Current noise in topological Josephson junctions

Size: px
Start display at page:

Download "Current noise in topological Josephson junctions"

Transcription

1 Current noise in topological Josephson junctions Julia S. Meyer with Driss Badiane, Leonid Glazman, and Manuel Houzet INT Seattle Workshop on Quantum Noise May 29, 2013

2 Motivation active search for Majorana fermions in superconducting hybrid structures proposed signatures: zero-energy bound state (visible in tunneling DoS) fractional AC Josephson effect? study properties of a biased topological Josephson junction 2

3 Topological Phases BEST KNOWN EXAMPLE: QH system NOVEL ASPECTS: time-reversal symmetry strong spin-orbit interaction band inversion Example: HgTe/CdTe quantum wells Koenig et al., Science 421, 766 (2007) ) E(k) (ev) ) E(k) (ev) [also InAs/GaSb Knez, Du & Sullivan, PRL 107, (2011)] k (A 1 ) X-L Qi & S-C Zhang, RMP 83, 1057 (2011) k (A 1 ) 3

4 2D Topological Insulator (QSH): Helical Edge States ) E(k) (ev) effective low-energy Hamiltonian: (Dirac fermions) k (A 1 ) Gap Vacuum TI Vacuum Gap > 0 Gap < 0 Gap > 0 Position 4

5 2D Topological Insulator (QSH): Helical Edge States ) E(k) (ev) effective low-energy Hamiltonian: (Dirac fermions) k (A 1 ) R 14,23 / Ω G = 0.01 e 2 /h T = 30 mk R 14,23 / kω T = 1.8 K T = 0.03 K G = 2 e 2 /h G = 0.3 e 2 (V g V thr ) / V /h 10 4 G = 2 e 2 /h (V g V thr ) / V Koenig et al

6 1D Topological Superconductor: Majorana Fermions topological superconductor: 1D spinless p-wave edge state = Majorana fermion Oreg, Refael & von Oppen, PRL (2010) Lutchyn, Sau & Das Sarma, PRL (2010) Alicea, Rep. Prog. Phys. (2012) (b) E Kitaev, Phys. Usp. (2001) E so µ Possible realizations: 2D topological insulator (QSH) + conventional superconductor nanowire with strong spin-orbit coupling & Zeeman field + conventional superconductor proximity effect topological superconductivity 6 k

7 Signatures? Fig. 3.!"#$%! & &%3676! V! #,*! *3%%&! B'7,*!,%#3!A:!H!/*'$ /#($C'7)C! E,! $C PC%3%0.!Q+(E$!+ /200.! S,! /B0! #, 4'3! >! #,*! 1>> 6%,$F! 3%6+%-$E& $C%!+%#R!%G$%, *%+%,*%,-%.!d 6%$!4'3!-(#3E$O!/ #$! *E44%3%,$! $%; 8:>F!89:F!1>>F V![!8>>!ȝ%H!E PE*$C! #$! C#(4A; tunnel spectroscopy: zero-energy bound state at the end of the nanowire in the topological phase Mourik et al. (2012) $#/$"$#,"%,/B"=+)/% )*/3," 1?" %J&" R" :8 Fig. 2.! ^#),%$E-! 4E%(*! *%+%,*%,$! 6+%-$3'6-'+O.! /A0! di5dv! $,.%,2/$>2,"+)"R68 &%3676! V! #$! 9>! ;?! $#R%,! #$!*E44%3%,$!BA4E%(*6! /43';! >! $'!T_>! A21/=,-+-0"/)":(VW% ;<!E,!8>!;<!6$%+6`!$3#-%6!#3%!'446%$!4'3!-(#3E$OF!%G-%+$!4'3!$C%! Z,M$"',"<,2+?4 Fig. "A#! $%&'()*! +,! &-*+.*&(/0'! ('P%6$! $3#-%! #$! B! [! >0.! 2#$#!1.! 43';! *%&E-%! 8.! /B0! W'('3! 6-#(%! 2,$+*/3" [/\12/-/" % +('$!'4!dI5dV!&%3676!V!#,*!B.!<C%!D%3'ABE#6!+%#R!E6!CE)C(E)C$A $#," IJ9(" K," #/< 6*7(/*!'08+%&!9(&-!0!2*:(/+)6%/&();!)0)+9 %*!BO!#!*#6C%*!'&#(.!2#6C%*!(E,%6!E,*E-#$%!$C%!)#+!%*)%6.!@$! Z1'C"',"$,)$"+?")% 2=907*!2%1*./+)6%/&+.3!>)!*<&*.)0'!B=,(*'6 M>.=! <! #!,',A^#a'3#,#! 6$#$%! E6! -3'66E,)! D%3'! BE#6! PE$C! #!,-*," 1?" $#," IJ9(" 6('+%! %N7#(! $'! ~Z! ;%H5<! BO! 6('+%*! *'$$%*! (E,%60.! %,2%,-=+*>3/2" $1" # &-*!/E,*E-#$%*! 9(.*3! 4-*!?02-@0! 21()=+.@(&! ()&*.0/&(+ <3#-%6!E,!/@0!#3%!%G$3#-$%*!43';!/J0. ),$>%"*1-$/+-+-0"/" *,,*/&(7*!:0;)*&(/!,(*'6A!B2+A!1+()&();!1*.1 +-"/2A+$2/24"=+2,*$+ $#,"/-03,"?12"/"*1+9(.*3! 4-*!.*6! 2&0.2! ()6(/0&*! &-*! *<1* *1<,2,=" '+$#" )>%,2*1-=>*$12" +)".>*#" 3,))",??,*$+<," =>," $1",??+*+,-$" +)"/%%21M+./$,34", B0C+.0)0!10(.3!"D+&&+:#!E)*.;8A!EA!7*.2%2 )*2,,-+-0("@#,"->.A,2"1?"1**>%+,=")>AA/-=)"+-"$#+)"%/2$"+)">-B-1'-C"A>$" $#/$"$#,"IJ9"*1., +$"+)".1)$"3+B,34".>3$+D)>AA/-=("7)")#1'-"+-"?+0)("EF"/-="E55"1?"G!"H"'," /21>-="ʌ!6C"'#+*# FG! 9(.*! 9(&-!?02-@0! 21()=+.@(&! ()&*.0/&( =1"#/<,"$1"$>-,"0/$,"5"/-="$#,"$>--,3"A/22+,2"$1"$#,"2+0#$"2,0+.,"+-"12=,2" $#,"%3/-,"1?"21$/$+1 21()=6+9)!@0)6!"@'%*#!&+!&-*!'*,&!0)6!21() $1"1A),2<,"$#,"IJ9(" IJ9"+)"-1'"%2,),K,"#/<,".,/)>2,="+-"$1$/3"),<,2/3"#>-=2,="%/-,3)")',,%+-0"</2+1>)" 3/2"$1"# ("@#,),"1A.(;-&3!D'%*!0)6!.*6!10.0@+'0!0.*!,+.!B!H!I3 )1 0/$,)"1-"=+??,2,-$"=,<+*,)("L>2"./+-"1A),2</$+1-)"G!"H"/2,"G+H"IJ9",M+)$)" $#,")%+-D12A+$"=+2,* B!!IA!(''%2&.0&();!&-*!,+.:0&(+)!+,!0!;01!)* 1<,2"/")>A)$/-$+/3"<13$/0,"2/-0,"?12",<,24"0/$,")$/2$+-0"?21."$#,"A/22+,2" $#/$"$#+)"/-03,"=,% 0/$," >-$+3" 0/$," NC" G++H" '," */-" 1**/)+1-/334" )%3+$" $#," IJ9" +-" $'1" %,/B)" 12"/"</2+/$+1-"+-"-D "ȝ!(2!&-*!l*.:(!*)*.;8!9(&-!ȝ!h!i!6*,()*6!0 31*/$,=")4..,$2+*/334"/21>-="O,21C"/-="G+++H"',"*/-"-,<,2".1<,"$#,"%,/B" 7 7)"/"3/)$"*#,*B 0&! ),$)" k! H! I#3! 4-*! 2%1*./+)6%/&+.! ()6% /'/4"?21." O,21" $1"?+-+$,"'02! A+/)(" P/$/" )>*#" /)" $#1)," +-" Q+0)(" 6" /-=" :" */3"=,)+0-"A>$"'+$# =,.1-)$2/$,"$#/$"$#,"IJ9"2,./+-)")$>*B"$1"O,21",-,204"1<,2"*1-)+=,2/A3," G+(,(C"/"ZDZKDZ"0, 2&0&*2!+,!+11+2(&*!:+:*)&%:!0)6!+11+2(&

8 Fractional AC Josephson Effect? Setup V Superconductor Superconductor 2D Topological Insulator 8

9 Fractional AC Josephson Effect? Setup V Superconductor Superconductor 9

10 Andreev / Majorana Bound States Superconductor φ 1 Superconductor φ 2 Hamiltonian: x x L φ x x L M x x L 10

11 Andreev / Majorana Bound States Superconductor φ 1 Superconductor φ 2 Ε φ 1.0 M = 0: bound state backscattering? potential barrier magnetic barrier spin-flip scattering Ε φ φ φ bound state where D transmission probability For comparison: Ε φ φ S-N-S with potential barrier 11

12 DC Josephson Effect Josephson current carried by ABS: Ε φ φ 1.0 equilibrium Josephson current: where ε < is the energy of the ABS below the Fermi level 2π-periodic 12

13 DC Josephson Effect Josephson current carried by ABS: Ε φ φ 1.0 non-equilibrium Josephson current: δφ 2eV dc t in the absence of inelastic processes fractional Josephson effect at frequency ev dc = ω J /2? only even Shapiro steps? Kitaev, Ann. Phys. (2003) Fu & Kane, PRB (2009) for ev dc = kω (instead of 2eV dc = kω in S-N-S) 13

14 Outline Andreev Bound States: S-N-S vs S-TI-S Josephson Junctions Fractional AC Josephson effect? Effective Model: Bound State Dynamics Characteristic Time Scales Average current & Noise Conclusions I Scattering Theory Noise: comparison with the effective model Additional signatures MAR features Conclusions II NOTE: δϕ = ϕ = χ V = V dc 14

15 Main Result 2 characteristic time scales: Ø lifetime of the Majorana bound state τ s due to dynamic coupling to the continuum Ø phase adjustment time τ R due to the resistive environment provided by the circuit observable signatures: even/odd effect in Shapiro steps for τ s À τ R more robust: peak in finite-frequency noise S(ω) at ω = ev dc (half of the usual Josephson frequency) 15

16 Effective Model 1. switching probability: Landau-Zener 2. bound state dynamics: Markov process 16

17 Switching Probability: Landau-Zener 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π 16 Π 18 Π 20 Π 22 Π 24 Π 26 Π 28 Π 30 Π at finite bias: ϕ(t) = 2e s t V(t ) dt dynamical coupling between the bound state and the continuum occupation of the bound state may switch 17

18 Switching Probability: Landau-Zener 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π 16 Π 18 Π 20 Π 22 Π 24 Π 26 Π 28 Π 30 Π x Hamiltonian : φ x x L x L consider weak backscattering: R = 1 D 1 where R ~ (ML/v) 2 Ε Χ 1 M x x L 2 Π 2 Π Χ t 1 18

19 Switching Probability at R 1 Ε Χ 1 consider only states with energy near Δ: ϕ 1 vp Δ 2 Π 2 Π Χ t 1 apply unitary transformation & diagonalize particle-hole space + bound state similar to Shiba state created by a magnetic impurity in a superconductor Shiba 1968, Rusinov

20 Switching Probability at R 1 + time-dependent phase: ϕ = 2eV dc t use adiabatic basis Ε Χ two-band version of transition from discrete state to continuum Demkov-Osherov (1967) Π 10 Π 5 Π 10 0 Π 10 Π 5 3 Π 10 Χ t switching probability 20

21 Switching Probability at R 1 Ε Χ adiabaticity parameter: 3 Π 10 Π 5 Π Π 10 Π 5 3 Π 10 Χ t switching probability time scale for the transition: 21

22 Switching Probability at R s Λ 23 s s 0.93 Λ 54 2 Λ3 e ΛR 32 ev dc M. Houzet, JSM, D.M. Badiane & L.I. Glazman, arxiv:

23 Bound State Dynamics: Markov Process 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π 16 Π 18 Π 20 Π 22 Π 24 Π 26 Π 28 Π 30 Π n t 0 Ε t I t Χ t 2Π Χ t 2Π Χ t 2Π 23

24 Bound State Dynamics: Markov Process P probability of fermionic state to be occupied Q = 1 P probability of fermionic state to be empty s switching probability per half-period 1 s s 4n¼ 4 Π (4n+2)¼ 6 Π s 1 s Χ t current: where similar models have been used for Landau-Zener transitions near avoided crossings in conventional junctions Averin et al. 1995, Pikulin et al. 2011, Sau et al

25 Realistic Circuit: Time Scales P 2(n+k) = P 2n +(1 s) 2k (P 2n P 2n), P 2(n+k)+1 = P 2n+1 +(1 s)2k+1 (P 2n P 2n ). with P n 1 = [1 ( 1) n s/(2 s)]/2 Markov process defines characteristic time scale τ s = 2π / [ev dc ln(1 s)] ¼ 2π / (sev dc ) for s 1 resistive environment provided by the circuit sets time scale τ R for adjusting the phase across the junction 25

26 RSJ Model consider a voltage-biased Josephson junction in series with an external resistance R where V (t) =V dc + V ac cos (Ωt) V(t) rewrite I S (t) =±I 0 sin (ϕ(t)/2) ) and introduce the varia with ϕ(t) =kωt + 2eV ac sin (Ωt)+φ(t) Ω for 2eV dc ¼ kω, one finds 26

27 RSJ Model characteristic time scale: R =1/(eRI k) with I k = I 0 J k/2 (ev ac /Ω) τ (k) if τ (k) R τ s, parity conserved during formation of step: only even Shapiro steps! even-odd effect shape of the step: I dc = k δv k R 1 θ 1 2 RIk 1 δv k 2 RIk δv k where δv k = V dc kω/(2e) and k even 27

28 τ s τ R : Average Current non-adiabatic processes important average current: determined by long-time probabilities independent of initial state & 4¼-periodic 2¼-periodic strongly suppressed for s 1 NOTE: for V ac V dc & Ω δ, dependence of s on ac bias negligible Shapiro steps suppressed 28

29 τ s τ R : Noise determined by correlator where n i = Int[ϕ i /2¼] 29

30 Noise DC Bias S(ω) = 4sI2 J π(2 s) (ev dc ) 3 4 cos 2 πω [ω 2 (ev dc ) 2 ] 2 4 cos 2 πω 2eV dc 2eV dc + s2 1 s finite-frequency noise: peak at! = ± ev dc for! ¼ ± ev dc & s 1 peak width characteristic time scale τ s similar results for finite-size Majorana nanowires equivalently: fractional AC effect in transient regime Pikulin & Nazarov 2011 San-José, Prada & Aguado

31 Noise DC+AC Bias noise peak shifted to lower (more accessible?) frequencies under microwave irradiation: 31

32 Conclusions I signatures of Majorana fermions are subtle Non-equilibrium properties of S-TI-S junctions: interplay between 2 time scales: Ø lifetime of the Majorana bound state τ s Ø phase adjustment time τ R even/odd effect in Shapiro steps for τ s À τ R clear signatures of fractional Josephson effect in finite-frequency noise D.M. Badiane, M. Houzet & JSM, PRL 107, (2011) M. Houzet, JSM, D.M. Badiane & L.I. Glazman, arxiv:

33 Alternative Approach: Scattering Theory 33

34 I-V characteristics: Multiple Andreev Reflections Superconductor Superconductor electrons/holes gain/lose energy ev dc when traversing the barrier only quasi-particles with energy ε > Δ can escape into reservoir 2eV dc Octavio, Blonder, Tinkham & Klapwijk

35 Scattering Formalism Superconductor Superconductor 35

36 Scattering Formalism Superconductor Superconductor Andreev reflection scattering matrix Andreev reflection a Ε 1 e h e h Andreev reflection: scattering matrix for electrons: Ε + applied voltage: scattering matrix for holes: 36

37 Scattering Formalism Superconductor Superconductor incoming electron from the left e h e h derive recursion relations for coefficients A n, B n obtain expression for current: where D Averin & A Bardas, PRL (1995) 37

38 Noise compute S(ω) = e2 2h ±ω p dɛ dɛ J(ɛ)J(ɛ ) { [ ( δ(ɛ ɛ ± ω +2peV ) n (f(ɛ)[1 f(ɛ )] + f(ɛ )[1 f(ɛ)]) (9) [ ] 2 A n+pa n + a 2(n+p) a 2nĀ n+pā n (1 + a 2(n+p) a 2n)Bn+pB n + (1 + a 2(n+p)+1 a 2n+1 ) ( Cn+p C n ) 2 ) D n+p D n n +2δ(ɛ ɛ [ ] 2 ] ± ω +(2p 1)eV ) A n+p C n + a 2(n+p) a 2n+1Ā n+p C n (1 + a 2(n+p) a 2n+1 )B n+p D n n +(f(ɛ)f(ɛ ) + [1 f(ɛ)][1 f(ɛ )]) [ δ(ɛ + ɛ [ ± ω +2peV ) Ap n B n B p na n a 2(p n)a 2n (Āp n B n B )] 2 p nā n n +δ(ɛ + ɛ 2 ± ω +2(p +1)eV ) (1 a 2(p n)+1 a 2n+1 )(D p nc n C p nd n ) n +2δ(ɛ + ɛ [ ± ω +(2p +1)eV ) Ap n D n a 2(p n)a 2n+1Āp nd n ( 1 a 2(p n) a ) 2n+1 Bp n C ] 2 ]} n. n 38

39 1(V 0) 0andI 1 (D 0) 0 n ac Josephson effect? Results: Noise noise:probeof4π-periodicity current noise: {δî(t), δî(t+τ)}, I(t), and the bar deg. as a consequence of ak due to dynamical coupling between the bound state peak at ω = ±ev dc signature of the fractional Josephson effect Badiane, Houzet & JSM

40 Comparison: Effective Model vs Numerical Results effective model in the limit R 1 and τ R 1 : S(ω) = 4sI2 J π(2 s) (ev dc ) 3 4 cos 2 πω [ω 2 (ev dc ) 2 ] 2 4 cos 2 πω 2eV dc 2eV dc + s2 1 s fit numerical results with s as a free parameter SΩ 4eI Ω MAR numerical calculation Fit D = 0.9 & ev dc = 0.025Δ D = 0.9 & ev dc = 0.05Δ SΩ 4eI Ω MAR numerical calculation Fit 40

41 Comparison: Effective Model vs Numerical Results compare with s(λ) (Demkov-Osherov): 1.0 s , D 0.85, D 0.90, D Λ R 3 2 ev dc 41

42 Additional Signatures: DC Current I 0 / (G N /e) I 0 / (G T /e!) D = 1.00 D = 0.99 D = 0.90 D = 0.70 D = 0.50 D = 0.30 D = 0.10 D = 0.01 G G T 2.e 2 N = De/h.D 2 /h For comparison: S-N-S I 0 / (G N /e) I 0 / (G T /e!) D = 1.00 D = 0.99 D = 0.90 D = 0.70 D = 0.50 D = 0.30 D = 0.10 D = 0.01 G T = 2.e 2 /h.d G N = 2De 2 /h ev/! ev = 2Δ ev/! midgap resonance Transparent junction (D = 1): I S-TI-S = 1/2 I S-N-S Tunnel junction (D 0): current onset at ev dc = Δ 42

43 Additional Signatures: DC Current G = e 2 /h subgap MAR structures at nev dc = Δ (vs nev dc = 2Δ for S-N-S) 0 n = 2 n = 3 Log( I/(G/e!) ) D = 0.90 D = 0.70 D = 0.50 D = 0.30 D = 0.10 D = !/eV 43

44 Conclusions II signatures of Majorana fermions are subtle Non-equilibrium properties of S-TI-S junctions: even/odd asymmetry in Shapiro steps for τ s τ R clear signatures of fractional Josephson effect in finite-frequency noise DC current subgap structures due to multiple Andreev reflections at ev dc = Δ/n tunneling limit: current onset at ev dc = Δ D.M. Badiane, M. Houzet & JSM, PRL 107, (2011) M. Houzet, JSM, D.M. Badiane & L.I. Glazman, arxiv:

45 Thank you! 45

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Overview - HgTe/CdTe bandstructure, quantum spin Hall effect: 2D TI - Dirac surface states of strained bulk HgTe: 3D TI - Topological

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

From single magnetic adatoms to coupled chains on a superconductor

From single magnetic adatoms to coupled chains on a superconductor From single magnetic adatoms to coupled chains on a superconductor Michael Ruby, Benjamin Heinrich, Yang Peng, Falko Pientka, Felix von Oppen, Katharina Franke Magnetic adatoms on a superconductor Sample

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Multichannel Majorana Wires

Multichannel Majorana Wires Multichannel Majorana Wires Piet Brouwer Frascati, 2014 Dahlem Center for Complex Quantum Systems Physics Department Inanc Adagideli Freie Universität Berlin Mathias Duckheim Dganit Meidan Graham Kells

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Interactions and transport in Majorana wires. Alfredo Levy Yeyati

Interactions and transport in Majorana wires. Alfredo Levy Yeyati Interactions and transport in Majorana wires Alfredo Levy Yeyati SPICE Workshop: Spin dynamics in the Dirac systems, Mainz 6-9 June 2017 Content Low energy transport theory in Majorana wire junctions,

More information

Majorana Fermions and Topological Quantum Information Processing. Liang Jiang Yale University & IIIS. QIP 2013, Beijing

Majorana Fermions and Topological Quantum Information Processing. Liang Jiang Yale University & IIIS. QIP 2013, Beijing Majorana Fermions and Topological Quantum Information Processing Liang Jiang Yale University & IIIS QIP 2013, Beijing 2013.1.21 Conventional Quantum Systems Local degrees of freedom E.g., spins, photons,

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Majoranas in semiconductor nanowires Leo Kouwenhoven

Majoranas in semiconductor nanowires Leo Kouwenhoven Majoranas in semiconductor nanowires Leo Kouwenhoven Önder Gül, Hao Zhang, Michiel de Moor, Fokko de Vries, Jasper van Veen David van Woerkom, Kun Zuo, Vincent Mourik, Srijit Goswami, Maja Cassidy, AHla

More information

Andreev transport in 2D topological insulators

Andreev transport in 2D topological insulators Andreev transport in 2D topological insulators Jérôme Cayssol Bordeaux University Visiting researcher UC Berkeley (2010-2012) Villard de Lans Workshop 09/07/2011 1 General idea - Topological insulators

More information

Multichannel Kondo dynamics and Surface Code from Majorana bound states

Multichannel Kondo dynamics and Surface Code from Majorana bound states Multichannel Kondo dynamics and Surface Code from Maorana bound states Reinhold Egger Institut für Theoretische Physik Dresden workshop 14-18 Sept. 2015 Overview Brief introduction to Maorana bound states

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Novel topologies in superconducting junctions

Novel topologies in superconducting junctions Novel topologies in superconducting junctions Yuli V. Nazarov Delft University of Technology The Capri Spring School on Transport in Nanostructures 2018, Anacapri IT, April 15-22 2018 Overview of 3 lectures

More information

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Moscow Institute of Electronics and Mathematics, Higher School of Economics Collaborators Alexander

More information

arxiv: v2 [quant-ph] 13 Mar 2018

arxiv: v2 [quant-ph] 13 Mar 2018 arxiv:1712.6413v2 [quant-ph] 13 Mar 218 Distinguishing Majorana bound states and Andreev bound states with microwave spectra Zhen-Tao Zhang School of Physics Science and Information Technology, Shandong

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Majorana-type quasiparticles in nanoscopic systems

Majorana-type quasiparticles in nanoscopic systems Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin / Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin

More information

Publication II. c (2007) The American Physical Society. Reprinted with permission.

Publication II. c (2007) The American Physical Society. Reprinted with permission. Publication II Nikolai B. Kopnin and Juha Voutilainen, Nonequilibrium charge transport in quantum SINIS structures, Physical Review B, 75, 174509 (2007). c (2007) The American Physical Society. Reprinted

More information

Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires

Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires Sumanta Tewari 1, T. D. Stanescu 2, Jay D. Sau 3, and S. Das Sarma 4 1 Department of Physics and Astronomy,

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2011

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2011 Coulomb-assisted braiding of Majorana fermions in a Josephson junction array arxiv:.6v [cond-mat.mes-hall] 25 Nov 2 B. van Heck, A. R. Akhmerov, F. Hassler, 2 M. Burrello, and C. W. J. Beenakker Instituut-Lorentz,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson supercurrent through a topological insulator surface state M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L.Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp and

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Bell-like non-locality from Majorana end-states

Bell-like non-locality from Majorana end-states Bell-like non-locality from Majorana end-states Alessandro Romito with Yuval Gefen (WIS) 07.09.2016, Daejeon, Workshop on Anderson Localiation in Topological Insulators Outline Topological superconductors

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Testing axion physics in a Josephson junction environment

Testing axion physics in a Josephson junction environment Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University e +iφ 2 e +iφ 1 111000 00000000 111111110000000

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Magneto-Josephson effects and Majorana bound states in quantum wires

Magneto-Josephson effects and Majorana bound states in quantum wires Home Search Collections Journals About Contact us My IOPscience Magneto-Josephson effects and Majorana bound states in quantum wires This content has been downloaded from IOPscience. Please scroll down

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles

The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center - The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy)

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Andreev Reflection Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Lecture Notes for XXIII Physics GradDays, Heidelberg, 5-9 October

More information

Electronic transport in topological insulators

Electronic transport in topological insulators Electronic transport in topological insulators Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati Trieste, November 011 To the memory of my dear friend Please

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011

ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS. by Zhaoen Su Bachelor of Science, Lanzhou University, 2011 ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT CHAINS by Zhaoen Su Bachelor of Science, Lanzhou University, 211 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Splitting Kramers degeneracy with superconducting phase difference

Splitting Kramers degeneracy with superconducting phase difference Splitting Kramers degeneracy with superconducting phase difference Bernard van Heck, Shuo Mi (Leiden), Anton Akhmerov (Delft) arxiv:1408.1563 ESI, Vienna, 11 September 2014 Plan Using phase difference

More information

arxiv: v2 [cond-mat.supr-con] 13 Aug 2010

arxiv: v2 [cond-mat.supr-con] 13 Aug 2010 Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma Joint Quantum Institute and Condensed Matter Theory

More information

Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States

Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States Commun. Theor. Phys. 65 (016) 6 68 Vol. 65, No. 5, May 1, 016 Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States Zhao-Tan Jiang ( ), Zhi-Yuan Cao ( ì ), and

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson φ 0 -junction in nanowire quantum dots D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 1. Breaking of the chiral symmetry in quantum dots 2. Characterization

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

arxiv: v2 [cond-mat.mes-hall] 13 Jan 2014

arxiv: v2 [cond-mat.mes-hall] 13 Jan 2014 Signatures of tunable Majorana-fermion edge states arxiv:1401.1636v2 [cond-mat.mes-hall] 13 Jan 2014 Rakesh P. Tiwari 1, U. Zülicke 2 and C. Bruder 1 1 Department of Physics, University of Basel, Klingelbergstrasse

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and Lecture 6. Josephson junction circuits Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and I(t) its only destination is as supercurrent through the

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

The fractional a.c. Josephson effect in a semiconductor superconductor nanowire as a signature of Majorana particles

The fractional a.c. Josephson effect in a semiconductor superconductor nanowire as a signature of Majorana particles LETTERS PUBLISHED ONLINE: 3 SEPTEMBER DOI:.38/NPHYS49 The fractional a.c. Josephson effect in a semiconductor superconductor nanowire as a signature of Majorana particles Leonid P. Rokhinson *, Xinyu Liu

More information

Majorana quasiparticles: concepts & challenges

Majorana quasiparticles: concepts & challenges Warszawa, 5 Jan 2018 Majorana quasiparticles: concepts & challenges Tadeusz Domański (UMCS, Lublin) Warszawa, 5 Jan 2018 Majorana quasiparticles: concepts & challenges Tadeusz Domański (UMCS, Lublin) In

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Spin-orbit coupling fields in Fe/GaAs heterostructures

Spin-orbit coupling fields in Fe/GaAs heterostructures Spin-orbit coupling fields in Fe/GaAs heterostructures Outline motivation a simplified model of the Fe/GaAs heterostructure extracting spin-orbit coupling parameters spin-orbit coupling field conclusions

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) PART A: ARPES & Application Yulin Chen Oxford University / Tsinghua University www.arpes.org.uk

More information

Ferromagnetic superconductors

Ferromagnetic superconductors Department of Physics, Norwegian University of Science and Technology Pisa, July 13 2007 Outline 1 2 Analytical framework Results 3 Tunneling Hamiltonian Josephson current 4 Quadratic term Cubic term Quartic

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

arxiv: v2 [cond-mat.mes-hall] 18 May 2014

arxiv: v2 [cond-mat.mes-hall] 18 May 2014 Interplay of exciton condensation and quantum spin Hall effect in InAs/GaSb bilayers D. I. Pikulin and T. Hyart Instituut-Lorentz, Universiteit Leiden, P.O. Box 956, 3 RA Leiden, The Netherlands arxiv:3.v

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information