture is heated, and a vigorous reaction occurs according to the balanced equation How many grams of iron are produced? Fe O (s + Al(s Al O (s + Fe(l Solution Strategy: The problem is a limiting reactant problem. This is identified by the fact that measured quantities of both reactants are given. Determine the moles of iron produced based first on the given quantity of Fe O and then for the given quantity of Al. Finish the problem based upon the smaller quantity produced. Solution Step 1: Determine the moles of Fe formed based upon the reactant Fe O. 1mol FeO mol Fe 0.0 g FeO g Fe O 1mol Fe O Step : Determine the moles of Fe formed based upon the reactant Al. 1mol Al mol Fe 15.0 g Al 7.0 g Al mol Al 0.501mol Fe mol Fe Step : Compare the amounts of iron produced, select the smaller quantity. The limiting reactant is Fe O because it produces the lesser amount of product. Step : Finish the problem based upon the limiting reactant quantity. That is, determine the gram amount of iron produced g Fe 0.501mol Fe 8.0 g Fe 1mol Fe Does the answer make sense? Since a 0.0-g quantity of Fe O is the limiting reactant and since the product Fe is this reactant minus the mass of the oxygen, it is expected that the product would be somewhat less than 0.0 grams. Practice Problem 1: Given the reaction represented by the balanced equation Sn(s + HF(aq SnF (s + H (g Calculate the number of grams of SnF preoduced by mixing g Sn with 60.0 g HF.

5 Practice Problem : Given the reaction represented by the balanced equation CH (g + Cl (g HCl(g + CHCl (g Calculate the number of grams of CHCl produced by mixing 105 g Cl with.0 g CH. Answer to Practice Problem 1: 1.0 g SnF Answer to Practice Problem : 58.9 g CHCl

Chapter 9 Stoichiometry

Chapter 9 Stoichiometry Chapter 9 Stoichiometry Section 9.1 Intro to Stoichiometry 9.1 Objectives Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two

More information

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations Preview Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq) MgCl 2 (aq) +

More information

Chapter 7: Stoichiometry in Chemical Reactions

Chapter 7: Stoichiometry in Chemical Reactions Chapter 7: Stoichiometry in Chemical Reactions Mini Investigation: Precipitating Ratios, page 315 A. ZnCl 2 (aq) + Na 2 CO 3 (aq) ZnCO 3 (s) + 2 NaCl(aq) 3 AgNO 3 (aq) + Na 3 PO 4 (aq) Ag 3 PO 4 (s) +

More information

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.

9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9. 9.1 Information Given by Chemical Equations 9.2 Mole Mole Relationships 9.3 Mass Calculations 9.4 The Concept of Limiting Reactants 9.5 Calculations Involving a Limiting Reactant 9.6 Percent Yield mole-to-mole

More information

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 )

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 ) Homework Stoichiometry 1.) An oxide of iron has the formula Fe 3 O 4. What mass percent of iron does it contain? (72.360%) 2.) Hydrocortisone valerate is an ingredient in hydrocortisone cream, prescribed

More information

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq)? MgCl 2

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 10 Chemical Equation Calculations by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 10 1 What

More information

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3 Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O B 1.5 moles of ammonia, NH 3 C 1 mole of hydrogen gas, H 2 D 0.5 moles of methane, CH 4 Q2.

More information

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations.

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Section 1 Introduction to Stoichiometry Objective Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two substances in a chemical

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

What is one of the spectator ions (with correct coefficient)? A)

What is one of the spectator ions (with correct coefficient)? A) Chem 101 Exam Fall 01 Section 001 1. Based on the solubility rules Mg (PO 4 ) is A) soluble B) insoluble. An aqueous solution of potassium sulfate is allowed to react with an aqueous solution of What is

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line.

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 12 STOICHIOMETRY Chapter Test B A. Matching Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 1. 2. 3. 4. 5. Column A the substance

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

CONSIDER THE FOLLOWING REACTIONS

CONSIDER THE FOLLOWING REACTIONS CONSIDER THE FOLLOWING REACTIONS BaCl 2 + MgSO 4 BaSO 4 + MgCl 2 2KI + Pb(NO3)2 PbI2 + 2KNO3 Fe + H20 (g) Fe2O3 + H2 All reactions have two reactants yielding the reaction. WHAT IS A LIMITING REACTANT?

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chemical Equations 10/30/13. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions

Chemical Equations 10/30/13. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions Chemical Equations A chemical equation just like a mathematical equation is a way to express, in symbolic form, the reactions occurring in a chemical system. n Balancing chemical equations n Reaction stoichiometry

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas.

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas. 1 1. Interpreting Chemical Equations Stoichiometry Calculations using balanced equations are called stoichiometric calculations. The starting point for any problem involving quantities of chemicals in

More information

Stoichiometry: Calculations with Chemical Formulas and Equations (Chapter 3) Past Quiz and Test Questions

Stoichiometry: Calculations with Chemical Formulas and Equations (Chapter 3) Past Quiz and Test Questions Stoichiometry: Calculations with Chemical Formulas and Equations (Chapter 3) Past Quiz and Test Questions 1. Balance the following equations Al 2 (SO 4 ) 3 (aq) + Ba(NO 3 ) 2 (aq) ----> Al(NO 3 ) 3 (aq)

More information

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations Preview Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq) MgCl 2 (aq) +

More information

Notes: Stoichiometry (text Ch. 9)

Notes: Stoichiometry (text Ch. 9) Name Per. Notes: Stoichiometry (text Ch. 9) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Chem 1075 Chapter 10 Stoichiometry Lecture Notes

Chem 1075 Chapter 10 Stoichiometry Lecture Notes Chem 1075 Chapter 10 Stoichiometry Lecture Notes Slide 2 What is stoichiometry? Chemists and chemical engineers must perform calculations based on balanced chemical reactions to predict the cost of processes.

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

Problem Set III Stoichiometry - Solutions

Problem Set III Stoichiometry - Solutions Chem 121 Problem set III Solutions - 1 Problem Set III Stoichiometry - Solutions 1. 2. 3. molecular mass of ethane = 2(12.011) + 6(1.008) = 30.07 g 4. molecular mass of aniline = 6(12.011) + 7(1.008) +

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

THE MOLE - PART 2. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

THE MOLE - PART 2. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. THE MOLE - PART 2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which one of the following statements is a quantitative observation? a.

More information

Chapter 5 Chemical Reactions

Chapter 5 Chemical Reactions Chapter 5 Chemical Reactions 5.1 Chemical Equations A chemical equation shows the chemical change taking place. The state of each substance is written in parentheses after the formula: s for solids, l

More information

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass.

Stoichiometry. Before You Read. Chapter 10. Chapter 11. Review Vocabulary. Define the following terms. mole. molar mass. Stoichiometry Before You Read Review Vocabulary Define the following terms. mole molar mass conversion factor dimensional analysis law of conservation of mass Chapter 10 Balance the following equation.

More information

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents 1 Chapter 9 Chemical Quantities 2 Chapter 9 Table of Contents 9.1 Information Given by Chemical Equations 9.2 9.3 3 Copyright Cengage Learning. All rights reserved 2 Section 9.1 Information Given by Chemical

More information

PRACTICE COMPREHENSIVE EXAM #1 7 th GRADE CHEMISTRY

PRACTICE COMPREHENSIVE EXAM #1 7 th GRADE CHEMISTRY Name: Date: Class: PRACTICE COMPREHENSIVE EXAM #1 7 th GRADE CHEMISTRY BUBBLE SHEETS AND PERIODIC TABLES ARE ATTACHED. PLEASE DETACH. YOU MAY WRITE ON THE PERIODIC TABLE. PART ONE: Multiple choice. Choose

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

4.3 Reaction Stoichiometry

4.3 Reaction Stoichiometry 198 Chapter 4 Stoichiometry of Chemical Reactions 4.3 Reaction Stoichiometry By the end of this section, you will be able to: Explain the concept of stoichiometry as it pertains to chemical reactions Use

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 9 REVIEW Stoichiometry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. The coefficients in a chemical equation represent the (a) masses in grams of all reactants

More information

Supplemental Activities. Module: States of Matter. Section: Reaction Stoichiometry Key

Supplemental Activities. Module: States of Matter. Section: Reaction Stoichiometry Key Supplemental Activities Module: States of Matter Section: Reaction Stoichiometry Key Balancing Chemical Reactions Activity 1 The purpose of this activity is to check your understanding of the concept Law

More information

Calculations From Chemical Equations

Calculations From Chemical Equations Calculations From Chemical Equations Chapter 9 Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons, Inc. A Short Review 2 The molar mass of an element

More information

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have?

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? If Sally has 4.56 x 10 34 atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? Bertha has.025 milligrams of sodium that she got from a sample of Sodium phosphate,

More information

Chemistry 11. Unit 7 : Stoichiometry

Chemistry 11. Unit 7 : Stoichiometry Chemistry 11 Unit 7 : Stoichiometry Name: Block: Intro to Stoichiometry - Calculating with Chemical Change The reaction between phosphoric acid, H 3 P0 4, and potassium hydroxide, KOH, can produce three

More information

11 Stoichiometry. Section 11.1 What is stoichiometry?

11 Stoichiometry. Section 11.1 What is stoichiometry? 11 Stoichiometry Section 11.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1.. 3. 4. 5. The study of the quantitative

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Chapter 4. Reactions in Aqueous Solution

Chapter 4. Reactions in Aqueous Solution Chapter 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions A solution is a homogeneous mixture of two or more substances. A solution is made when one substance (the solute) is

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 4 Exercise Key

Chapter 4 Exercise Key Chapter 4 Exercise Key 1 Chapter 4 Exercise Key Exercise 4.1 Balancing Chemical Equations: Balance the following chemical equations. a. P 4 (s) + Cl 4PCl 3 (l) b. 3PbO(s) + NH 3 (g) 3Pb(s) + N (g) + 3H

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

Ch 9 Stoichiometry Practice Test

Ch 9 Stoichiometry Practice Test Ch 9 Stoichiometry Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A balanced chemical equation allows one to determine the a. mole ratio

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Stoichiometry. The study of quantities of substances in chemical reactions

Stoichiometry. The study of quantities of substances in chemical reactions Stoichiometry The study of quantities of substances in chemical reactions Interpreting Chemical Equations N 2 + 3 H 2 2 NH 3 Particles: 1 molecule of Nitrogen reacts with 3 molecules of Hydrogen to produce

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. * The balanced equation gives the ratios for the reactants and products. 3 eggs

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Chemistry 11. Unit 7 - Stoichiometry

Chemistry 11. Unit 7 - Stoichiometry 1 Chemistry 11 Unit 7 - Stoichiometry 2 1. Coefficients of chemical equations In chapter 6, we have learned how to balance a chemical reaction by considering the laws of conservation of atoms and charges.

More information

Moles Homework Unit 6

Moles Homework Unit 6 VOCABULARY For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining

More information

Thermochemistry Notes

Thermochemistry Notes Name: Thermochemistry Notes I. Thermochemistry deals with the changes in energy that accompany a chemical reaction. Energy is measured in a quantity called enthalpy, represented as H. The change in energy

More information

Test bank chapter (3)

Test bank chapter (3) Test bank chapter (3) Choose the correct answer 1. What is the mass, in grams, of one copper atom? a) 1.055 10 - g b) 63.55 g c) 1 amu d) 1.66 10-4 g. Determine the number of moles of aluminum in 96.7

More information

SCH4U Chemistry Review: Fundamentals

SCH4U Chemistry Review: Fundamentals SCH4U Chemistry Review: Fundamentals Particle Theory of Matter Matter is anything that has mass and takes up space. Anything around us and in the entire universe can be classified as either matter or energy.

More information

American International School of Johannesburg. Quantitative Revision Questions II

American International School of Johannesburg. Quantitative Revision Questions II American International School of Johannesburg Quantitative Revision Questions II 1. A toxic gas, A, consists of 53.8 % nitrogen and 46.2 % carbon by mass. At 273 K and 1.01 10 5 Pa, 1.048 g of A occupies

More information

Stoichiometry CHAPTER 12

Stoichiometry CHAPTER 12 CHAPTER 12 Stoichiometry 12.1 Using Everyday Equations Stoichiometry is the calculation of quantities in chemical equations. Jan 16 7:57 AM May 24 10:03 AM * The balanced equation gives the ratios for

More information

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE 1. Nitroglycerine, C 3 H 5 N 3 O 9, is an explosive which, on detonation, decomposes rapidly to form a large number of gaseous molecules. The

More information

Enthalpy changes practice qs

Enthalpy changes practice qs Enthalpy changes practice qs Q1. The combustion of hydrocarbons is an important source of energy. Define the term standard enthalpy of combustion. (i) Write an equation for the complete combustion of ethane,

More information

Usual Atomic Charges of Main Group Elements

Usual Atomic Charges of Main Group Elements Usual Atomic Charges of Main Group Elements +1 +2 +3 +4 +5 +6 +7-5 -4-3 -2-1 Examples SO 3 sulfur trioxide CO 2 carbon dioxide Al 2 O 3 aluminum trioxide IF 7 iodine heptafluoride Fig. 2-6, p.63 Chemical

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems

Stoichiometry of Formulas and Equations. Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems Chapter 3 Stoichiometry of Formulas and Equations Chapter 3 Outline: Mole - Mass Relationships in Chemical Systems 3.1 The Mole 3.2 Determining the Formula of an Unknown Compound 3.3 Writing and Balancing

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

CH 221 Chapter Four Part II Concept Guide

CH 221 Chapter Four Part II Concept Guide CH 221 Chapter Four Part II Concept Guide 1. Solubility Why are some compounds soluble and others insoluble? In solid potassium permanganate, KMnO 4, the potassium ions, which have a charge of +1, are

More information

UNIT 9. Stoichiometry

UNIT 9. Stoichiometry UNIT 9 Stoichiometry FORMULA MASS Atomic Mass Unit (u): unit of mass for measuring atoms. (1 u = 1/12 th the mass of a carbon 12 atom) FORMULA MASS FORMULA MASS Example 2: Find the mass of one molecule

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

CH 221 Chapter Four Part I Concept Guide

CH 221 Chapter Four Part I Concept Guide 1. Balancing Chemical Equations CH 221 Chapter Four Part I Concept Guide Description When chlorine gas, Cl 2, is added to solid phosphorus, P 4, a reaction occurs to produce liquid phosphorus trichloride,

More information

ACP Chemistry (821) - Mid-Year Review

ACP Chemistry (821) - Mid-Year Review ACP Chemistry (821) - Mid-Year Review *Be sure you understand the concepts involved in each question. Do not simply memorize facts!* 1. What is chemistry? Chapter 1: Chemistry 2. What is the difference

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

7.1. What Is Stoichiometry? SECTION. Key Terms

7.1. What Is Stoichiometry? SECTION. Key Terms SECTION 7.1 What Is Stoichiometry? Key Terms stoichiometry mole ratio stoichiometry the study of the quantitative relationships among the amounts of reactants used and the amounts of products formed in

More information

Practice questions for Ch. 3

Practice questions for Ch. 3 Name: Class: Date: ID: A Practice questions for Ch. 3 1. A hypothetical element consists of two isotopes of masses 69.95 amu and 71.95 amu with abundances of 25.7% and 74.3%, respectively. What is the

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

Chem!stry. Mole Calculations Assignment Twelve

Chem!stry. Mole Calculations Assignment Twelve Chem!stry Name: ( ) Class: Date: / / Mole Calculations Assignment Twelve 1. A gas is 46.2% carbon and 53.8% nitrogen. Under conditions of room temperature and pressure (r.t.p.) the volume of the gas is

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

General Chemistry Multiple Choice Questions Chapter 8

General Chemistry Multiple Choice Questions Chapter 8 1 Write the skeleton chemical equation for the following word equation: Hydrochloric acid plus magnesium yields magnesium chloride and hydrogen gas. a HClO 4 + Mg --> MgClO 4 + H 2 b HClO 4 + Mg --> MgClO

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Sample Problem Set. Limiting Reactants

Sample Problem Set. Limiting Reactants Skills Worksheet Sample Problem Set Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations 1. Describe the following word equation with a statement or sentence: Iron + Oxygen iron (III) oxide 2. In a

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in terms of interacting

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

MOLE CONCEPT AND STOICHIOMETRY

MOLE CONCEPT AND STOICHIOMETRY MOLE CONCEPT AND STOICHIOMETRY Dear Reader You have studied about the term 'mole' in your previous class. It is defined as the amount of a substance containing as many constituting particles (atoms, molecules

More information

Problem Solving. Limiting Reactants

Problem Solving. Limiting Reactants Skills Worksheet Problem Solving Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances Chang, R. 2002. Chemistry 7 th ed. Singapore: McGraw-Hill. A chemical equation uses

More information

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D %

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D % 1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A. 9.372 % C. 28.12 % B. 21.38 % D. 42.73 % 2. How many grams of phosphorus are in 35.70 g of P 2 O 5? A. 6.359 g C. 15.58 g B. 23.37 g D. 31.16

More information

Which other compounds react with acids to produce salts? Acids can also react with metals and carbonates to produce salts.

Which other compounds react with acids to produce salts? Acids can also react with metals and carbonates to produce salts. Salts Textbook pages 234 243 Section 5.2 Summary Before You Read How many different uses for salts can you name? Write your answers on the lines below. What are salts? In chemistry, salts are a class of

More information