Part III Super-Resolution with Sparsity

Size: px
Start display at page:

Download "Part III Super-Resolution with Sparsity"

Transcription

1 Aisenstadt Chair Course CRM September 2009 Part III Super-Resolution with Sparsity Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique

2 Super-Resolution with Sparsity Dream: recover high-resolution data from lowresolution noisy measurements: Medical imaging Satellite imaging Seismic exploration High Definition Television or Camera Phones Can we improve the signal resolution? Sparsity as a tool to incorporate prior information.

3 Inverse Problems Measure a noisy and low resolution signal: Y = Uf + W with f C N and dim(imu) =Q < N. Inverse problems: compute an estimation and minimize the risk: F = DY r(d, f) =E{ F f 2 } Super-resolution estimation: is computed in a space of dimension Is it possible, how?! "# F

4 Regularized Inversion To estimate f from invert U! Y = Uf + W (NullU) U Ũ 1 ImU Pseudo inverse: Ũ 1 Uf = f if f (NullU) Ũ 1 g = 0 if g (ImU) Deconvolution: Uf = f h with Ũ 1 1 f = f h with h 1 (ω) ω ĥ(ω) ω

5 Regularization and Denoising Ũ 1 Y = Ũ 1 Uf + Ũ 1 W Problems: Ũ 1 Uf (NullU) no super-resolution Ũ 1 W is huge if Ũ 1 is not bounded. Regularized inversion includes a noise reduction with a projection in a space V : F = R(Ũ 1 Y ) V Optimizing R requires prior information. No super-resolution : dim(v) Q.

6 Singular Value Decompositions Basis of singular vectors {e diagonalizes U k } 1 k N U : U Ue k = λ 2 k e k Diagonal denoising over the singular basis: r k = F = R(Ũ 1 Y )= Since Ũ 1 Y, e k = λ 2 k Y, Ue k 1 1+σ 2 λ 2 k Linear filtering of deconvolution: R(Ũ 1 Y )=Ũ 1 Y r N 1 k=0 yields r k Ũ 1 Y, e k e k. N 1 F = k=0 ˆr(ω) Y, Ue k λ 2 k + σ2 e k. h 1 (ω) ω

7

8 Thresholding for Inverse Problems Remove noise from with a thresholding estimator. Ũ 1 Y = Ũ 1 Uf + Ũ 1 W Optimal in a basis {φ p } p Γ providing a sparse representation of f and which decorrelates the noise coefficients Ũ 1 W, φ p. The dictionary vectors φ p must be almost eigenvectors of, they must have a narrow spectrum: U U φ p = k S p φ p,e k e k with λ 2 k λ 2 p for k S p

9 Satellite Image Deconvolution Original Smoothed Linear Wiener Thresholding

10 Sparse Spike Deconvolution Seismic data: Y = f u + W with f[n] = p Λ a[p] δ[p n] Y [q] = p Λ a[p] u[q n]+w [q] #$%" #$% #$!" #$! #$#" #!#$#" u[n] #$!" #$! #$#" û(ω)!#$!!!"#!!##!"# # "#!##!"# #!!"#!!##!"# # "#!##!"# f Y F Super-resolution inversion by detection of the sparse support

11 Sparse Super-Resolution Prior information: f has a sparse approximation in a normalized dictionary of at least N vectors D = {φ p } p Γ f = a[p] φ p + ɛ Λ p Λ with a small error ɛ Λ. It results that Y = Uf + W = a[p] Uφ p + (Uɛ Λ + W ) p Λ has a sparse approximation in the redundant dictionary D U = {Uφ p } p Γ in the space ImU of dimension Q N

12 Sparse Super-Resolution A sparse approximation of Y is computed in D U = {Uφ p } p Γ Y Λ = p Λ ã[p] Uφ p with a pursuit algorithm. A basis pursuit minimizes the Lagrangian: Y ã[p] Uφ p 2 + λ ã[p] p Γ p Γ and Λ is the support of ã. It yields a signal estimator F = p Λ ã[p] φ p using prior information which recovers φ p from each Uφ p.

13 Error and Exact Recovery From the sparse decomposition of Y = f + W Y Λ = p Λ ã[p] Uφ p since f = p Λ a[p] φ p + ɛ Λ f F p Λ ã[p]φ p p Λ a[p] φ p + ɛ Λ. Small error if Λ includes Λ and if {Uφ p } p Λ is a Riesz basis. Exact recovery in the redundant dictionary D U = {Uφ p } p Γ Super-resolution: if Λ is not restricted to a space of dimension Q.

14 Sparse Spike Deconvolution Seismic data: Y = f u + W with f[n] = p Λ a[p] δ[p n] φ p [n] =δ[p n], Uφ p [q] =u[q n], F [n] = p Λ ã[p] δ[n n] 0.25 u[n] 0.15 û(ω) f[n] 0.4 Y [q] 1 F [n]

15 Comparison of Pursuits Original Seismic wavelet Seismic trace Basis Pursuit Matching Pursuit Orth. Match. Pursuit

16 Stability: Hence the to U U. Conditions for Super-resolution The signal approximation support {Uφ p } p Λ Uφ p φ p Λ should small. must be a Riesz basis should not be too smal. must have a spread spectrum relatively Support recovery: the dictionary be as incoherent as possible. D U = {Uφ p } p Γ must Exact recovery criteria: ERC(Λ) < 1.

17 Image Inpainting Uf[q] =f[q] for q Ω with Ω = Q<N Super-resolution in a wavelet dictionary D U = {Uφ p } p Γ Original Support of Ω Super-resolution

18 Image Inpainting Uf[q] =f[q] for q Ω with Ω = Q<N Wavelet and local cosinedictionary D U = {Uφ p } p Γ Y = Uf + W Linear estimation Super-resolution

19 Tomography U is a Radon transform which integrates along straight lines. Original Radon Fourier Support Linear Back Prop. Haar super-resol.

20 Super-Resolution Zooming Need to increase numerically acquired image resolution: Conversion to HDTV of SDTV, Internet and Mobile videos... Size increase: 60 images of 720 x 576 pixels = 320 Mega bit/s Spatial deinterlacing and up-scaling up to 8 times more pixels PAL/NTSC x 20 Frame rate conversion twice more images for LCD screens HD LCD screens > Vidéo processor in the TV : 120 images of 1080 x 1920 pixels = 7.5 Giga bit/s

21 Image and Video Zooming Image subsampling : Uf = f[n/s] is a linear projector. Linear inversion without noise: linear interpolation f[p] = n Uf[n] θ(p ns) Prior information: geometric regularity. Super-resolution by interpolations in the directions of regularity Sparse super-resolution marginally improves linear interpolations.

22 High Resolution Image Low Resolution Image Contourlet SuperResolution db Cubic spline Interpolation db

23 Aliased Interpolation pi pi 0 0 pi pi 0 pi pi pi 0 pi Original Subsampled Linear Interp. Direct. Interp. Super-resolution is not possible for horizontal and vertical edges.

24 Adaptive Directional Interpolations Linear Tikhonov estimation: F θ = I θ Y minimizes R θ I θ Y subject to UI θ Y = Y where R θ is a linear directional regularity operator. Adaptive directional interpolation adapt locally θ by testing locally the directional regularity with gradient operators. General class of mixing linear operators in a frame F = θ Θ I θ a(θ,p) Y,φ p φ p p Γ {φ p } p Γ Problem: how to optimize the a(θ,p)?

25 Wavelet Block Interpolation Wavelet transform on 1 scale, j = 1 f,ψj,n k = f(x)2 j ψ k (2 j (x n)) dx k =1 k =2 2 j =2 k =3 Low frequencies are linearly interpolated (no aliasing). Adaptive directional interpolation of fine scale wavelets.

26 Wavelet Block Interpolation Dictionary of blocks {B θ,q } θ,q To a wavelet block decomposition Y = ɛ(θ,q) P Bθ,q Y + Y r θ q with P Bθ,q Y = Y,ψ1,n k ψ1,n k (n,k) B θ,q we associate an interpolation estimation F = θ I θ ( q ɛ(θ,q) Y q,θ ) + I r (Y r ) How to optimize the ɛ(θ,q)?

27 To compute Y = θ Adaptive Tikhonov Estimation ɛ(θ,q) P Bθ,q Y + Y r q where ɛ(θ,q) is sparse and ɛ(θ,q) 1 if R θ I θ P Bθ,q Y is small: Lagrangian minimization L = Y θ,q ɛ(θ,q) P Bθ,q Y 2 + λ θ,q ɛ(θ,q) R θ I θ P Bθ,q Y 2 Standard l 1 minimization. Can be solved with a greedy pursuit. If there is only one ɛ(θ,q) 0then L is minimized by ɛ(θ,q) = max (1 λ R θi θ P Bθ,q Y 2 ) P Bθ,q Y 2, 0 and L = Y 2 e(θ,q) with e(θ,q)= P B θ,q Y 2 ɛ(θ,q) 2 2.

28 Wavelet Block Spaces Wavelet transform Blocks of oriented bars Block projection pursuit

29 Super-Resolution Block Interpolation I:wavelet transform II:block space pursuit IV: inverse wavelet transform III:block inverse transforms directional interpolations

30 Comparison with Cubic Splines Block pursuit on wavelet coefficients Block Interpolations over wavelet coefficients Cubic spline interpolations

31 Comparison with Cubic Splines Block pursuit on wavelet coefficients Block Interpolations SNR = db over wavelet coefficients SNR = db Cubic spline interpolations

32 Examples of Zooming Original Image Cubic Spline Interpolation Bandlet Super-Resolution SNR = db SNR = db

33 Super-Resolution Zooming Need to increase numerically acquired image resolution: Conversion to HDTV of SDTV, Internet and Mobile videos... Spatial deinterlacing and up-scaling up to 8 times more pixels Frame rate conversion twice more images for LCD screens

34 3rd. Concluion Super-resolution is possible for signals that are sparse in a dictionary D = {φ p } p Γ which has a spread spectrum and which is transformed in an incoherent dictionary D U = {Uφ p } p Γ Super-resolution is typically not possible for any class of signals Need to incoporate as much prior informaiton as possible: use of structured sparse representations. What if it was possible to choose the operator U? compressed sensing...

Part IV Compressed Sensing

Part IV Compressed Sensing Aisenstadt Chair Course CRM September 2009 Part IV Compressed Sensing Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Conclusion to Super-Resolution Sparse super-resolution is sometime

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN Abstract. Real images usually have sparse approximations under some tight frame systems derived

More information

Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Image Processing Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

Beyond incoherence and beyond sparsity: compressed sensing in the real world

Beyond incoherence and beyond sparsity: compressed sensing in the real world Beyond incoherence and beyond sparsity: compressed sensing in the real world Clarice Poon 1st November 2013 University of Cambridge, UK Applied Functional and Harmonic Analysis Group Head of Group Anders

More information

Image Processing in Astrophysics

Image Processing in Astrophysics AIM-CEA Saclay, France Image Processing in Astrophysics Sandrine Pires sandrine.pires@cea.fr NDPI 2011 Image Processing : Goals Image processing is used once the image acquisition is done by the telescope

More information

Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation. Pier Luigi Dragotti Imperial College London

Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation. Pier Luigi Dragotti Imperial College London Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation Pier Luigi Dragotti Imperial College London Outline Part 1: Sparse Signal Representation ~90min Part 2: Sparse Sampling ~90min 2

More information

Compressed Sensing in Astronomy

Compressed Sensing in Astronomy Compressed Sensing in Astronomy J.-L. Starck CEA, IRFU, Service d'astrophysique, France jstarck@cea.fr http://jstarck.free.fr Collaborators: J. Bobin, CEA. Introduction: Compressed Sensing (CS) Sparse

More information

Frames. Hongkai Xiong 熊红凯 Department of Electronic Engineering Shanghai Jiao Tong University

Frames. Hongkai Xiong 熊红凯   Department of Electronic Engineering Shanghai Jiao Tong University Frames Hongkai Xiong 熊红凯 http://ivm.sjtu.edu.cn Department of Electronic Engineering Shanghai Jiao Tong University 2/39 Frames 1 2 3 Frames and Riesz Bases Translation-Invariant Dyadic Wavelet Transform

More information

Overview. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Overview. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Overview Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 1/25/2016 Sparsity Denoising Regression Inverse problems Low-rank models Matrix completion

More information

Representation: Fractional Splines, Wavelets and related Basis Function Expansions. Felix Herrmann and Jonathan Kane, ERL-MIT

Representation: Fractional Splines, Wavelets and related Basis Function Expansions. Felix Herrmann and Jonathan Kane, ERL-MIT Representation: Fractional Splines, Wavelets and related Basis Function Expansions Felix Herrmann and Jonathan Kane, ERL-MIT Objective: Build a representation with a regularity that is consistent with

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Applied Machine Learning for Biomedical Engineering. Enrico Grisan

Applied Machine Learning for Biomedical Engineering. Enrico Grisan Applied Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Data representation To find a representation that approximates elements of a signal class with a linear combination

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Signal Denoising with Wavelets

Signal Denoising with Wavelets Signal Denoising with Wavelets Selin Aviyente Department of Electrical and Computer Engineering Michigan State University March 30, 2010 Introduction Assume an additive noise model: x[n] = f [n] + w[n]

More information

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems Justin Romberg Georgia Tech, School of ECE ENS Winter School January 9, 2012 Lyon, France Applied and Computational

More information

Edge preserved denoising and singularity extraction from angles gathers

Edge preserved denoising and singularity extraction from angles gathers Edge preserved denoising and singularity extraction from angles gathers Felix Herrmann, EOS-UBC Martijn de Hoop, CSM Joint work Geophysical inversion theory using fractional spline wavelets: ffl Jonathan

More information

Compressed sensing and imaging

Compressed sensing and imaging Compressed sensing and imaging The effect and benefits of local structure Ben Adcock Department of Mathematics Simon Fraser University 1 / 45 Overview Previously: An introduction to compressed sensing.

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

Compressive sensing of low-complexity signals: theory, algorithms and extensions

Compressive sensing of low-complexity signals: theory, algorithms and extensions Compressive sensing of low-complexity signals: theory, algorithms and extensions Laurent Jacques March 7, 9, 1, 14, 16 and 18, 216 9h3-12h3 (incl. 3 ) Graduate School in Systems, Optimization, Control

More information

Inverse Problems in Image Processing

Inverse Problems in Image Processing H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS Martin Kleinsteuber and Simon Hawe Department of Electrical Engineering and Information Technology, Technische Universität München, München, Arcistraße

More information

Wavelets and multiresolution representations. Time meets frequency

Wavelets and multiresolution representations. Time meets frequency Wavelets and multiresolution representations Time meets frequency Time-Frequency resolution Depends on the time-frequency spread of the wavelet atoms Assuming that ψ is centred in t=0 Signal domain + t

More information

Wavelet Footprints: Theory, Algorithms, and Applications

Wavelet Footprints: Theory, Algorithms, and Applications 1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

Bayesian Paradigm. Maximum A Posteriori Estimation

Bayesian Paradigm. Maximum A Posteriori Estimation Bayesian Paradigm Maximum A Posteriori Estimation Simple acquisition model noise + degradation Constraint minimization or Equivalent formulation Constraint minimization Lagrangian (unconstraint minimization)

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Dictionary Learning for photo-z estimation

Dictionary Learning for photo-z estimation Dictionary Learning for photo-z estimation Joana Frontera-Pons, Florent Sureau, Jérôme Bobin 5th September 2017 - Workshop Dictionary Learning on Manifolds MOTIVATION! Goal : Measure the radial positions

More information

A discretized Newton flow for time varying linear inverse problems

A discretized Newton flow for time varying linear inverse problems A discretized Newton flow for time varying linear inverse problems Martin Kleinsteuber and Simon Hawe Department of Electrical Engineering and Information Technology, Technische Universität München Arcisstrasse

More information

Seismic data interpolation and denoising by learning a tensor tight frame

Seismic data interpolation and denoising by learning a tensor tight frame Seismic data interpolation and denoising by learning a tensor tight frame Lina Liu 1, Gerlind Plonka Jianwei Ma 1 1,Department of Mathematics,Harbin Institute of Technology, Harbin, China,Institute for

More information

Generalized greedy algorithms.

Generalized greedy algorithms. Generalized greedy algorithms. François-Xavier Dupé & Sandrine Anthoine LIF & I2M Aix-Marseille Université - CNRS - Ecole Centrale Marseille, Marseille ANR Greta Séminaire Parisien des Mathématiques Appliquées

More information

IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND

IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND JIAN-FENG CAI, BIN DONG, STANLEY OSHER, AND ZUOWEI SHEN Abstract. The variational techniques (e.g., the total variation based method []) are

More information

Design of Image Adaptive Wavelets for Denoising Applications

Design of Image Adaptive Wavelets for Denoising Applications Design of Image Adaptive Wavelets for Denoising Applications Sanjeev Pragada and Jayanthi Sivaswamy Center for Visual Information Technology International Institute of Information Technology - Hyderabad,

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

Multiresolution analysis

Multiresolution analysis Multiresolution analysis Analisi multirisoluzione G. Menegaz gloria.menegaz@univr.it The Fourier kingdom CTFT Continuous time signals + jωt F( ω) = f( t) e dt + f() t = F( ω) e jωt dt The amplitude F(ω),

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

Super-Resolution. Shai Avidan Tel-Aviv University

Super-Resolution. Shai Avidan Tel-Aviv University Super-Resolution Shai Avidan Tel-Aviv University Slide Credits (partial list) Ric Szelisi Steve Seitz Alyosha Efros Yacov Hel-Or Yossi Rubner Mii Elad Marc Levoy Bill Freeman Fredo Durand Sylvain Paris

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information

Application to Hyperspectral Imaging

Application to Hyperspectral Imaging Compressed Sensing of Low Complexity High Dimensional Data Application to Hyperspectral Imaging Kévin Degraux PhD Student, ICTEAM institute Université catholique de Louvain, Belgium 6 November, 2013 Hyperspectral

More information

Denoising and Compression Using Wavelets

Denoising and Compression Using Wavelets Denoising and Compression Using Wavelets December 15,2016 Juan Pablo Madrigal Cianci Trevor Giannini Agenda 1 Introduction Mathematical Theory Theory MATLAB s Basic Commands De-Noising: Signals De-Noising:

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Wavelets and Signal Processing

Wavelets and Signal Processing Wavelets and Signal Processing John E. Gilbert Mathematics in Science Lecture April 30, 2002. Publicity Mathematics In Science* A LECTURE SERIES FOR UNDERGRADUATES Wavelets Professor John Gilbert Mathematics

More information

An Introduction to Sparse Representations and Compressive Sensing. Part I

An Introduction to Sparse Representations and Compressive Sensing. Part I An Introduction to Sparse Representations and Compressive Sensing Part I Paulo Gonçalves CPE Lyon - 4ETI - Cours Semi-Optionnel Méthodes Avancées pour le Traitement des Signaux 2014 Objectifs Part I The

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

A Friendly Guide to the Frame Theory. and Its Application to Signal Processing

A Friendly Guide to the Frame Theory. and Its Application to Signal Processing A Friendly uide to the Frame Theory and Its Application to Signal Processing inh N. Do Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ minhdo

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Sparse Approximation of Signals with Highly Coherent Dictionaries

Sparse Approximation of Signals with Highly Coherent Dictionaries Sparse Approximation of Signals with Highly Coherent Dictionaries Bishnu P. Lamichhane and Laura Rebollo-Neira b.p.lamichhane@aston.ac.uk, rebollol@aston.ac.uk Support from EPSRC (EP/D062632/1) is acknowledged

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Multiscale Geometric Analysis: Thoughts and Applications (a summary) Multiscale Geometric Analysis: Thoughts and Applications (a summary) Anestis Antoniadis, University Joseph Fourier Assimage 2005,Chamrousse, February 2005 Classical Multiscale Analysis Wavelets: Enormous

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information

Image processing and Computer Vision

Image processing and Computer Vision 1 / 1 Image processing and Computer Vision Continuous Optimization and applications to image processing Martin de La Gorce martin.de-la-gorce@enpc.fr February 2015 Optimization 2 / 1 We have a function

More information

Directionlets. Anisotropic Multi-directional Representation of Images with Separable Filtering. Vladan Velisavljević Deutsche Telekom, Laboratories

Directionlets. Anisotropic Multi-directional Representation of Images with Separable Filtering. Vladan Velisavljević Deutsche Telekom, Laboratories Directionlets Anisotropic Multi-directional Representation of Images with Separable Filtering Vladan Velisavljević Deutsche Telekom, Laboratories Google Inc. Mountain View, CA October 2006 Collaborators

More information

Sparse linear models and denoising

Sparse linear models and denoising Lecture notes 4 February 22, 2016 Sparse linear models and denoising 1 Introduction 1.1 Definition and motivation Finding representations of signals that allow to process them more effectively is a central

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Sparse Directional Image Representations using the Discrete Shearlet Transform

Sparse Directional Image Representations using the Discrete Shearlet Transform Sparse Directional Image Representations using the Discrete Shearlet Transform Glenn Easley System Planning Corporation, Arlington, VA 22209, USA Demetrio Labate,1 Department of Mathematics, North Carolina

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Variational Image Restoration

Variational Image Restoration Variational Image Restoration Yuling Jiao yljiaostatistics@znufe.edu.cn School of and Statistics and Mathematics ZNUFE Dec 30, 2014 Outline 1 1 Classical Variational Restoration Models and Algorithms 1.1

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

Wavelets For Computer Graphics

Wavelets For Computer Graphics {f g} := f(x) g(x) dx A collection of linearly independent functions Ψ j spanning W j are called wavelets. i J(x) := 6 x +2 x + x + x Ψ j (x) := Ψ j (2 j x i) i =,..., 2 j Res. Avge. Detail Coef 4 [9 7

More information

SUMMARY. H (ω)u(ω,x s ;x) :=

SUMMARY. H (ω)u(ω,x s ;x) := Interpolating solutions of the Helmholtz equation with compressed sensing Tim TY Lin*, Evgeniy Lebed, Yogi A Erlangga, and Felix J Herrmann, University of British Columbia, EOS SUMMARY We present an algorithm

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

We will now focus on underdetermined systems of equations: data acquisition system

We will now focus on underdetermined systems of equations: data acquisition system l 1 minimization We will now focus on underdetermined systems of equations: # samples = resolution/ bandwidth data acquisition system unknown signal/image Suppose we observe y = Φx 0, and given y we attempt

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Sparsifying Transform Learning for Compressed Sensing MRI

Sparsifying Transform Learning for Compressed Sensing MRI Sparsifying Transform Learning for Compressed Sensing MRI Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois

More information

2 Regularized Image Reconstruction for Compressive Imaging and Beyond

2 Regularized Image Reconstruction for Compressive Imaging and Beyond EE 367 / CS 448I Computational Imaging and Display Notes: Compressive Imaging and Regularized Image Reconstruction (lecture ) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement

More information

Denosing Using Wavelets and Projections onto the l 1 -Ball

Denosing Using Wavelets and Projections onto the l 1 -Ball 1 Denosing Using Wavelets and Projections onto the l 1 -Ball October 6, 2014 A. Enis Cetin, M. Tofighi Dept. of Electrical and Electronic Engineering, Bilkent University, Ankara, Turkey cetin@bilkent.edu.tr,

More information

( nonlinear constraints)

( nonlinear constraints) Wavelet Design & Applications Basic requirements: Admissibility (single constraint) Orthogonality ( nonlinear constraints) Sparse Representation Smooth functions well approx. by Fourier High-frequency

More information

Morphological Diversity and Sparsity for Multichannel Data Restoration

Morphological Diversity and Sparsity for Multichannel Data Restoration DOI 10.1007/s10851-008-0065-6 Morphological Diversity and Sparsity for Multichannel Data Restoration J. Bobin Y. Moudden J. Fadili J.-L. Starck Springer Science+Business Media, LLC 2008 Abstract Over the

More information

Error Analysis for H 1 Based Wavelet Interpolations

Error Analysis for H 1 Based Wavelet Interpolations Error Analysis for H 1 Based Wavelet Interpolations Tony F. Chan Hao-Min Zhou Tie Zhou Abstract We rigorously study the error bound for the H 1 wavelet interpolation problem, which aims to recover missing

More information

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 207-4212 Ubiquitous International Volume 7, Number 5, September 2016 Truncation Strategy of Tensor Compressive Sensing for Noisy

More information

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames Sparsity- and continuity-promoting seismic image recovery with curvelet frames Felix J. Herrmann, Peyman Moghaddam and Chris Stolk Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

Compressed sensing for radio interferometry: spread spectrum imaging techniques

Compressed sensing for radio interferometry: spread spectrum imaging techniques Compressed sensing for radio interferometry: spread spectrum imaging techniques Y. Wiaux a,b, G. Puy a, Y. Boursier a and P. Vandergheynst a a Institute of Electrical Engineering, Ecole Polytechnique Fédérale

More information

MLISP: Machine Learning in Signal Processing Spring Lecture 10 May 11

MLISP: Machine Learning in Signal Processing Spring Lecture 10 May 11 MLISP: Machine Learning in Signal Processing Spring 2018 Lecture 10 May 11 Prof. Venia Morgenshtern Scribe: Mohamed Elshawi Illustrations: The elements of statistical learning, Hastie, Tibshirani, Friedman

More information

Sparse Recovery Beyond Compressed Sensing

Sparse Recovery Beyond Compressed Sensing Sparse Recovery Beyond Compressed Sensing Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda Applied Math Colloquium, MIT 4/30/2018 Acknowledgements Project funded by NSF award DMS-1616340 Separable Nonlinear

More information

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE METHODS AND APPLICATIONS OF ANALYSIS. c 2011 International Press Vol. 18, No. 1, pp. 105 110, March 2011 007 EXACT SUPPORT RECOVERY FOR LINEAR INVERSE PROBLEMS WITH SPARSITY CONSTRAINTS DENNIS TREDE Abstract.

More information

A Lower Bound Theorem. Lin Hu.

A Lower Bound Theorem. Lin Hu. American J. of Mathematics and Sciences Vol. 3, No -1,(January 014) Copyright Mind Reader Publications ISSN No: 50-310 A Lower Bound Theorem Department of Applied Mathematics, Beijing University of Technology,

More information

Wavelets and Image Compression. Bradley J. Lucier

Wavelets and Image Compression. Bradley J. Lucier Wavelets and Image Compression Bradley J. Lucier Abstract. In this paper we present certain results about the compression of images using wavelets. We concentrate on the simplest case of the Haar decomposition

More information

HOSVD Based Image Processing Techniques

HOSVD Based Image Processing Techniques HOSVD Based Image Processing Techniques András Rövid, Imre J. Rudas, Szabolcs Sergyán Óbuda University John von Neumann Faculty of Informatics Bécsi út 96/b, 1034 Budapest Hungary rovid.andras@nik.uni-obuda.hu,

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Sparse molecular image representation

Sparse molecular image representation Sparse molecular image representation Sofia Karygianni a, Pascal Frossard a a Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory (LTS4), CH-115, Lausanne, Switzerland Abstract

More information

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University

New Applications of Sparse Methods in Physics. Ra Inta, Centre for Gravitational Physics, The Australian National University New Applications of Sparse Methods in Physics Ra Inta, Centre for Gravitational Physics, The Australian National University 2 Sparse methods A vector is S-sparse if it has at most S non-zero coefficients.

More information

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Boaz Nadler The Weizmann Institute of Science Israel Joint works with Inbal Horev, Ronen Basri, Meirav Galun and Ery Arias-Castro

More information

The Iteration-Tuned Dictionary for Sparse Representations

The Iteration-Tuned Dictionary for Sparse Representations The Iteration-Tuned Dictionary for Sparse Representations Joaquin Zepeda #1, Christine Guillemot #2, Ewa Kijak 3 # INRIA Centre Rennes - Bretagne Atlantique Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

More information

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC

More information

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion Super-Resolution Dr. Yossi Rubner yossi@rubner.co.il Many slides from Mii Elad - Technion 5/5/2007 53 images, ratio :4 Example - Video 40 images ratio :4 Example Surveillance Example Enhance Mosaics Super-Resolution

More information

Image representation with multi-scale gradients

Image representation with multi-scale gradients Image representation with multi-scale gradients Eero P Simoncelli Center for Neural Science, and Courant Institute of Mathematical Sciences New York University http://www.cns.nyu.edu/~eero Visual image

More information

Estimation Error Bounds for Frame Denoising

Estimation Error Bounds for Frame Denoising Estimation Error Bounds for Frame Denoising Alyson K. Fletcher and Kannan Ramchandran {alyson,kannanr}@eecs.berkeley.edu Berkeley Audio-Visual Signal Processing and Communication Systems group Department

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

Curvelet imaging & processing: sparseness constrained least-squares migration

Curvelet imaging & processing: sparseness constrained least-squares migration Curvelet imaging & processing: sparseness constrained least-squares migration Felix J. Herrmann and Peyman P. Moghaddam (EOS-UBC) felix@eos.ubc.ca & www.eos.ubc.ca/~felix thanks to: Gilles, Peyman and

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information