Planning and Acting in Partially Observable Stochastic Domains

Size: px
Start display at page:

Download "Planning and Acting in Partially Observable Stochastic Domains"

Transcription

1 Planning and Acting in Partially Observable Stochastic Domains Leslie Pack Kaelbling*, Michael L. Littman**, Anthony R. Cassandra*** *Computer Science Department, Brown University, Providence, RI, USA **Department of Computer Science, Duke University, Durham, NC, USA ***Microelectronics and Computer Technology Corporation(MCC), Austin, TX, USA Artificial Intelligence 1998 MINSOO KANG February 6th

2 Partially Observable Markov Decision Process : Basics Observable 2 Partially Observable No Actions Markov Process Hidden Markov Model Actions MDP POMDP Given: S : States / A : Finite set of Actions / R: Reward / P: transition Probability (as common MDP) O(Ω): set of conditional observation Probabilities (Observation Function) o: set of observations Added for POMDP

3 POMDP : Belief State & Value Function Belief State : Probability distributions over states of the underlying MDP (satisfies Markov Property) Equation for moving from b belief to b belief: Value Function : Ex) Possible State Probability: b(s1,s2,s3) = (0.3, 0.4, 0.3) : b(s1)=0.3, b(s2)=0.4, b(s3)=0.3 b (s1,s2,s3) = (0.1, 0.2, 0.7) : b (s1)=0.1, b (s2)=0.2, b (s3)=0.7 3

4 Belief State Continuous!! S = 2 B = MDP Value Iteration is impossible, since there are infinite number of states (beliefs) Unlike MDP, Optimal Policy in each time period is Non-stationary.(Time-variant) 4

5 Belief States : Example for Larger Dimensions 5

6 Value Function for Belief State 6

7 Value Function for Belief State Sondik (1971) : State Estimator : SE(a,b,o) Where P(b b, a, o) = 1 if SE(b, a, o) = b P(b b, a, o) = 0 otherwise; State Estimator is Binary b (s)=(p(s1 o,a,b),p(s2 o,a,b), ) V(b )=(V(s1,a),V(s2,a) ) 7

8 POMDP: How to solve?(sondik 1971,Littman 1998) Generalized Form Let, (Letting P be finite set of t-step policy makes Vt(b)) Can be represented in Piecewise Linear & Convex Value Function Geometrically. The upper layer part is the Vt(b) we are interested in, and each line represents each action to take when in each belief state. 8

9 POMDP: How to solve?(sondik 1971,Littman 1998) 1. Conduct one-step Policy tree : (Just one action) a1, a2 Reward for taking action a1 in state 0 = 2, state 1= 0 Reward for taking action a2 in state0=0 state1=3 Probability that you are in state 0 The value function(not optimal) here is calculated as below: 9

10 POMDP: How to solve?(sondik 1971,Littman 1998) 2. Extend this to 2 step time horizon tree, and evaluate every possible 2-step policy tree with the value function equation update. 3. Prune the value functions that are dominated by other value function Given an action, Value Function is Light blue colored lines are pruned. 10

11 Example Problem Example from Prof. Wolfram Burgard s Lecture Note(Department of Computer Science in University of Freiburg) Given Action set, Observation set, State set, Reward(Cost),Transition Probability, Observation Function (No discount factor) 11

12 Example Problem If p1 is the probability of being in x1 r(b,a1)=-100p1 +100(1-p1) since b=(p1, 1- p1) r(b,a2)=100p1-50(1-p1) r(b,a3)= -1 For 1-step horizon Value Function 12

13 Example Problem Pruned Optimal Policy for 1-step horizon, a₁ if p₁ < 3/7 a₂ if p₁ 3/7 13

14 Example Problem We will extend the time horizon to t=2, we consider V1 first,(backward Induction) v If we do this similarly with o₂ as well, = 14

15 Example Problem = Pruned Game ends when a1 or a2 is chosen at this point, since action chosen ends the game. However, it is also possible that choosing a3 is optimal, so we have to confirm whether it give optimal value. So let the first action be a3, then the there is a shift in belief state. 15

16 Example Problem It is given that a3 is chosen first, V₂(b) = Max of Value function in t=2, given the belief state 16

17 POMDP: Conclusion Pruning is crucial in lessening the combinatorial explosion In the example above, the unpruned algorithm needs 10 amount of linear equations until t=20, whereas, only 12 equations are needed to represent the value function of pruned algorithm. Researches show that it functions better than MDP on many contexts.(with small states and small action, observation) However, the solving for finite horizon POMDP has complexity of PSPACE-complete, infinite horizon POMDP is undecidable. (which means that finding the polynomial time-complexity algorithm for POMDP is proving P = NP problem) Thus, there are many value function approximation methods, which may be helpful, but the model is limited to very confined research. 17

18 Thank you 18

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Efficient Maximization in Solving POMDPs

Efficient Maximization in Solving POMDPs Efficient Maximization in Solving POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Shlomo Zilberstein Computer Science Department University

More information

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague Partially observable Markov decision processes Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies

Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies Kamyar Azizzadenesheli U.C. Irvine Joint work with Prof. Anima Anandkumar and Dr. Alessandro Lazaric. Motivation +1 Agent-Environment

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

RL 14: Simplifications of POMDPs

RL 14: Simplifications of POMDPs RL 14: Simplifications of POMDPs Michael Herrmann University of Edinburgh, School of Informatics 04/03/2016 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Planning with Predictive State Representations

Planning with Predictive State Representations Planning with Predictive State Representations Michael R. James University of Michigan mrjames@umich.edu Satinder Singh University of Michigan baveja@umich.edu Michael L. Littman Rutgers University mlittman@cs.rutgers.edu

More information

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy.

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy. Page 1 Markov decision processes (MDP) CS 416 Artificial Intelligence Lecture 21 Making Complex Decisions Chapter 17 Initial State S 0 Transition Model T (s, a, s ) How does Markov apply here? Uncertainty

More information

CAP Plan, Activity, and Intent Recognition

CAP Plan, Activity, and Intent Recognition CAP6938-02 Plan, Activity, and Intent Recognition Lecture 10: Sequential Decision-Making Under Uncertainty (part 1) MDPs and POMDPs Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu SP2-1 Reminder

More information

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN)

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Alp Sardag and H.Levent Akin Bogazici University Department of Computer Engineering 34342 Bebek, Istanbul,

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Region-Based Dynamic Programming for Partially Observable Markov Decision Processes

Region-Based Dynamic Programming for Partially Observable Markov Decision Processes Region-Based Dynamic Programming for Partially Observable Markov Decision Processes Zhengzhu Feng Department of Computer Science University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Abstract

More information

Control Theory : Course Summary

Control Theory : Course Summary Control Theory : Course Summary Author: Joshua Volkmann Abstract There are a wide range of problems which involve making decisions over time in the face of uncertainty. Control theory draws from the fields

More information

POMDPs and Policy Gradients

POMDPs and Policy Gradients POMDPs and Policy Gradients MLSS 2006, Canberra Douglas Aberdeen Canberra Node, RSISE Building Australian National University 15th February 2006 Outline 1 Introduction What is Reinforcement Learning? Types

More information

Partially Observable Markov Decision Processes: A Geometric Technique and Analysis

Partially Observable Markov Decision Processes: A Geometric Technique and Analysis OPERATIONS RESEARCH Vol. 58, No., January February 200, pp. 24 228 issn 0030-364X eissn 526-5463 0 580 024 informs doi 0.287/opre.090.0697 200 INFORMS Partially Observable Markov Decision Processes: A

More information

Multiagent Value Iteration in Markov Games

Multiagent Value Iteration in Markov Games Multiagent Value Iteration in Markov Games Amy Greenwald Brown University with Michael Littman and Martin Zinkevich Stony Brook Game Theory Festival July 21, 2005 Agenda Theorem Value iteration converges

More information

POMDP solution methods

POMDP solution methods POMDP solution methods Darius Braziunas Department of Computer Science University of Toronto 2003 Abstract This is an overview of partially observable Markov decision processes (POMDPs). We describe POMDP

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Learning in Zero-Sum Team Markov Games using Factored Value Functions

Learning in Zero-Sum Team Markov Games using Factored Value Functions Learning in Zero-Sum Team Markov Games using Factored Value Functions Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 mgl@cs.duke.edu Ronald Parr Department of Computer

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Optimal Control of Partiality Observable Markov. Processes over a Finite Horizon

Optimal Control of Partiality Observable Markov. Processes over a Finite Horizon Optimal Control of Partiality Observable Markov Processes over a Finite Horizon Report by Jalal Arabneydi 04/11/2012 Taken from Control of Partiality Observable Markov Processes over a finite Horizon by

More information

Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty

Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty Stéphane Ross School of Computer Science McGill University, Montreal (Qc), Canada, H3A 2A7 stephane.ross@mail.mcgill.ca

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Pascal Poupart (University of Waterloo) INFORMS 2009 1 Outline Dynamic Pricing as a POMDP Symbolic Perseus

More information

Optimally Solving Dec-POMDPs as Continuous-State MDPs

Optimally Solving Dec-POMDPs as Continuous-State MDPs Optimally Solving Dec-POMDPs as Continuous-State MDPs Jilles Dibangoye (1), Chris Amato (2), Olivier Buffet (1) and François Charpillet (1) (1) Inria, Université de Lorraine France (2) MIT, CSAIL USA IJCAI

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Symbolic Dynamic Programming for Continuous State and Observation POMDPs

Symbolic Dynamic Programming for Continuous State and Observation POMDPs Symbolic Dynamic Programming for Continuous State and Observation POMDPs Zahra Zamani ANU & NICTA Canberra, Australia zahra.zamani@anu.edu.au Pascal Poupart U. of Waterloo Waterloo, Canada ppoupart@uwaterloo.ca

More information

Heuristic Search Value Iteration for POMDPs

Heuristic Search Value Iteration for POMDPs 520 SMITH & SIMMONS UAI 2004 Heuristic Search Value Iteration for POMDPs Trey Smith and Reid Simmons Robotics Institute, Carnegie Mellon University {trey,reids}@ri.cmu.edu Abstract We present a novel POMDP

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis

Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis Journal of Artificial Intelligence Research 22 (2004) 143-174 Submitted 01/04; published 11/04 Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis Claudia V. Goldman Shlomo

More information

10 Robotic Exploration and Information Gathering

10 Robotic Exploration and Information Gathering NAVARCH/EECS 568, ROB 530 - Winter 2018 10 Robotic Exploration and Information Gathering Maani Ghaffari April 2, 2018 Robotic Information Gathering: Exploration and Monitoring In information gathering

More information

Symbolic Dynamic Programming for First-order POMDPs

Symbolic Dynamic Programming for First-order POMDPs Symbolic Dynamic Programming for First-order POMDPs Scott Sanner NICTA & ANU Canberra, Australia scott.sanner@nicta.com.au Kristian Kersting Fraunhofer IAIS Sankt Augustin, Germany kristian.kersting@iais.fraunhofer.de

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Decayed Markov Chain Monte Carlo for Interactive POMDPs

Decayed Markov Chain Monte Carlo for Interactive POMDPs Decayed Markov Chain Monte Carlo for Interactive POMDPs Yanlin Han Piotr Gmytrasiewicz Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 {yhan37,piotr}@uic.edu Abstract

More information

Markov decision processes and interval Markov chains: exploiting the connection

Markov decision processes and interval Markov chains: exploiting the connection Markov decision processes and interval Markov chains: exploiting the connection Mingmei Teo Supervisors: Prof. Nigel Bean, Dr Joshua Ross University of Adelaide July 10, 2013 Intervals and interval arithmetic

More information

Point-Based Value Iteration for Constrained POMDPs

Point-Based Value Iteration for Constrained POMDPs Point-Based Value Iteration for Constrained POMDPs Dongho Kim Jaesong Lee Kee-Eung Kim Department of Computer Science Pascal Poupart School of Computer Science IJCAI-2011 2011. 7. 22. Motivation goals

More information

Solving Risk-Sensitive POMDPs with and without Cost Observations

Solving Risk-Sensitive POMDPs with and without Cost Observations Solving Risk-Sensitive POMDPs with and without Cost Observations Ping Hou Department of Computer Science New Mexico State University Las Cruces, NM 88003, USA phou@cs.nmsu.edu William Yeoh Department of

More information

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games A Polynomial-time Nash Equilibrium Algorithm for Repeated Games Michael L. Littman mlittman@cs.rutgers.edu Rutgers University Peter Stone pstone@cs.utexas.edu The University of Texas at Austin Main Result

More information

COG-DICE: An Algorithm for Solving Continuous-Observation Dec-POMDPs

COG-DICE: An Algorithm for Solving Continuous-Observation Dec-POMDPs COG-DICE: An Algorithm for Solving Continuous-Observation Dec-POMDPs Madison Clark-Turner Department of Computer Science University of New Hampshire Durham, NH 03824 mbc2004@cs.unh.edu Christopher Amato

More information

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs Lorenzo Nardi and Cyrill Stachniss Navigation under uncertainty C B C B A A 2 `B` is the most likely position C B C B A A 3

More information

A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes

A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes 696 A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes Nevin L. Zhang, Stephen S. Lee, and Weihong Zhang Department of Computer Science, Hong Kong University of

More information

Symbolic Dynamic Programming for Continuous State and Observation POMDPs

Symbolic Dynamic Programming for Continuous State and Observation POMDPs Symbolic Dynamic Programming for Continuous State and Observation POMDPs Zahra Zamani ANU & NICTA Canberra, Australia zahra.zamani@anu.edu.au Pascal Poupart U. of Waterloo Waterloo, Canada ppoupart@uwaterloo.ca

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

A Partition-Based First-Order Probabilistic Logic to Represent Interactive Beliefs

A Partition-Based First-Order Probabilistic Logic to Represent Interactive Beliefs A Partition-Based First-Order Probabilistic Logic to Represent Interactive Beliefs Alessandro Panella and Piotr Gmytrasiewicz Fifth International Conference on Scalable Uncertainty Management Dayton, OH

More information

Accelerated Vector Pruning for Optimal POMDP Solvers

Accelerated Vector Pruning for Optimal POMDP Solvers Accelerated Vector Pruning for Optimal POMDP Solvers Erwin Walraven and Matthijs T. J. Spaan Delft University of Technology Mekelweg 4, 2628 CD Delft, The Netherlands Abstract Partially Observable Markov

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

European Workshop on Reinforcement Learning A POMDP Tutorial. Joelle Pineau. McGill University

European Workshop on Reinforcement Learning A POMDP Tutorial. Joelle Pineau. McGill University European Workshop on Reinforcement Learning 2013 A POMDP Tutorial Joelle Pineau McGill University (With many slides & pictures from Mauricio Araya-Lopez and others.) August 2013 Sequential decision-making

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

State Space Abstraction for Reinforcement Learning

State Space Abstraction for Reinforcement Learning State Space Abstraction for Reinforcement Learning Rowan McAllister & Thang Bui MLG, Cambridge Nov 6th, 24 / 26 Rowan s introduction 2 / 26 Types of abstraction [LWL6] Abstractions are partitioned based

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

State Space Compression with Predictive Representations

State Space Compression with Predictive Representations State Space Compression with Predictive Representations Abdeslam Boularias Laval University Quebec GK 7P4, Canada Masoumeh Izadi McGill University Montreal H3A A3, Canada Brahim Chaib-draa Laval University

More information

The Complexity of Decentralized Control of Markov Decision Processes

The Complexity of Decentralized Control of Markov Decision Processes University of Massachusetts Amherst From the SelectedWorks of Neil Immerman June, 2000 The Complexity of Decentralized Control of Markov Decision Processes Daniel S. Bernstein Shlolo Zilberstein Neil Immerman,

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24 and partially observable Markov decision processes Christos Dimitrakakis EPFL November 6, 2013 Bayesian reinforcement learning and partially observable Markov decision processes November 6, 2013 1 / 24

More information

Decision-theoretic approaches to planning, coordination and communication in multiagent systems

Decision-theoretic approaches to planning, coordination and communication in multiagent systems Decision-theoretic approaches to planning, coordination and communication in multiagent systems Matthijs Spaan Frans Oliehoek 2 Stefan Witwicki 3 Delft University of Technology 2 U. of Liverpool & U. of

More information

Computing Optimal Policies for Partially Observable Decision Processes using Compact Representations

Computing Optimal Policies for Partially Observable Decision Processes using Compact Representations Computing Optimal Policies for Partially Observable Decision Processes using Compact epresentations Craig Boutilier and David Poole Department of Computer Science niversity of British Columbia Vancouver,

More information

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation Hajime Fujita and Shin Ishii, Nara Institute of Science and Technology 8916 5 Takayama, Ikoma, 630 0192 JAPAN

More information

The Complexity of Decentralized Control of Markov Decision Processes

The Complexity of Decentralized Control of Markov Decision Processes The Complexity of Decentralized Control of Markov Decision Processes Daniel S. Bernstein Robert Givan Neil Immerman Shlomo Zilberstein Department of Computer Science University of Massachusetts Amherst,

More information

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers Huizhen (Janey) Yu (janey@mit.edu) Dimitri Bertsekas (dimitrib@mit.edu) Lab for Information and Decision Systems,

More information

Factored State Spaces 3/2/178

Factored State Spaces 3/2/178 Factored State Spaces 3/2/178 Converting POMDPs to MDPs In a POMDP: Action + observation updates beliefs Value is a function of beliefs. Instead we can view this as an MDP where: There is a state for every

More information

Towards Faster Planning with Continuous Resources in Stochastic Domains

Towards Faster Planning with Continuous Resources in Stochastic Domains Towards Faster Planning with Continuous Resources in Stochastic Domains Janusz Marecki and Milind Tambe Computer Science Department University of Southern California 941 W 37th Place, Los Angeles, CA 989

More information

POMDP S : Exact and Approximate Solutions

POMDP S : Exact and Approximate Solutions POMDP S : Exact and Approximate Solutions Bharaneedharan R University of Illinois at Chicago Automated optimal decision making. Fall 2002 p.1/21 Road-map Definition of POMDP Belief as a sufficient statistic

More information

A Reinforcement Learning Algorithm with Polynomial Interaction Complexity for Only-Costly-Observable MDPs

A Reinforcement Learning Algorithm with Polynomial Interaction Complexity for Only-Costly-Observable MDPs A Reinforcement Learning Algorithm with Polynomial Interaction Complexity for Only-Costly-Observable MDPs Roy Fox Computer Science Department, Technion IIT, Israel Moshe Tennenholtz Faculty of Industrial

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

Bootstrapping LPs in Value Iteration for Multi-Objective and Partially Observable MDPs

Bootstrapping LPs in Value Iteration for Multi-Objective and Partially Observable MDPs Bootstrapping LPs in Value Iteration for Multi-Objective and Partially Observable MDPs Diederik M. Roijers Vrije Universiteit Brussel & Vrije Universiteit Amsterdam Erwin Walraven Delft University of Technology

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Inverse Reinforcement Learning in Partially Observable Environments

Inverse Reinforcement Learning in Partially Observable Environments Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09) Inverse Reinforcement Learning in Partially Observable Environments Jaedeug Choi and Kee-Eung Kim Department

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Computing Optimal Policies for Partially Observable Decision Processes using Compact Representations

Computing Optimal Policies for Partially Observable Decision Processes using Compact Representations Computing Optimal Policies for Partially Observable Decision Processes using Compact epresentations Craig Boutilier and David Poole Department of Computer Science niversity of British Columbia Vancouver,

More information

Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs

Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu

More information

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets Pablo Samuel Castro pcastr@cs.mcgill.ca McGill University Joint work with: Doina Precup and Prakash

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time 26.11.2015 Fachbereich Informatik Knowledge Engineering Group David Fischer 1 Table of Contents Problem and Motivation Algorithm

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes Name: Roll Number: Please read the following instructions carefully Ø Calculators are allowed. However, laptops or mobile phones are not

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Lecture notes for Analysis of Algorithms : Markov decision processes

Lecture notes for Analysis of Algorithms : Markov decision processes Lecture notes for Analysis of Algorithms : Markov decision processes Lecturer: Thomas Dueholm Hansen June 6, 013 Abstract We give an introduction to infinite-horizon Markov decision processes (MDPs) with

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Tutorial on Optimization for PartiallyObserved Markov Decision. Processes

Tutorial on Optimization for PartiallyObserved Markov Decision. Processes Tutorial on Optimization for PartiallyObserved Markov Decision Processes Salvatore Candido Dept. of Electrical and Computer Engineering University of Illinois Probability Theory Prerequisites A random

More information

Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes

Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes 54 Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes Anthony Cassandra Computer Science Dept. Brown University Providence, RI 02912 arc@cs.brown.edu Michael

More information