AN INTRODUCTION TO DISCRETE-EVENT SIMULATION

Size: px
Start display at page:

Download "AN INTRODUCTION TO DISCRETE-EVENT SIMULATION"

Transcription

1 AN INTRODUCTION TO DISCRETE-EVENT SIMULATION Peter W. Glynn 1 Peter J. Haas 2 1 Dept. of Management Science and Engineering Stanford University 2 IBM Almaden Research Center San Jose, CA

2 CAVEAT: WE ARE NOT BIOLOGISTS OR CHEMISTS!

3 Outline Overview of discrete-event simulation Basic models for discrete-event stochastic systems Generalized semi-markov processes (GSMPs) Continuous-time Markov chains (CTMCs) Stochastic Petri nets (SPNs) Some important techniques for simulation Efficiency improvement Sensitivity estimation Parallel simulation 3 Glynn and Haas

4 Part I Overview 4 Glynn and Haas

5 Discrete-Event Stochastic Systems Finite or countably infinite set of states System changes state when events occur Stochastic state changes At strictly increasing random times Underlying stochastic process { X (t): t 0 } X (t) = state of system at time t (a random variable) Ex: X i (t) = # molecules of ith species at time t 5 Glynn and Haas

6 Simulation: A Tool for Studying DESS Characteristics Characteristics often of the form α = E [Y ] Y = f ( X (t) ), e.g., Y = I (X (t) = x) Y = (1/t) t 0 f ( X (u) ) du Y = min{ t > 0: X (t) A } 6 Glynn and Haas

7 Other Characteristics Nonlinear functions of means: g(α 1, α 2,..., α k ) Apply Delta Method, jackknifing, bootstrapping, etc. Steady-state characteristics Time-average limits: 1 t α = lim f ( X (u) ) du t t 0 Steady-state means: α = E [f (X )], where X (t) X Apply regenerative method, batch means, STS methods, etc. Key issues of stability and validity For more details: buy us a beer 7 Glynn and Haas

8 Part II Models for Discrete-Event Systems 8 Glynn and Haas

9 Generalized Semi-Markov Processes Classical model for discrete-event stochastic systems Building blocks S = set of states (finite or countably infinite) E = set of events (finite) E(s) = active events in state s p(s ; s, e ) = state-transition probability One clock per event: records remaining time until occurrence 9 Glynn and Haas

10 Clocks (Event Scheduling) Active events compete to trigger state transition The clock that runs down to 0 first is the winner Can have simultaneous event occurrence: p(s ; s, E ) At a state transition s e s : three kinds of events New events: Clock for e set according to F (x; s, e, s, e ) Old events: Clocks continue to run down Cancelled events: Clock readings are discarded Clocks run down at state-dependent speeds r(s, e) 10 Glynn and Haas

11 The GSMP Process The continuous-time process: { X (t) : t 0 } X (t) = the state at time t A very complicated process Defined in terms of Markov chain { (S n, C n ) : n 0 } System observed after the nth state transition Sn = the state Cn = (C n,1,..., C n,m ) = the clock-reading vector Chain defined via GSMP building blocks 11 Glynn and Haas

12 Definition of the GSMP 12 Glynn and Haas

13 Generation of the GSSMC { (S n, C n ): n 0 } 1. [Initialization] Set n = 0. Generate state S 0 and clock readings C 0,i for e i E(S 0 ); set C 0,i = 1 for e i E(S 0 ). 2. Determine holding time t (S n, C n ) and trigger event e n. 3. Generate new state S n+1 according to p( ; S n, e n). 4. Set clock-reading C n+1,i for each new event e i according to F ( ; S n+1, e i, S n, e n). 5. Set clock-reading C n+1,i for each old event e i as C n+1,i = C n,i t (S n, C n )r(s n, e i ). 6. Set clock-reading C n+1,i equal to 1 for each cancelled event e i. 7. Set n n + 1 and go to Step 2. Can compute GSMP { X (t): t 0 } from GSSMC 13 Glynn and Haas

14 Implementation Considerations for Large-Scale GSMPs Use event lists (e.g., heaps) to determine e O(1) computation of e ( ) O log m update time, where m = # of active events 14 Glynn and Haas

15 Continuous-Time Markov Chains Time-homogeneous Markov property: P { X (t + h) = s X (t) = s, X (u) = x(u) for 0 u < t } = P { X (t + h) = s X (t) = s } = p h (s, s ) CTMC specified by intensity matrix Q Q(s, s p h (s, s ) ) = lim, s s h 0 h Q(s, s) = s s Q(s, s ) Define state intensity q(s) = Q(s, s) = s s Q(s, s ) 15 Glynn and Haas

16 Simulating a CTMC (Gillespie Algorithm) Thm (path structure of a CTMC): Sequence of visited states is a DTMC Given states, holding times are indep. and exponential 1. [Initialization] Set n = 0. Generate state S Generate holding time t (S n ) as Exponential ( q(s n ) ). 3. Generate next state S n+1 ( S n ) according to Q(S n, )/q(s n ). 4. Set n n + 1 and go to Step 2. A CTMC can be viewed as a GSMP with one exponential clock! 16 Glynn and Haas

17 CTMCs and GSMPs Theorem: Let { X (t) : t 0 } be a GSMP such that F (x; s, e, s, e ) 1 e λ(e )x for each e Then { X (t) : t 0 } is a CTMC with intensity matrix Q(s, s ) = e E(s) λ(e)r(s, e)p(s ; s, e), s s Under conditions of theorem, GSMP simulation algorithm can simplify to CTMC algorithm! OR can simulate CTMC using one exponential clock per event GSMPs with unit exponential clocks and time-varying speeds Glasserman (1991, Ch. 6): hazard-rate construction Anderson (2007): application to chemical reaction systems 17 Glynn and Haas

18 Stochastic Petri Nets 18 Glynn and Haas

19 Stochastic Petri Nets D = finite set of places 18 Glynn and Haas

20 Stochastic Petri Nets D = finite set of places E = finite set of transitions (timed and immediate) 18 Glynn and Haas

21 Stochastic Petri Nets D = finite set of places E = finite set of transitions (timed and immediate) 18 Glynn and Haas

22 Stochastic Petri Nets D = finite set of places E = finite set of transitions (timed and immediate) marking = assignment of token counts to places 18 Glynn and Haas

23 Stochastic Petri Nets d 1 d 2 s = (2, 1, 1) d 3 D = finite set of places E = finite set of transitions (timed and immediate) marking = assignment of token counts to places 18 Glynn and Haas

24 Transition Firing The marking changes when an enabled transition fires 19 Glynn and Haas

25 Transition Firing The marking changes when an enabled transition fires 19 Glynn and Haas

26 Transition Firing The marking changes when an enabled transition fires Removes 1 token per place from random subset of input places Deposits 1 token per place in random subset of output places 19 Glynn and Haas

27 Transition Firing The marking changes when an enabled transition fires Removes 1 token per place from random subset of input places Deposits 1 token per place in random subset of output places 19 Glynn and Haas

28 Transition Firing The marking changes when an enabled transition fires Removes 1 token per place from random subset of input places Deposits 1 token per place in random subset of output places 19 Glynn and Haas

29 Transition Firing The marking changes when an enabled transition fires Removes 1 token per place from random subset of input places Deposits 1 token per place in random subset of output places 19 Glynn and Haas

30 Transition Firing p(s ; s, e ) The marking changes when an enabled transition fires Removes 1 token per place from random subset of input places Deposits 1 token per place in random subset of output places 19 Glynn and Haas

31 SPNs and GSMPs SPN marking = GSMP state SPN transition firing = GSMP event occurrence Differences SPN has specific form of state SPN has restrictions on allowable state transitions SPN has immediate transitions SPN and GSMP have same modeling power 20 Glynn and Haas

32 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

33 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

34 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

35 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

36 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

37 Bottom-Up and Top-Down Modeling 21 Glynn and Haas

38 Other Modeling Features 22 Glynn and Haas

39 Other Modeling Features Concurrency: 22 Glynn and Haas

40 Other Modeling Features Concurrency: Synchronization: 22 Glynn and Haas

41 Other Modeling Features Concurrency: Synchronization: 22 Glynn and Haas

42 Other Modeling Features Concurrency: Synchronization: Precedence: 22 Glynn and Haas

43 Other Modeling Features Concurrency: Synchronization: Precedence: 22 Glynn and Haas

44 Other Modeling Features Concurrency: Synchronization: Precedence: 22 Glynn and Haas

45 Other Modeling Features Concurrency: Synchronization: Precedence: Priority: 22 Glynn and Haas

46 Implementation Advantages for Large-Scale SPNs Updating the state is often simpler in an SPN than a GSMP Efficient techniques for event scheduling [Chiola91] Encode transitions potentially affected by firing of ei Parallel simulation of subnets E.g., Adaptive Time Warp [Ferscha & Richter PNPM97] Guardedly optimistic Slows down local firings based on history of rollbacks 23 Glynn and Haas

47 For Further Details: Asmussen and Glynn: Stochastic Simulation: Algorithms and Analysis, Springer, 2007 MS-level lecture notes: Haas: Stochastic Petri Nets: Modelling, Stability, Simulation, Springer, Glynn and Haas

STOCHASTIC PETRI NETS FOR DISCRETE-EVENT SIMULATION

STOCHASTIC PETRI NETS FOR DISCRETE-EVENT SIMULATION STOCHASTIC PETRI NETS FOR DISCRETE-EVENT SIMULATION Peter J. Haas IBM Almaden Research Center San Jose, CA Part I Introduction 2 Peter J. Haas My Background Mid 1980 s: PhD student studying discrete-event

More information

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010 Stochastic Almost none of the theory December 8, 2010 Outline 1 2 Introduction A Petri net (PN) is something like a generalized automata. A Stochastic Petri Net () a stochastic extension to Petri nets,

More information

IBM Almaden Research Center, San Jose, California, USA

IBM Almaden Research Center, San Jose, California, USA This article was downloaded by: [Stanford University] On: 20 July 2010 Access details: Access Details: [subscription number 731837804] Publisher Taylor & Francis Informa Ltd Registered in England and Wales

More information

On Transience and Recurrence in Irreducible Finite-State Stochastic Systems

On Transience and Recurrence in Irreducible Finite-State Stochastic Systems On Transience and Recurrence in Irreducible Finite-State Stochastic Systems PETER W. GLYNN, Stanford University PETER J. HAAS, IBM Research Long-run stochastic stability is a precondition for applying

More information

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08 Stochastic Petri Net 2013/05/08 2 To study a formal model (personal view) Definition (and maybe history) Brief family tree: the branches and extensions Advantages and disadvantages for each Applications

More information

From Stochastic Processes to Stochastic Petri Nets

From Stochastic Processes to Stochastic Petri Nets From Stochastic Processes to Stochastic Petri Nets Serge Haddad LSV CNRS & ENS Cachan & INRIA Saclay Advanced Course on Petri Nets, the 16th September 2010, Rostock 1 Stochastic Processes and Markov Chains

More information

Stochastic Petri Net

Stochastic Petri Net Stochastic Petri Net Serge Haddad LSV ENS Cachan & CNRS & INRIA haddad@lsv.ens-cachan.fr Petri Nets 2013, June 24th 2013 1 Stochastic Petri Net 2 Markov Chain 3 Markovian Stochastic Petri Net 4 Generalized

More information

Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Composition of product-form Generalized Stochastic Petri Nets: a modular approach Composition of product-form Generalized Stochastic Petri Nets: a modular approach Università Ca Foscari di Venezia Dipartimento di Informatica Italy October 2009 Markov process: steady state analysis Problems

More information

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS Francesco Basile, Ciro Carbone, Pasquale Chiacchio Dipartimento di Ingegneria Elettrica e dell Informazione, Università

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Stochastic Petri Net

Stochastic Petri Net Stochastic Petri Net Serge Haddad LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA haddad@lsv.ens-cachan.fr Petri Nets 2016, June 20th 2016 1 Stochastic Petri Net 2 Markov Chain 3 Markovian Stochastic

More information

Applications of Petri Nets

Applications of Petri Nets Applications of Petri Nets Presenter: Chung-Wei Lin 2010.10.28 Outline Revisiting Petri Nets Application 1: Software Syntheses Theory and Algorithm Application 2: Biological Networks Comprehensive Introduction

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

Stochastic2010 Page 1

Stochastic2010 Page 1 Stochastic2010 Page 1 Extinction Probability for Branching Processes Friday, April 02, 2010 2:03 PM Long-time properties for branching processes Clearly state 0 is an absorbing state, forming its own recurrent

More information

This is now an algebraic equation that can be solved simply:

This is now an algebraic equation that can be solved simply: Simulation of CTMC Monday, November 23, 2015 1:55 PM Homework 4 will be posted by tomorrow morning, due Friday, December 11 at 5 PM. Let's solve the Kolmogorov forward equation for the Poisson counting

More information

A comment on Boucherie product-form results

A comment on Boucherie product-form results A comment on Boucherie product-form results Andrea Marin Dipartimento di Informatica Università Ca Foscari di Venezia Via Torino 155, 30172 Venezia Mestre, Italy {balsamo,marin}@dsi.unive.it Abstract.

More information

Stochastic Simulation.

Stochastic Simulation. Stochastic Simulation. (and Gillespie s algorithm) Alberto Policriti Dipartimento di Matematica e Informatica Istituto di Genomica Applicata A. Policriti Stochastic Simulation 1/20 Quote of the day D.T.

More information

Approximating Martingales in Continuous and Discrete Time Markov Processes

Approximating Martingales in Continuous and Discrete Time Markov Processes Approximating Martingales in Continuous and Discrete Time Markov Processes Rohan Shiloh Shah May 6, 25 Contents 1 Introduction 2 1.1 Approximating Martingale Process Method........... 2 2 Two State Continuous-Time

More information

Modelling in Systems Biology

Modelling in Systems Biology Modelling in Systems Biology Maria Grazia Vigliotti thanks to my students Anton Stefanek, Ahmed Guecioueur Imperial College Formal representation of chemical reactions precise qualitative and quantitative

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Lecture 4 The stochastic ingredient

Lecture 4 The stochastic ingredient Lecture 4 The stochastic ingredient Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Varieties of Stochastic Calculi

Varieties of Stochastic Calculi Research is what I'm doing when I don't know what I'm doing. Wernher Von Braun. Artificial Biochemistry Varieties of Stochastic Calculi Microsoft Research Trento, 26-5-22..26 www.luca.demon.co.uk/artificialbiochemistry.htm

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

(implicitly assuming time-homogeneity from here on)

(implicitly assuming time-homogeneity from here on) Continuous-Time Markov Chains Models Tuesday, November 15, 2011 2:02 PM The fundamental object describing the dynamics of a CTMC (continuous-time Markov chain) is the probability transition (matrix) function:

More information

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974 LIMITS FOR QUEUES AS THE WAITING ROOM GROWS by Daniel P. Heyman Ward Whitt Bell Communications Research AT&T Bell Laboratories Red Bank, NJ 07701 Murray Hill, NJ 07974 May 11, 1988 ABSTRACT We study the

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 1 Solutions to Homework 6 6.262 Discrete Stochastic Processes MIT, Spring 2011 Let {Y n ; n 1} be a sequence of rv s and assume that lim n E[ Y n ] = 0. Show that {Y n ; n 1} converges to 0 in

More information

IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2011, Professor Whitt Class Lecture Notes: Tuesday, March 1.

IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2011, Professor Whitt Class Lecture Notes: Tuesday, March 1. IEOR 46: Introduction to Operations Research: Stochastic Models Spring, Professor Whitt Class Lecture Notes: Tuesday, March. Continuous-Time Markov Chains, Ross Chapter 6 Problems for Discussion and Solutions.

More information

arxiv: v2 [q-bio.mn] 31 Aug 2007

arxiv: v2 [q-bio.mn] 31 Aug 2007 A modified Next Reaction Method for simulating chemical systems with time dependent propensities and delays David F. Anderson Department of Mathematics, University of Wisconsin-Madison, Madison, Wi 53706

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

2. Stochastic Time Petri Nets

2. Stochastic Time Petri Nets 316 A. Horváth et al. / Performance Evaluation 69 (2012) 315 335 kernels can be expressed in closed-form in terms of the exponential of the matrix describing the subordinated CTMC [8] and evaluated numerically

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes ADVANCED ROBOTICS PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes Pedro U. Lima Instituto Superior Técnico/Instituto de Sistemas e Robótica September 2009 Reviewed April

More information

Performance Evaluation. Transient analysis of non-markovian models using stochastic state classes

Performance Evaluation. Transient analysis of non-markovian models using stochastic state classes Performance Evaluation ( ) Contents lists available at SciVerse ScienceDirect Performance Evaluation journal homepage: www.elsevier.com/locate/peva Transient analysis of non-markovian models using stochastic

More information

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models 4. Petri Nets Introduction Different Classes of Petri Net Petri net properties Analysis of Petri net models 1 Petri Nets C.A Petri, TU Darmstadt, 1962 A mathematical and graphical modeling method. Describe

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Continuing the calculation of the absorption probability for a branching process. Homework 3 is due Tuesday, November 29.

Continuing the calculation of the absorption probability for a branching process. Homework 3 is due Tuesday, November 29. Extinction Probability for Branching Processes Friday, November 11, 2011 2:05 PM Continuing the calculation of the absorption probability for a branching process. Homework 3 is due Tuesday, November 29.

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Department of Mathematics University of Manitoba Winnipeg Julien Arino@umanitoba.ca 19 May 2012 1 Introduction 2 Stochastic processes 3 The SIS model

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

Time and Timed Petri Nets

Time and Timed Petri Nets Time and Timed Petri Nets Serge Haddad LSV ENS Cachan & CNRS & INRIA haddad@lsv.ens-cachan.fr DISC 11, June 9th 2011 1 Time and Petri Nets 2 Timed Models 3 Expressiveness 4 Analysis 1/36 Outline 1 Time

More information

4 Branching Processes

4 Branching Processes 4 Branching Processes Organise by generations: Discrete time. If P(no offspring) 0 there is a probability that the process will die out. Let X = number of offspring of an individual p(x) = P(X = x) = offspring

More information

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions Electronic Notes in Theoretical Computer Science Vol. 85 No. 4 (2003) URL: http://www.elsevier.nl/locate/entsc/volume85.html Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Centre for Research on Inner City Health St Michael s Hospital Toronto On leave from Department of Mathematics University of Manitoba Julien Arino@umanitoba.ca

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

Availability. M(t) = 1 - e -mt

Availability. M(t) = 1 - e -mt Availability Availability - A(t) the probability that the system is operating correctly and is available to perform its functions at the instant of time t More general concept than reliability: failure

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo)

Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo) Formulation of Finite State Markov Chains Friday, September 23, 2011 2:04 PM Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo)

More information

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS 63 2.1 Introduction In this chapter we describe the analytical tools used in this thesis. They are Markov Decision Processes(MDP), Markov Renewal process

More information

Time(d) Petri Net. Serge Haddad. Petri Nets 2016, June 20th LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA

Time(d) Petri Net. Serge Haddad. Petri Nets 2016, June 20th LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA Time(d) Petri Net Serge Haddad LSV ENS Cachan, Université Paris-Saclay & CNRS & INRIA haddad@lsv.ens-cachan.fr Petri Nets 2016, June 20th 2016 1 Time and Petri Nets 2 Time Petri Net: Syntax and Semantic

More information

Regenerative Steady-State Simulation of Discrete-Event Systems

Regenerative Steady-State Simulation of Discrete-Event Systems Regenerative Steady-State Simulation of Discrete-Event Systems Shane G. Henderson University of Michigan, and Peter W. Glynn Stanford University The regenerative method possesses certain asymptotic properties

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

Population models from PEPA descriptions

Population models from PEPA descriptions Population models from PEPA descriptions Jane Hillston LFCS, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland. Email: jeh@inf.ed.ac.uk 1 Introduction Stochastic process algebras (e.g. PEPA [10],

More information

Mathematical Foundations of Finite State Discrete Time Markov Chains

Mathematical Foundations of Finite State Discrete Time Markov Chains Mathematical Foundations of Finite State Discrete Time Markov Chains Friday, February 07, 2014 2:04 PM Stochastic update rule for FSDT Markov Chain requires an initial condition. Most generally, this can

More information

The Need for and the Advantages of Generalized Tensor Algebra for Kronecker Structured Representations

The Need for and the Advantages of Generalized Tensor Algebra for Kronecker Structured Representations The Need for and the Advantages of Generalized Tensor Algebra for Kronecker Structured Representations Leonardo Brenner, Paulo Fernandes, and Afonso Sales PUCRS, Av Ipiranga, 6681-90619-900 - Porto Alegre,

More information

6 Continuous-Time Birth and Death Chains

6 Continuous-Time Birth and Death Chains 6 Continuous-Time Birth and Death Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology.

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Stochastic Model Checking

Stochastic Model Checking Stochastic Model Checking Marta Kwiatkowska, Gethin Norman, and David Parker School of Computer Science, University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom Abstract. This tutorial presents

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

2 Discrete-Time Markov Chains

2 Discrete-Time Markov Chains 2 Discrete-Time Markov Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

4.1 Markov Processes and Markov Chains

4.1 Markov Processes and Markov Chains Chapter Markov Processes. Markov Processes and Markov Chains Recall the following example from Section.. Two competing Broadband companies, A and B, each currently have 0% of the market share. Suppose

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Quantitative evaluation of Dependability

Quantitative evaluation of Dependability Quantitative evaluation of Dependability 1 Quantitative evaluation of Dependability Faults are the cause of errors and failures. Does the arrival time of faults fit a probability distribution? If so, what

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 20 Dr. Dave Parker Department of Computer Science University of Oxford Next few lectures Today: Discrete-time Markov chains (continued) Mon 2pm: Probabilistic

More information

STRUCTURED SOLUTION OF STOCHASTIC DSSP SYSTEMS

STRUCTURED SOLUTION OF STOCHASTIC DSSP SYSTEMS STRUCTURED SOLUTION OF STOCHASTIC DSSP SYSTEMS J. Campos, S. Donatelli, and M. Silva Departamento de Informática e Ingeniería de Sistemas Centro Politécnico Superior, Universidad de Zaragoza jcampos,silva@posta.unizar.es

More information

Discrete-Time Leap Method for Stochastic Simulation

Discrete-Time Leap Method for Stochastic Simulation Discrete- Leap Method for Stochastic Simulation Christian Rohr Brandenburg University of Technology Cottbus-Senftenberg, Chair of Data Structures and Software Dependability, Postbox 1 13 44, D-313 Cottbus,

More information

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 6 Queueing Models Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing

More information

MQNA - Markovian Queueing Networks Analyser

MQNA - Markovian Queueing Networks Analyser MQNA - Markovian Queueing Networks Analyser Leonardo Brenner Paulo Fernandes Afonso Sales PUCRS, Brazil PUCRS, Brazil PUCRS, Brazil lbrenner@inf.pucrs.br paulof@inf.pucrs.br asales@inf.pucrs.br Abstract

More information

Phase-Type Distributions in Stochastic Automata Networks

Phase-Type Distributions in Stochastic Automata Networks Phase-Type Distributions in Stochastic Automata Networks I. Sbeity (), L. Brenner (), B. Plateau () and W.J. Stewart (2) April 2, 2007 () Informatique et Distribution - 5, Av. Jean Kuntzman, 38330 Montbonnot,

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 3: Regenerative Processes Contents 3.1 Regeneration: The Basic Idea............................... 1 3.2

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

DISCRETE-TIME MARKOVIAN STOCHASTIC PETRI NETS

DISCRETE-TIME MARKOVIAN STOCHASTIC PETRI NETS 20 DISCRETE-TIME MARKOVIAN STOCHASTIC PETRI NETS Gianfranco Ciardo 1 Department of Computer Science, College of William and Mary Williamsburg, VA 23187-8795, USA ciardo@cs.wm.edu ABSTRACT We revisit and

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

TPN are devoted to specify and verify properties of systems where timing is a critical parameter that may affect the behavior of the system. In this l

TPN are devoted to specify and verify properties of systems where timing is a critical parameter that may affect the behavior of the system. In this l URL: http://www.elsevier.nl/locate/entcs/volume52.html 8 pages Petri Nets with Discrete Phase Type Timing: A Bridge Between Stochastic and Functional Analysis Andrea Bobbio DISTA, Universit a del Piemonte

More information

Stochastic Games with Time The value Min strategies Max strategies Determinacy Finite-state games Cont.-time Markov chains

Stochastic Games with Time The value Min strategies Max strategies Determinacy Finite-state games Cont.-time Markov chains Games with Time Finite-state Masaryk University Brno GASICS 00 /39 Outline Finite-state stochastic processes. Games over event-driven stochastic processes. Strategies,, determinacy. Existing results for

More information

Predator-Prey Population Dynamics

Predator-Prey Population Dynamics Predator-Prey Population Dynamics Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 2,

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

Multi-State Availability Modeling in Practice

Multi-State Availability Modeling in Practice Multi-State Availability Modeling in Practice Kishor S. Trivedi, Dong Seong Kim, Xiaoyan Yin Depart ment of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA kst@ee.duke.edu, {dk76,

More information

SYMBOLS AND ABBREVIATIONS

SYMBOLS AND ABBREVIATIONS APPENDIX A SYMBOLS AND ABBREVIATIONS This appendix contains definitions of common symbols and abbreviations used frequently and consistently throughout the text. Symbols that are used only occasionally

More information

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence 1 Overview We started by stating the two principal laws of large numbers: the strong

More information

CSL model checking of biochemical networks with Interval Decision Diagrams

CSL model checking of biochemical networks with Interval Decision Diagrams CSL model checking of biochemical networks with Interval Decision Diagrams Brandenburg University of Technology Cottbus Computer Science Department http://www-dssz.informatik.tu-cottbus.de/software/mc.html

More information

Markov Chain Model for ALOHA protocol

Markov Chain Model for ALOHA protocol Markov Chain Model for ALOHA protocol Laila Daniel and Krishnan Narayanan April 22, 2012 Outline of the talk A Markov chain (MC) model for Slotted ALOHA Basic properties of Discrete-time Markov Chain Stability

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

Quantitative evaluation of concurrent systems with non-markovian temporal parameters

Quantitative evaluation of concurrent systems with non-markovian temporal parameters Quantitative evaluation of concurrent systems with non-markovian temporal parameters Enrico Vicario Lab. of Software and Data Science Dept. of Information Engineering, University of Florence, Italy int.

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Gain Scheduling and Dynamic Inversion

Gain Scheduling and Dynamic Inversion Lecture 31 Gain Scheduling and Dynamic Inversion Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics A Brief Overview of Gain Scheduling Philosophy

More information

UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON

UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 23 This paper is also taken for the relevant examination for the Associateship. M3S4/M4S4 (SOLUTIONS) APPLIED

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets

Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets Gianfranco Ciardo Software Productivity Consortium Herndon, VA 22070 Kishor S. Trivedi Dept. of Electrical Engineering Duke

More information

6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE Review of Q-factors and Bellman equations for Q-factors VI and PI for Q-factors Q-learning - Combination of VI and sampling Q-learning and cost function

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Probabilistic Model Checking of non-markovian Models with Concurrent Generally Distributed Timers

Probabilistic Model Checking of non-markovian Models with Concurrent Generally Distributed Timers Probabilistic Model Checking of non-markovian Models with Concurrent Generally Distributed Timers András Horváth, Marco Paolieri, Lorenzo Ridi, Enrico Vicario Università di Torino - horvath@di.unito.it

More information

Renewal theory and its applications

Renewal theory and its applications Renewal theory and its applications Stella Kapodistria and Jacques Resing September 11th, 212 ISP Definition of a Renewal process Renewal theory and its applications If we substitute the Exponentially

More information